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Interpretability is a critical aspect to ensure a fair and responsible use of machine learning (ML) in high-stakes
applications. Genetic programming (GP) has been used to obtain interpretable ML models because it operates
at the level of functional building blocks: if these building blocks are interpretable, there is a chance that their
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an artificial neural network (ANN). We focus on the generation of ML models as analytical functions (i.e., sym-
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To this end, we propose an incremental experimental evaluation, aimed at (1) studying the effectiveness by
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outcome is affected across different simulated user feedback profiles, and (3) determining whether humans
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1 INTRODUCTION

Recent years have seen that an irresponsible use of machine learning models can pose consid-
erable risks [Jobin et al. 2019]. To deal with this problem, the field of Explainable AI (XAI)
studies methods to explain the predictions of models and how they can be possibly interpreted,
and methods to generate models that are inherently amenable for human-interpretation (i.e.,
interpretable models) [Adadi and Berrada 2018; Guidotti et al. 2018a]. The importance of research
concerning XAI is mainly justified by the presence of highly complex models (ie., black-box
models) in high-stakes real-world applications, in which users need to in-depth interact with
these models to analyze the obtained predictions and understand why those types of predictions
have been performed. The current consensus is that methods to explain black-box models have
certain limitations (depending on their respective underlying assumptions), and should therefore
be used with care [Molnar 2020; Molnar et al. 2020]. Indeed, if the data allows for an interpretable
model to be found that achieves high accuracy, then, arguably, the interpretable model should be
preferred over a black-box counterpart [Rudin 2019].

Genetic Programming (GP) is an Evolutionary Computation (EC) algorithm that can
be used to seek interpretable models as, for instance, formulae, decision trees, rule sets, or
computer programs [Koza 1994]. GP operates by initializing a population of (typically) random
models composed of basic operations (or instructions), and evo/ving the population by stochastic
recombination or mutation of the models followed by survival of the fittest. If the basic operations
at play are clearly understandable and, at the same time, GP discovers an accurate model, then
there is a chance that the discovered model is interpretable as well, i.e., it contains a limited
number of operations that are composed in an understandable manner. Yet, leaving the discovery
of interpretable models to chance alone is unlikely to yield acceptable results. Therefore, to
steer GP towards discovering interpretable models, we need to define an objective function
that represents a suitable proxy of interpretability. Unfortunately, interpretability is intrinsically
subjective, i.e., it strongly depends on the application at hand and on the background of the user
[Benk and Ferrario 2020; Lipton 2018]. Moreover, different applications may require a different
tradeoff between model accuracy and model interpretability, depending on the stakes at play
[Freitas 2014; Hatherley 2020].

Virgolin et al. [2021] proposed to address the problem concerning the subjective nature of inter-
pretability by means of a GP-based human-in-the-loop system. The system, called model learning
with personalized interpretability estimation (ML-PIE), uses GP in a multi-objective fashion.
One objective is the model’s accuracy, while the other is a proxy of interpretability that is imple-
mented with a neural network. The neural network is trained upon feedback from the user that
is conveyed via a graphical interface while GP’s evolution is taking place. More specifically, the
user is repeatedly prompted with a pair of models (among the ones discovered by the ongoing GP
process) and, for each pair, is asked to tell which of the two models is more interpretable according
to their personal definition of interpretability. The authors found that, over time, the network
learns to approximate the preference of the user, and that the user tends to prefer models found
with ML-PIE over those found with non-personalized baselines. Figure 1 provides an overview of
ML-PIE, its main components and phases—we provide later a detailed description of the system.
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Fig. 1. Schematic view of ML-PIE. In the green rectangles, we highlight the research questions we tackled
in this study.

While promising, the proposal of Virgolin et al. [2021] had a number of limitations. Firstly, the
system (more specifically, the neural network) was specifically configured to work for symbolic
regression models. For example, some of the features used by the system are the number of basic
arithmetic operations (+, —, X, +). It is unclear whether ML-PIE would still work well with more
general features, which can be used to represent models of other nature (e.g., decision trees and
rules). Secondly, several aspects were not addressed in [Virgolin et al. 2021], such as whether the
reliability of the active learning [Ren et al. 2021; Settles 2009] strategy proposed by the authors
scales as the representation used to estimate the interpretability of the models becomes more
complex (i.e., more fine-grained); or whether updating the network as GP’s search progresses has
a positive or negative impact on the outcome of the search, possibly depending on the frequency
with which the user provides feedback. In other words, we argue that it remains largely unclear
how to best insert the human in the loop when using GP for interpretable machine learning, and
what are possible limitations thereof. In this article, we try to expand our understanding of GP
with human-in-the-loop for interpretable machine learning.

Namely, we address the aforementioned shortcomings by (a) proposing different representations
(features) to capture the interpretability of the models evolved by GP, and by (b) experimentally
assessing the building blocks of ML-PIE, both with real and simulated users. In Figure 1, we further
detail the specific components of the ML-PIE we investigate and highlight what aspects we target,
in the form of questions.

We structure our experimental evaluation in three phases, as follows:

(1) First, we assess the expressiveness of the model representations and how well a neural net-

work can learn upon them against simulated users feedback. We highlight a clear trade-
off between expressiveness and learning capability, and show that uncertainty-based active



learning (as proposed in [Virgolin et al. 2021]) does 7o scale to larger representations unless
the amount of feedback significantly grows.

(2) Then, we incorporate the neural network within GP to act as proxy for the user’s inter-
pretability, and proceed to study the search dynamics in different scenarios, again mimick-
ing user feedback according to some ground-truths, i.e., simulating users. We discover that
the search is indeed influenced by different notions of interpretability, which yield diverse
outcomes, yet it proves robust with respect to inconsistent users who provide feedback in
an irregular manner.

(3) Last, we involve actual human participants to use our system for finding suitable models for
two real-world datasets, and let them judge, in a blind manner, whether the models generated
with their participation are preferable over some predefined ones. We find that with limited
user involvement, i.e., with a scarce amount of feedback collected, the users tend to prefer
predefined models over the ones tailored with our system, hence we note a possible need
for prolonging the feedback collection process.

Based on the outcome of the experimental phase, we summarize the main contributions of our
work as follows:

(i) We design and implement a system that is able to address any kind of machine learnable prob-
lem, in contrast to the original work that is applicable only for mathematical formulae. To
the best of our knowledge, this is the first attempt to build a general problem-agnostic frame-
work for discovering ML models that are interpretable according to a personalized notion
of interpretability. This is of paramount importance since in many real-world applications
there is the need to solve many heterogeneous problems that often require interpretable
models, where the interpretability is arguably subjective with respect to the user that has to
interact with the discovered model;

(ii) We propose, implement, and compare experimentally different and novel ways of encoding
a tree for being evaluated by a neural network, only accounting for the syntactical structure
(i.e., function set and terminal set) of it, making this approach general and problem-agnostic.
Each proposed encoding type represents a tradeoff between expressiveness and complexity,
and the choice of the encoding type depends upon the type of interpretability definition
to learn and the availability of feedback. To the best of our knowledge, this is the first
attempt to present a method that can map the syntactical representation of a GP tree to
a numerical vector that can be easily processed by a vanilla feed-forward neural network
to estimate the interpretability of the tree, regardless of the semantic that is related to
the operators in the function set. We demonstrate that by incorporating this type of
general interpretability estimator in the proposed framework we are able to learn and
approximate an arbitrary general and non-linear interpretability definition, provided
that enough training data (i.e., user feedback) is processed. We believe that this is of
high relevance for the field of XAI since it enables us to learn arbitrary interpretability
notions by employing general problem-agnostic numerical representations of the evolved
models.

This article proceeds as follows. In Section 2, we review the current literature on evolutionary
algorithms applied to discover interpretable models. In Section 3, we formulate the problem at
hand; in Section 4, we give an overview of the framework based on [Virgolin et al. 2021]. In
Section 5, we describe the application of A/Z-P/E in the context of Symbolic Regression (SR),
and we present the tree encoding strategies, how the estimator is optimized, and the feedback col-
lection methods. In Section 6, we discuss the experiments conducted both with simulated human
intervention and with actual human participants. Finally, in Section 7, we draw the conclusions



and summarize our contributions in the context of supervised learning with personalized
interpretability.

2 RELATED WORK

Novel approaches for discovering how to explain and interpret ML model predictions have
gained great interest in the scientific literature [Doran et al. 2017; Goebel et al. 2018; Hagras
2018; Hoffman et al. 2018; Holzinger 2018]. The most relevant strategies that can be adopted to
make models explainable consist in directly synthesizing interpretable models by means of ad
Aoc learning algorithms or, alternatively, applying specifically designed techniques (e.g., reverse
engineering, feature attribution methods, counterfactual explanations) on black-box models to
obtain the needed explanations [Adadi and Berrada 2018; Guidotti et al. 2018a; Ribeiro et al. 2016;
Vilone and Longo 2020; Xu et al. 2019]. The latter approach can be model-agnostic, but has the
clear limitation that it cannot provide a complete understanding of how a model operates for any
potential input [Lipton 2018; Rudin 2019]. Here, we focus on the former approach, i.e., attempting
to synthesize inherently interpretable models.

In general, decision trees, rule-based systems, and linear models are considered to be better
candidates to obtain interpretable models than more complex models such as deep neural
networks [Das and Rad 2020; Dosilovi¢ et al. 2018; Guidotti et al. 2018b; Huysmans et al. 2011;
Sagi and Rokach 2020; Samek and Miiller 2019]. However, even potentially simple models, such as
the aforementioned ones, may require justification, i.e., the simplicity of the model does not imply
its interpretability anyway [Kovalerchuk et al. 2021; Lipton 2018]. Decision tree models may be
simplified by leveraging size reduction and pruning strategies [Breslow and Aha 1997; Izza et al.
2020], or by minimizing a loss function that represents a tradeoff between detection accuracy
and model complexity [Lakkaraju et al. 2016; Su et al. 2015]. Linear models may be simplified
by reducing the number of features [Poursabzi-Sangdeh et al. 2021; Tibshirani 1996; Ustun and
Rudin 2016; Zou and Hastie 2005]. In general, several types of ML models may, hopefully, be
improved by removing irrelevant and redundant features (e.g., linear models, regression trees, and
decision trees). Furthermore, neural network-based models may be improved as well by removing
redundant hidden layers and neurons.

In the context of interpretable machine learning, evolutionary algorithms, such as Genetic
Algorithms (GA) and GP, have gained great interest because of their capabilities to learn
potentially interpretable models (EC for XAI) [Bacardit et al. 2022; Fernandez et al. 2019; Mei
et al. 2022; Sharma et al. 2020]. Especially, GP has been widely adopted to seek intrinsically
interpretable models such as decision trees [Ferigo et al. 2023] and classification rules based on
Learning Classifier Systems (LCSs) algorithms [Urbanowicz and Moore 2009]. A common
strategy that can be implemented to obtain interpretable trees consists in limiting the number
of tree components. This can be done by minimizing the number of nodes, along with the other
objectives, and, additionally, by limiting the function set to simple functions only [Brotto Rebuli
et al. 2023; Cano et al. 2013; Ekart and Nemeth 2001; Lensen 2021; Lensen et al. 2020; Murphy
et al. 2021; Rovito et al. 2022; Smits and Kotanchek 2005; Virgolin et al. 2020a].

Model components can also be weighted according to a given pre-defined weighting scheme
such that the weighted sum of these components may provide an estimation of the model inter-
pretability, with the least interpretable models that undergo a penalization during the evolution
[Hein et al. 2018; Medvet et al. 2015]. Moreover, formula simplification can be employed, perhaps
as a post-processing step, to simplify the learned models for enhancing their interpretability and
readability [Javed et al. 2022].

Recently, much research work has been done in the field of interpretable EC applied to
Reinforcement Learning (RL) [Kaelbling et al. 1996; Videau et al. 2022; Wilson et al. 2018]



scenarios. Custode and Iacca [2023] combined Grammatical Evolution (GE) [O’Neill and Ryan
2001] with Q-learning [Watkins and Dayan 1992] to evolve interpretable decision trees for RL
problems by learning a decomposition of the state-space. This approach was also extended by
the authors to continuous action spaces [Custode and lacca 2021]. Since interpretable models
usually struggle when dealing with raw data and high dimensionality, Custode and lacca [2022a]
presented a framework based on end-to-end pipelines composed of multiple interpretable models
co-optimized by means of evolutionary algorithms. With this system, the authors were able
to decompose the decision-making process in an RL environment and compute high-level
features from raw data that are easily understandable. Machine learning was also employed to
generate policies for containing pandemics [Kompella et al. 2020; Miikkulainen et al. 2021; Trott
et al. 2021]. In this setting, Custode and Iacca [2022b] proposed a combination of RL and EC
techniques to generate interpretable policies for containing pandemics, with a major focus on the
COVID-19 one.

Another strategy that was proposed consists in a data-driven approach that showed how to
derive from human feedback an interpretability formula that can be leveraged to estimate the
interpretability of formulae synthesized within a GP evolutionary process [Virgolin et al. 2020b].
This was later adopted by [Custode and Iacca 2023]. The major difference between [Virgolin
et al. 2020b] and our proposed approach consists in the fact that, while in [Virgolin et al. 2020b]
a formula is directly learned by training a linear model on data that was collected through a
mathematical domain-constrained survey, in this work we propose a framework that has the
potential to learn an arbitrary interpretability notion of an arbitrary user, whose domain of
expertise is not necessarily tied to a mathematical one.

The framework presented by Virgolin et al. [2021] tried to address the fact that interpretability is
subjective to the observer. The authors implemented an SR system in which formulae are evaluated
according to an interpretability estimator trained with user feedback. This system consists in a bi-
objective GP process where the first objective evaluates the detection accuracy of the models while
the second objective evaluates the interpretability through a neural network trained concurrently
during the evolutionary process. Pairs of formulae are sampled using an active learning criterion
based on the estimator uncertainty and presented to the users [Settles 2009; Yang and Loog 2016].
The users select the best formula for each pair according to their subjective interpretability concept.
Such feedback is used to train the interpretability estimator that, in this way, learns to approximate
a personalized Proxy of Human Interpretability (PHI).

There exist several other works that attempted to build an Al-based system with human-in-the-
loop during training [Christiano et al. 2017; Mahoor et al. 2017; Secretan et al. 2011]. Murphy et al.
[2021] state that incorporating human feedback during a model synthesis process may help to
discover interpretable models. There also exist works in which active learning is leveraged within
GP [Bartoli et al. 2017; De Freitas et al. 2010; Isele and Bizer 2013] to directly incorporate the
collected labels into the objective function.

In this work, we analyze more in depth the system presented by Virgolin et al. [2021], especially
since that work was designed for SR problems, while GP can in principle be used to evolve many
other types of model. We provide a generalization of the neural network-based interpretability
estimator that now can be adapted to any type of evolutionary problems with an arbitrary
function set. Therefore, the A/L-P/E framework of Virgolin et al. [2021] is not constrained to
exclusively work with SR problems anymore. We show that by employing an estimator that relies
on general automatically-crafted features it is possible to learn an approximation of arbitrary PHI
with few training samples. Even though this approach is applicable to arbitrary types of problems,
we conducted the experiments on SR because of the wide variety of literature that highlights the
importance of this problem in GP.



3 PERSONALIZED MODEL LEARNING: PROBLEM STATEMENT

We deal with a supervised learning scenario where, given a dataset D = {(r("), y("))}[. of observa-

tions and corresponding labels, the goal is to find a model £: X — ¥ that is accurate, i.e., f(x'?)
correctly predicts the label 7/ for each 7 and is also interpretable.

We assume that the accuracy of a model can be measured with a function g : Fx .y — R,
where ¥ = {f. f : X — T} is the space of models (or hypothesis space). In practice, a number
of well-defined accuracy measures exists, such as the mean squared error or the coefficient of
determination for regression (i.e., when } = R), and the percentage of correct classifications for
classification (i.e., when Y'is a finite set without intrinsic ordering). Regarding interpretability, we
assume that a measure ng : Fy—y — R exists that captures the personal/notion of interpretability
of the user.

We consider the case in which the user wants to solve a supervised learning problem by provid-
ing the dataset 22 and the desired measure of accuracy gz, but not their interpretability measure
g}f (e.g., because the user is wnableto formalize ;}f). We assume, however, that the user is available
for providing feedback (annotations) about the interpretability of models that are generated by the
machine learning process.

4 PERSONALIZED MODEL LEARNING WITH ML-PIE
4.1 Overview

We propose to solve the interpretable model learning problem stated in the previous section as a
bi-objective search in the space Fx_, y of models, where accuracy and interpretability are the two
objectives. Since the #rue interpretability measure ;7/f is not provided, the corresponding objective
is pursued using an estimator' iy of interpretability that is learned during the search of the model
using the user’s feedback. This approach is an extension of the one pursued by Virgolin et al. [2021]
and, just like in the original work, we are going to refer to it as ML-PIE.

Internally, ML-PIE resorts to a model search algorithm for searching Fy_, y and to an active learn-
ing algorithm for training the estimator. Both algorithms are iterative in nature. The training pro-
cess of the estimator is realized via Auwman-in-the-loop: the user is prompted with selected models
among the ones being evaluated by the search algorithm, and asked to provide feedback about the
models’ interpretability. ML-PIE collects the user’s feedback concurrently with the model search
process, yet asynchronously: that is, the rate at which models are generated is independent from
the rate at which the user provides feedback on (part of) them.

4.2 Concurrent Model Search and Active Learning

In ML-PIE, the model search and the active learning algorithms proceed concurrently (yet asyn-
chronously). The motivation for a concurrent approach, as opposed to, e.g., an off-line one where
user feedback is collected prior to model search, is that the user will be presented with the models
that the model search algorithm is discovering. This means that y/r is trained upon data that is
in-distribution for the model search algorithm, since that data represents the actual distribution of
models that are being discovered. Conversely, in an off-line approach there would be no guarantee
that the user feedback could cover the same models (in terms of distribution) being discovered by
the model search algorithm.

At initialization, ML-PIE starts with a randomly generated initial estimator 3. Note that
can also be initially set to be an estimator that was pre-trained, e.g., on previous data that was

! Although both the model # that evolution is searching for and the estimator of interpretability # can be called model or
estimator, from here on we refer with model to the first, and with estimator to the second.



annotated by one or multiple users [Virgolin et al. 2020b], or on a proxy of interpretability from
the literature (e.g., [Vladislavleva et al. 2009]): we discuss a few alternatives for initializing ¢
in Section 5.3.1. Then, at each iteration, the model search algorithm builds some new candidate
models and evaluates them using ¢, and the current . ML-PIE adds (syntactically unique)
models discovered by the model search algorithm to an initially empty set /' C Fx_, y of models. #
is re-set at every iteration of the model search algorithm, to contain only models that are relevant
to the current status of the search. Meanwhile, the active learning algorithm is in charge of
iteratively refining y/#. At each iteration, the active learning algorithm builds a guery i.e., it selects
a pair £, /2 of candidate models from F according to a priority rule (see Section 5.4), and submits
the two models for user assessment. The user is shown the two models on a graphical interface
and is instructed to choose the one that they believe to be more interpretable. When the user
answers the query, the active learning algorithm updates 3/ by using the feedback as signal. For
example, if the user judges f{ to be more interpretable than /£, then the active learning algorithm
will update # to increase the difference ¥ (f1) — ¥r(fo) if ¥r(/1) > ¥r(f2) (ie., the model is
given a positive reward signal), or it will update it to decrease the difference ¥/ f;) — ¥#( /1)
otherwise (i.e., the model is given a negative reward signal). Once ¢ has been updated, the active
learning algorithm builds a new query, thus starting a new iteration of the feedback collection
phase.

We remark that feedback collection is modeled as a simple choice between two models to make
the annotation task easier for the user, and the approach general to many types of model spaces
Fx— - Indeed, asking the user to rank more than two models at a time would reasonably require
considerably more effort. Similarly, it may be hard for the user to provide an estimation for a single
model at a time, e.g., in a form of a score from one to ten. About this last point, designing a scoring
function that the user is requested to consider may also be a hard task for the designer of the
system.

The feedback collection process (equivalently, the active learning algorithm) continues to run
until the model search algorithm terminates. The model search algorithm terminates when a cer-
tain budget is exhausted, such as a maximum number of iterations (in GP, generations), or a max-
imum time is reached.

In summary, ML-PIE executes concurrently two iterative algorithms. The model search algo-
rithm updates one or more models at each iteration, guided by a fixed g and a moving #; the
pace of iterations is the fastest possible on the machine ML-PIE is executing on. The active learn-
ing algorithm updates ¢ at each iteration, guided by the user; the pace of iterations is determined
by rate at which the user provides feedback.

4.3 Applicability

ML-PIE, as described so far, is a rather general approach that can be applied to many different use
cases. For example, regarding the space of models Fx_, y, the only requirements are that (a) models
in ¥y, y are compatible with the estimator being updated by the active learning algorithm /¢, and
that (b) pairs of models can be judged by the user in terms of relative interpretability. In practice,
the first requirement can be met if a proper encoding of the models in Fx_, y is used—we discuss
a concrete case in Section 5. The second requirement can be met if the models can be visualized:
hence, the user’s feedback can be collected by means of a graphical user interface (GUI).

For what concerns the model search algorithm, i.e., the one searching in Fx_,y, we require
it to be bi-objective, although this constraint can, if necessary, be relaxed using linearization or
lexicographic order among objectives.

Lastly, a practical requirement is that the speed at which the model search algorithm progresses
must be approximately compatible with the speed at which the user provides feedback. In other



words, the model search algorithm should run for enough time for the user to provide a reasonable
amount of feedback (we experiment in detail on this in Section 6.4.2).

5 ML-PIE FOR SYMBOLIC REGRESSION

We now consider a concrete application of ML-PIE to the case study of SR, showing how the gen-
eral framework described so far can be adapted to this specific problem of interpretable machine

learning.
SR is a form of supervised learning in which, given data on ¢ independent numerical variables
(x1, . ... xz) = xand on the dependent numerical variable 7, one wish to find the model f: RY — R

that best explains 7 from x while, crucially, / can be written as an analytical expression (or, simply, a
formula). In other words, /" must be realized by composition of basic and interpretable functional
building blocks such as +, %, —, +, exp, In, x1, x5, 0.5, —1, 7, and so on. These building blocks are
decided by the user of the system and are an input for the SR problem, which is NP-hard [Virgolin
and Pissis 2022]. With respect to the general formulation of Section 3, here X = RZ ¥V = R,
and the space of models Fx_, y is the space S, of formulae for & variables. Consequently, the
interpretability estimator i/ : S — R takes a formula as input.

We consider GP to act as model search algorithm since it has been shown to be an effective
approach for SR [La Cava et al. 2021]. We set GP to work in a bi-objective manner, with accuracy
and interpretability as objectives. At termination, GP outputs a collection of formulae, with differ-
ent tradeoff levels among each other between the considered objectives. This allows the user to
choose the model that best fits their needs. We provide a more detailed description of the model
search via GP in Section 5.1.

Concerning the active learning algorithm for the interpretability estimator yr, we investigate
several design options. All of them share the following general structure. We use an encoding / :
S — R to map a model, i.e., a formula, to a numeric vector whose /7 components are features of
the formula. These features must be decided beforehand, we discuss this in Section 5.2. Next, we use
an artificial neural network (ANN) to obtain an interpretability estimate y/( /) for a formula /
by giving the feature vector of /"as the input for the ANN, i.e., ¥/ /) := ANNg(/4(/)), where & € R”
represents the parameters of the ANN. Over time, by using an online learning approach, the param-
eters & must be optimized to make the ANN consistent with the user’s feedback; provided that the
choice of the encoding function /is adequate, i.e., the features of the formulae are informative. We
discuss (and experiment with) a few design options for the encoding in Section 5.2 and for the ANN
optimization in Section 5.3. Besides updating ¢ by optimizing &, the active learning algorithm is
also in charge of building the queries, i.e., of selecting which pairs of formulae should be shown to
the user. We discuss design options concerning query building in Section 5.4. From a practical point
of view, we collect the user’s feedback via a GUL depicted in Figure 2: ML-PIE shows two rendered
formulae and the user can tell which one is the most interpretable with a single click on the GUL

We remark that, although we only focus on and experiment with the case of SR, our approach
remains fully general, provided the few requisites mentioned in Section 4.3 are satisfied. For
instance, we could tackle RL problems where symbolic policies are sought with the very same
methodology proposed for SR, by simply introducing an appropriate fitness evaluation in
simulated environments. Moreover, we could also generalize our scheme to the search of other
types of models, i.e., not only symbolic formulae, as further detailed in Section 5.2.

5.1 Bi-objective Model Search

We use the NSGA-II algorithm [Deb et al. 2002] as bi-objective model search algorithm, with
the implementation provided in [Blank and Deb 2020]. More in detail, we resort to a GP version
of NSGA-II, encoding the formulae as trees [O’Neill 2009]. We use NSGA-II because it is, for a
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Please select the model that you find to be more interpretable,
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Fig. 2. A screenshot of the user interface during the feedback collection process.

multi-objective evolutionary setting, a very popular choice. However, we remark that the specific
optimization algorithm is not the key point of this work, rather the important part is how we
compute the interpretability estimation. As a matter of fact, this system may be implemented
as well by replacing NSGA-II with another multi-objective optimization algorithm. We believe
that NSGA-II is the most convenient choice considering the scope of this work because of its
popularity and proven speed and effectiveness for multi-objective discrete optimization tasks.

For the initialization of the population, we use the popular ramped half-and-half initialization
method [Luke and Panait 2001], with a maximum depth of four.

Every iteration (or generation), offspring are created from the current population. Firstly, promis-
ing parents are selected using tournament selection of size 2. Next, offspring are generated from the
parents in number equal to the population size, using subtree crossover and subtree mutation. In
detail, firstly we create 90 % of the offspring via crossover of randomly-chosen parents (two parents
produce two offspring), while the remaining 10 % of the offspring are clones of randomly-chosen
parents. Next, 60 % of the offspring, chosen at random, undergo subtree mutation. During this pro-
cess, we discard (and repeat the creation of) any offspring with depth greater than 4., = 4 (as too
large formulae are hardly interpretable), and that are identical to an existing member of the popu-
lation or of the offspring generated so far. We discard identical trees because diversity preservation
can greatly improve the performance of NSGA-II when used for GP [Liu et al. 2022]. Specifically, we
retain two trees to be identical if they are semantically equivalent (e.g., x; + 1, is the same as x,+x7).
We do this by simply comparing the corresponding predictions, meaning that if the predictions
are the same, then we assume that the trees are identical, even if they are syntactically different.

After the offspring have been created, NSGA-II applies a final selection, based on non-
domination and crowding distance, upon the union between the population (which was given at
the beginning of the generation) and the offspring. This final selection round also employs a form
of elitism, performed according to the working principle of NSGA-II, and results in the population
tor the next generation.

We employ the following primitives as nodes for the trees representing the formulae: (1) the
variables xi, .. ., x; of the problem at hand, also known as the feasures of the dataset, (2) random
constants sampled uniformly at random between —5 and 5, and (3) the mathematical operators
+, = X, +*, (+) In*, max (where * denotes the protected version” to avoid mathematical opera-
tions performed on out-of-domain values). We set the population size to 200, and we iterate the
algorithm for 50 generations. These settings are the result of several preliminary experiments, and
correspond to a reasonable compromise between performance and execution time. In particular,

1@ &) = SIg0(8) (s o7 e o (@) = In(la] +107)
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we aim at enabling the algorithm to discover accurate models, while keeping the model search
within reasonable time for the involved user. With the chosen settings, each model synthesis lasts
approximately 10 min.

As mentioned before, NSGA-II attempts to optimize accuracy and interpretability simultane-
ously. Regarding the former, we use the coeflicient of determination, ie., the R score, to be
maximized—which corresponds to maximizing the model accuracy. We include /finear scaling [Kei-
jzer 2003, 2004] to adapt the fitting of the synthesized formulae, given its proven effectiveness on
real-world datasets [Virgolin et al. 2019]. Regarding interpretability, we rely on the outcome of
the estimator i/, which should ideally capture the perceived interpretability of a formula for the
user in question. Since the estimations of interpretability change over time as ¢/ is updated by the
user’s feedback, the interpretability of the formulae is re-computed at every generation. Finally,
the outcome NSGA-II is a set §* < S, of formulae that achieve a Pareto tradeoff between the
two objectives, i.e., each formula corresponds to some level of compromise between accuracy and
interpretability.

5.2 Model Encoding

We consider three options to realize the encoding function /4 : §; — R, which differ in terms
of size, complexity, and expressiveness. In our setting of SR, as formulae are represented with
trees, / also operates on trees. We remark that the tree representation can be generalized to other
problems besides SR, as, e.g., regular expressions or decision trees, which proves the generality of
our approach.

5.2.1 Counts Encoding. With this option, a tree is encoded as a vector where each component
corresponds to a possible primitive, and the value of that component is the number of times the
primitive occurs in the tree. In particular, | M| components are devoted to counting the occurrences
of each mathematical operator, with M = {+,—, %, +",(-)%,In", max} for SR, & components are
employed for counting the occurrences of each of the features of the problem, and one component
counts how many numerical constants appear in the tree. The encoding vector further includes
three components that provide additional information about shape and size of the tree, namely:
(i) the ratio between the number of depth levels and the number of nodes; (ii) the ratio between the
maximal number of operands that an operator in the given tree can have, and the maximal breadth
(i.e., the maximum number of nodes at a same depth level); (iii) the percentage of leaf nodes.

The size of this encoding is thus, 77 = |[M| + & + 1 + 3. This encoding can be advantageous
because it scales with M and &, i.e., it is independent of the maximal number of nodes in the tree.
However, this encoding does not distinguish between primitives appearing at different positions
in the tree, which might impact interpretability.

522  One-hot Fncoding Different from the counts encoding, the one-hot encoding takes into
account the exact position of each element in the tree. More specifically, each node is one-hot
encoded as a vector of size | M| + &+ 1, where all components are set to zero with the exception of
the one corresponding to the element in the node (the last +1 being the vector element reserved
to all the constants), which is set to one. Then, /( /) is the concatenation of the encoding of all
possible nodes as the tree is traversed from the root in a breadth-first fashion. To ensure encoding
coherence, we assume all nodes to have a number of operands equal to the maximal possible
(maximum arity @): in case a node is missing, i.e., it is an intron, the corresponding encoding is
0c R|M|+a’+l_

Clearly, the one-hot encoding is more expressive than the counts encoding, as it can capture a
wide variety of properties of the tree that can be related to interpretability. However, the one-hot
encoding scales poorly compared to the counts encoding, since it depends on | M|, 4, as well as on
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Fig. 3. Encoding sizes (in different colors) w.r.t. the amount of problem features & (on the x-axis), the maxi-
mum tree depth /nax (in each subplot), and the maximum node arity & (solid vs. dashed line). We keep the
size of the function set M fixed to 7, as in Section 5.1.

the maximum possible number of nodes contained in a tree of maximal depth /... Namely, the

by
encoding size is m = % (IM]|+d+1).

523 Llevel-wise Counts Encoding. This last encoding represents a compromise between the
counts encoding and the one-hot encoding. This encoding counts the occurrences of operators,
problem features, and constants separately for each depth level / < £, in the tree. In addition, as
for the counts encoding, we provide three descriptive components for the shape and size of tree.

The size of the level-wise counts encoding is 72 = 45« (|M| + & + 1)+3, which makes it still fairly
compact with respect to the maximal number of levels 4, the size of the function set | M|, and
the amount of problem features 4. However, differently from the one-hot encoding, information
of specific node positions is now missing.

Figure 3 shows how the size 7 of the three encodings scales for different combinations of [M]|,
d, @, and [ay.

5.3 ANN Optimization

We use an ANN as interpretability estimator. The ANN takes in input the encoded formula and
returns a score of interpretability, i.e., (/) = ANNg(/4(f)). We make use of dropout [Srivastava
et al. 2014] at prediction time [Moore et al. 2016] to make ANNs provide a measure of prediction
uncertainty, which enables to perform uncertainty-based active learning. Other ways of obtaining
an uncertainty measure from an ANN could be used, e.g., bootstrapping or conformal prediction
[Psaros et al. 2023]: we chose dropout because it well integrates with the rest of our framework.

Regarding the architecture of the ANN, we employ two hidden layers, each with 100 neurons
with ReLU activations [Nair and Hinton 2010]. The output layer consists of a single node with
tanh activation. Moreover, we add dropout to each hidden layer [Srivastava et al. 2014] with a
probability of 0.25. Dropout is enabled both at training and evaluation time. During training, the
neural network is applied (forward pass) to the encoding of the given formula once in order to
obtain the signal needed to train the ANN’s parameters (explained below). Instead, when the ANN
is used for inference, we actually perform 4 = 10 predictions (forward passes) for the same formula,
to account for the stochastic nature of dropout. We then take the mean of the £ predictions as
interpretability estimate, and the standard deviation as uncertainty (see Section 5.4).

We rely on a binary signal from a pair of formulae for optimizing the parameters & of the ANN,
given the nature of the feedback requested from the user (preferred formula between two options).
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In detail, a training data point for optimizing & is essentially a triplet that contains two formulae,
/1 and f, and a binary label p € {-1, 1}. If the user deems / to be more interpretable than £,
then p = 1, otherwise p = 1. Given this data, we compute the interpretability scores y+( /1) and
¥(f2) (one forward pass for each), and we compare them to p. Then, we use the Wasserstein loss
function [Gulrajani et al. 2017] to train the ANN:

L(¥r) =p (A = vr(B)), (1)

which was used in the same scenario in [Virgolin et al. 2021]. The loss will be positive if the user
and the estimator disagree on the relative interpretabilities of /4 and f;, whereas it will be negative
in case of agreement. Note that this loss trains a 7anking ANN rather than a regressor ANN. In other
words, the ANN does not learn to estimate scores that have a specific meaning per se, rather, these
scores are only meaningful in relative terms, i.e., to rank different models. As shown by Virgolin
et al. [2021], this training effective and requires less annotation effort than estimating specific
scores (i.e., a regression approach). Moreover, the employed model search algorithm, NSGA-II,
relies for the most part on rankings rather than specific values. The only exception of this is the
computation of the crowding distance, which is anyhow normalized, at each generation, using the
minimum and maximum value for each objective encountered.

Finally, we use Adam as optimizer [Zhang 2018], with a learning rate of 107 and a weight decay
of 1075,

We believe that using an ANN as interpretability estimator for an online learning strategy is a
natural choice because, by using a given loss, we are able to incrementally update the interpretabil-
ity estimator model (ANN weights). This happens because we can take advantage of gradients,
which can be incrementally computed as feedback is received. Specifically, our feedback consists
in telling, given two formulae, which one is the best. To capture this aspect, we use a Wasserstein-
like loss. Moreover, we also want a way to measure prediction uncertainty. If we used another type
of model such as a decision tree, then the problem of training the estimator by using user feedback
would turn into a binary classification problem, in which we cannot neither leverage incremental
gradients nor compute uncertainty anymore.

5371 ANN Warm-up. As stated in Section 4, ML-PIE starts the search for a formula / using an
initial interpretability estimator ;k'ii In practice, the initial estimator may have a substantial impact
on what models are eventually discovered, as it drives the model search algorithm in a particular
direction.

We, therefore, consider the effect of an optional warm-up phase prior to the actual start of ML-
PIE. In other words, we consider the option of providing ML-PIE with a ;ﬁj‘f which is the result of

an optimization performed on a dataset of triplets (/1“), f;i), () ;» pre-collected and independent
from the problem at hand—but compatible with it in terms of M and & We elaborate below on
choices to obtain the warm-up signal p. The warm-up phase needs not be too short (in terms of
how many training triplets are given as data), as that will be ineffective, nor too long, as that will
has the potential to lead to premature convergence to a sub-optimal notion of interpretability (with
respect to the one of the user). With preliminary experiments, we found that using 20 triplets leads
to reasonable results.
We consider the following two options to realize the warm-up.

¢-driven warm up. We rely on the ¢ interpretability estimator proposed by Virgolin et al. [2020b]
for formulae, which we use to label 20 pairs of randomly generated formulae that use M and &
variables. For each pair f, £ of randomly generated formulae, p is set to —1 if # f]) < @£ or
to 1 otherwise. The ¢ estimator takes into account the number of components, the number of
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operations, the amount of non-arithmetic operations, and the number of consecutive compositions
of non-arithmetic operations in a formula. We remark that the encodings proposed in Section 5.2
use features that are more general than those used by ¢, which is tailored for SR.

Data-driven warm up. As an alternative and potentially more general approach, we experiment
also with a data-driven warm-up. In this case, we wish to use a dataset of “well-formed” and
“elegant” models for the problem at hand, retrieved, e.g., from the internet. For the case study of
SR, we particularly consider a subset of the dataset of the 100 equations from the Feynman lectures
on physics [Feynman et al. 1965; La Cava et al. 2021]. Specifically, we build 20 triplets £, /5, p by
extracting # from the dataset, and building /4 out of a random mutation to /4 that makes the
formula larger in terms of number of nodes for the respective tree. We make the assumption that,
by its very construction, any £ is less interpretable than its respective £, and set the label p
accordingly. Finally, to obtain a balanced dataset, we swap £ with £ and change the sign of the
respective p for 50 % of the triplets.

We remark that this data-driven approach can be extended to other types of models than SR. For
example, this approach could be used for the automatic inference of regular expressions, using a
pool of human-written cases (notably, regular expressions can be represented as trees and evolved
with GP [Bartoli et al. 2016]).

5.4 Query Building
The user is presented with a query of formulae (f, £2) € 7 (F is the set of unique formulae avail-

able in the population of the current generation), where £ and 7 have been picked by the active
learning algorithm. We consider two approaches to realize active learning.

5.4.1 Random Sampling. We use random sampling without re-insertion, ie., random £ and £
are extracted from F and the user will not see a same formula twice. While simple and fast to
execute, this baseline approach is limited approach in that it makes no attempt at maximizing the
information gain for training the ANN. However, random sampling is can still be effective for very
large input spaces (here, when the encoding has very high dimensionality).

5.4.2  Uncertainty Sampling. The second strategy is to use (the ANN’s) uncertainty sampling,
which is a common strategy in active learning and it was found to be effective in [Virgolin et al.
2021]. To realize this, we assign to each formula a level of uncertainty using the ANN with dropout
at prediction time as explained in Section 5.3. Namely, for any given formula in the set 7 of formulae
seen during the current NSGA-II's generation, £ = 10 predictions are obtained from the ANN.
These predictions are different from one another due to the ANN’s dropout. Then, the standard
deviation of those predictions is taken as uncertainty. Finally, we pick the two formulae with the
largest uncertainty among those in .

Clearly, uncertainty sampling is more computationally heavy than random sampling, as it re-
quires to evaluate the uncertainty for all the formulae in #for each query. In fact, this computation
cannot be done beforehand, as the uncertainty might vary from query to query due to the update
of ¢/ performed in between them, which results in different uncertainties for the same formula.

6 EXPERIMENTS AND DISCUSSION

We divide the experimental phase in three main chapters, respectively, aimed to (1) simulate
how well the estimator i/, can be trained to mimic the user’s preference (regardless of model
search), (2) assess the impact of different user profiles (feedback speed) on the outcome of GP’s
model search, and (3) deploy the most promising configuration of ML-PIE from the previous
experiments on actual users and assess its effectiveness.
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In the first experiment, we consider different ways in which the user’s true notion of inter-
pretability can be simulated, i.e., we consider different PHIs. We describe the PHIs we consider in
the next subsection. We do this across the different encodings 4 warm-up strategies, and active
learning sampling techniques. For the second experiment, we run ML-PIE with simulated users
that act according to the PHIs, with different profiles in terms of response pattern. The third exper-
iment is realized by asking 42 B.Sc., M.Sc., and Ph.D. students of courses of engineering, computer
science, and Al, to participate and give feedback on two real-world datasets (explained below, in
Section 6.2).

All experimental phases are driven by keeping in mind that the proposed system should involve
actual human participants. We have to assume that human participants are not highly responsive
and probably they are not willing to provide much feedback. Overall, it is safe to assume that a
human participant will probably not spend several hours providing feedback to train the inter-
pretability estimator. Despite that, we want to analyze our system and try to make it perform
well even if the amount of feedback is low. To this end, experiments with the estimator are not
conducted with many training pairs in order to provide a realistic point of view. Moreover, exper-
iments with GP are conducted with a low number of generations and population size to ensure
that the whole optimization process does not take too much time, otherwise there is a significantly
high chance that the user gets bored.

Our code is implemented in Python 3.9.12 and is available at the following repository.” We
leverage Scikit-learn [Pedregosa et al. 2011] and PyTorch [Paszke et al. 2019] for the pre-processing
of the datasets and the neural network training, respectively, and GenePro [Virgolin 2022] and
PyMOO [Blank and Deb 2020] for the GP evolution. We remark that, unless otherwise specified,
we set all the parameters to the values used originally used by Virgolin et al. [2021] for ML-PIE.

6.1 Considered Proxies of Human Interpretability

We resort to simulated users for the first and second experiments, which are aimed at understand-
ing and refining key options of ML-PIE, prior to the third experiment with actual users. These
simulated users respond according to a given PHI Doing so allows us to provide a large amount
of feedback data in a deterministic and coherent manner. The PHIs we consider are the following:

— ¢-PHI evaluates formulae solely based on their size, i.e., the number of nodes in the tree rep-
resentation. In other words, the smaller the formula the more interpretable it is considered
to be, regardless of the primitives composing it.

— ¢-PHI adheres to the interpretability estimator ¢ proposed in [Virgolin et al. 2020b], based on
the size of the formula, the number of operations, the number of non-arithmetic operations,
and the number of consecutive compositions of non-arithmetic operations.

— W-PHJ assigns a different weight to each possible primitive (each function in M, each prob-
lem feature, and constants) and then computes the sum of weights across the primitives that
appear in the tree to evaluate the interpretability of the respective formula.

— LW-PHI extends W-PH]I, in a level-wise fashion, meaning that primitives at different depth
level are assigned a different weight.

— NW-PHI further extends W-PHI and LW-PHI, in that the weighting is now dependent on
primitives as well as their specific position it the tree. This is the most general PHI we
consider.

For W-PHI, LW-PHI, and NW-PHI, we simulate different users by sampling the weights using
w=—1x|p|, with p~ N (0,7 . (2)

¥https://github.com/lurovi/ML-PIE

15



The negative one multiplication represents the fact that each included component lowers a for-
mula’s interpretability, while o* is chosen differently for each type primitive. We particularly
choose smaller values of ¢ for simple operators (such as +, —, X, <), variables and constants (which
are clearly understandable), as these are arguably easy to understand, and larger values for more
complex operators (such as In and max), since these may be reasonably perceived as harder to
understand.

Note that, by construction, our PHIs are always negative. Moreover, we remark that the
proposed PHIs do not necessarily capture some #rue notion of interpretability, e.g., using the
model size has been often criticized in the interpretability literature, but they just act as proxies
to simulate a possible user behavior.

6.2 Datasets Description

We run our GP-based experiments on two ML datasets for supervised regression tasks:

— Boston housing (Boston): dataset for discovering models that can predict prices of houses
in different areas of Boston [Harrison Jr and Rubinfeld 1978]. This dataset is used, e.g., for
assessing fairness in Al, since it includes a feature regarding race. It contains 506 examples
and 13 features;

— Heating load (Heating): dataset for discovering models that can predict heating load require-
ments of buildings. It contains 768 examples and 8 features [Tsanas 2012; Tsanas and Xifara
2012).

For each dataset, we perform three different 7:3 random splits in training and test set. Features
are normalized by using robust scaling. For each split, we run 10 different GP processes.

6.3 Experiment 1: Training the Interpretability Estimator

We train the ANN using up to 150 training pairs, sampled according to each of the two active
learning approaches, from a training set consisting of 500 randomly generated trees. We choose
150 feedback rounds as a sufficiently large number for the expected number of feedback that
users are willing to give. Each training pair is labeled according to a given PHI that simulates a
possible interpretability notion of a generic user. For each feedback, we compute the Spearman
footrule [Diaconis and Graham 1977; Spearman 1906] (a measure of how much two rankings
mismatch) on a validation set consisting of 300 randomly generated trees. In this phase, we use
six distinct variables x1, . . ., % in the randomly-generated formulae. We repeat each experiment
10 times with different seeds, and we perform this type of experiment using every combination
of the following parameters: (1) encoding / (Section 5.2); (2) PHI (Section 6.1); (3) active learning
method (Section 5.4); (4) warm-up strategy (Section 5.3.1).
Figure 4 shows the outcome of this experiment. Our findings are as follows:

— Encoding. Counts encoding seems to work generally best, across different PHIs and active
learning methods, although the differences are not statistically significant. This encoding
is the one with the lowest dimensionality and best scalability (recall Section 5.2). Counts
encoding is sufficient to learn a simple PHI like #-PHI, while it appears to be incapable to
learn more complex PHIs, like NW-PHI (note the convergence of the footrule). Contrary to
counts encoding, one-hot encoding is the largest encoding we consider. We can observe that,
on the simple #-PHI, one-hot encoding can exhibit overfitting (for the solid line, i.e., random
sampling strategy). Meanwhile, one-hot encoding can improve the footrule beyond counts
encoding’s capability, on complex PHIs like NW-PHI. However, a large amount of feedback
is needed, prior to this becoming possible. Considering the low amount of training that can
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be expected in a human-in-the-loop setting, a small encoding is likely to be the best suited,
compared to a larger one.

— PHI As expected, #-PHI is the ground-truth that is most easily captured by the estimator, ir-
respective of encoding choice, since it is very simple. We can see that the footrule decreases
even with more complex ground-truths such as ¢-PHI and NW-PHI. This means that, po-
tentially, a more general encoding allows the estimator to approximate more complex PHIs,
provided that the estimator is trained with enough feedback;

— Active learning. The results suggest that random sampling is generally equal to, or better
than, uncertainty-based sampling. Only in some cases, e.g., W-PHI with Feynman warm-
up and counts encoding, uncertainty-based sampling shows a moderate improvement over
random sampling. We delve deeper into this later in this section.

— Warm-up. In almost all configurations, and most evidently for counts encoding, warm-up
does help lowering the footrule when no feedback has been given yet. After around 20-25
feedback rounds, however, having no warm-up catches up with having it. At the same time,
using warm-up does not generally cause premature convergence to a suboptimal estimator,
compared to not using warm-up. In general, there is no observable substantial difference
between the two proposed warm-up strategies.

In order to provide a more detailed explanation of some of our previous observations, we con-
duct additional experiments in which we measure the average uncertainty and the footrule on
the validation set when the estimator is trained with much more feedback. Figure 5 shows the
performance of the ANN when trained with up to 1000 training pairs. We adopt ¢-PHI to label
the feedback and we do not perform warm-up in this specific experiment. In this case, the uncer-
tainty sampling becomes, on average, more effective than random sampling after 200-400 feedback,
across encoding choice. This result validates our hypothesis that uncertainty-based active learning
can, in fact, beat random sampling. However, especially depending on how complex the encoding
is, too much feedback may be required before that is the case.
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Table 1. p-values from Bonferroni-corrected Wilcoxon Paired Tests of
the Distribution of Footrules (10 Runs) at Five Feedback Rounds (with
Random Sampling)

PHI ¢-driven vs. no warm-up Data-driven vs. no warm-up

‘ 0.097 0.004
& 0.004 0.008
w 0.008 0.008
LW 0.004 0.027
NW 0.004 0.020

Given the aforementioned observations, we decide to adopt, for the following experiments:
counts encoding, random sampling, and the ¢-based warm-up. Regarding the latter aspect, this
choice is based on statistical testing: Table 1 shows whether using a warm-up strategy over no
warm-up is significantly better when only a small number of five feedback is given. We thus choose
¢ warm-up because a user might be very unresponsive, and ¢ warm-up achieves smaller p-values
compared to the data-driven warm-up across the different PHIs (except for ¢ that, however, is very
simplistic).

Take-home message. We provide different general novel ways of encoding a tree. Each encoding
type has pros and cons as regards expressiveness and complexity. However, according to our exper-
iments, a general numerical representation of a GP tree is able to capture arbitrary interpretability
notions. Hence, the choice of the specific encoding type highly depends on the availability of feed-
back and the interpretability proxy to approximate. Specifically, a simple encoding type is efficient
and it is able to quickly learn an interpretability definition, but the estimation may be quite inac-
curate if the interpretability definition is highly complex. On the other hand, a complex encoding
type is time-consuming to compute, but it is potentially able to learn any kind of interpretabil-
ity definition, regardless of its complexity. However, even for simple interpretability proxies, a
complex encoding type requires the availability of a large amount of user feedback.

6.4 Experiment 2: Integrating the Interpretability Estimator within GP

In this section, we delve into the analysis of the full ML-PIE process, i.e., with multi-objective GP
running while the user (in this section, still simulated) provides feedback to train the estimator of
interpretability. As mentioned at the end of the previous section, and motivated by that section’s
results, we adopt: counts encoding, random sampling, ¢ warm-up.

In this experiment, we attempt to answer the following questions:

(1) Do different user profiles induce different outcomes in terms of model accuracy? In other
words, is GP’s search substantially influenced by by the user’s personal notion of inter-
pretability?

(2) Is the proposed approach robust with respect to different user behaviors in terms of
engagement and response rate?

To this extent, we perform a two fold experimental evaluation, as described below.

6.4.1  User Impact on Discovered Tradeoffs between Accuracy and Interpretability. We instantiate
ML-PIE using a simulated user who responds at regular intervals of 55, according to one of the
PHIs. As PHIs, we consider a smaller but reasonable subset, comprising #-PHI, #-PHI, and NW-
PHI. We consider #-PHI and ¢#-PHI as they refer to common interpretability notions [Virgolin et al.
2020b], but we also include NW-PHI, which is one of the most general notions we introduced. We
repeat the model search 10 times for each combination of dataset, train-test split, and PHI, for a
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Fig. 6. Distribution of & for different levels of r on training and test sets w.r.t. the different simulated user
profiles. For each 7 statistical significance is reported.

total of 10 - 2 - 3 - 3 = 180 runs. At the end of each run, we re-evaluate each solution found on the
test set, to have an estimate of its generality.

From each Pareto front (as determined on the training set), we take the formulae corresponding
to different levels of interpretability and compare their performance in terms of accuracy. To this
end, we rank the solutions in each front by estimated interpretability, and use the percentile 7 to
represent the position in the rank (r = 100 means maximal interpretability and minimal accuracy,
7 = 0 means minimal interpretability and maximal accuracy). This allows us to compare models
even though the underlying interpretability measure, i.e., PHL, is different.

Before delving into quantitative results, in Table 2 we show examples of models, and their accu-
racy for different percentile of interpretability 7, produced by GP. Qualitatively, it can be observed
that the larger 7 is, the simpler (and less accurate) the formulae are, as reasonable to expect.

Figure 6 shows distribution of train and test accuracy—in terms of A* score—of the afore-
mentioned models, for 7 € {0,25,50,75,100}. We also report above each triplet of box-plots
(corresponding to the three PHIs) the p-values resulting from a Kruskal-Wallis statistical test,
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with the null hypothesis that the considered distributions are not different from one another. We
use a * to indicate cases with a p-value smaller than 0.01.

Figure 6 shows a tradeoff between interpretability and accuracy. In fact, for all PHIs and for both
datasets, the higher the r the lower the (distribution of) #%. This is to be expected, yet it serves
as a sanity check for verifying that ML-PIE works correctly. Assuming each PHI corresponds to
a different user profile, i.e., to a different subjective notion of interpretability, we can compare
the distributions of A2 relative to the employed PHIs for each percentile 7, and assess whether
having a different PHI induces finding differently-accurate models. In particular, according to the
reported p-values, in 8 out of 10 cases for the training set, and in 7 out of 10 cases for the test set,
the samples appear originated by different distributions. Thus, in most cases, using a different PHI
does lead to a different level of accuracy. In other words, this implies that the tradeoff is strongly
dependent on the subjective notion of interpretability of the user. This result suggests that GP
may need to be configured differently for different users. For example, if the user needs very
accurate models but their notion of interpretability makes it hard to discover accurate models,
then GP must be set to run with a large budget.

6.4.2 Robustness of the Search Performarnce with Respect to User Engagement Profile. In the pre-
vious experiment, we simulated a constant rate of response of the user. In this section, we wish to
assess whether changing this rate of response changes the behavior of GP. We thus repeat the pre-
vious experiment using two different user engagement profiles: a lazy-start profile and a lazy-end
profile. For the lazy-start profile, we set the simulated user to provide feedback every 8s for the
first half of the model search (in terms of number of generations), and every 2 s for the remainder
of the experiment; vice versa for the the lazy-end profile (2 s for the first half, 8 s for the second
half). Moreover, we also consider an additional configuration where we use the estimator learned
with a constant rate of response of 5 s, and use it directly from the start, i.e., as if it was an oracle.
In this case, the user is not involved (i.e., the oracle is not updated). Similarly to the previous exper-
iment, we repeat the experiment 10 times for each configuration, for a total of 10-2-3-3-3 = 540
runs, and at the end of each run, we re-evaluate all solutions on the test set.

While in the previous experiment we were interested in assessing whether using different PHIs
leads to different accuracy, now we are interested to see if the overall fronts are different when
the user’s rate of response changes. To that end, we employ the HyperVolume (HV) indicator,
which measures the “size of the space covered” by the solutions in the front [Zitzler and Kiinzli
2004]. Intuitively, a larger HV indicates a better search performance, as it corresponds to a larger
portion of the search space being dominated. Since we train ANNs to rank and not to regress
specific interpretability scores, ANNs trained on different runs produce different scores (even if
trained for the same PHI). Thus, using those scores produces HVs that cannot be compared with
each other. For this reason, we actually compute the PHI of each formula, for the HV computation.
This is reasonable because the estimator is supposed to learn to rank models in the same way that
PHI does. Moreover, to be able to compare HVs across different PHIs, we normalize PHI scores
with min-max normalization, so that all PHI values are in [0, 1].

Figure 7 shows the distribution of HVs for each user profile, diving them by dataset (one per
row), PHI (one per column), and train/test set (x-axis). We also report, above each quadruplet of
box-plots, the p-values resulting from a Kruskall-Wallis statistical test with the null hypothesis of
equality of the distributions.

From the plots and the p-values, we can see that there are no significant differences among the
HVs resulting from different engagement profiles. Hence, we can conclude that ML-PIE is robust
to different user behaviors, provided that a decent amount of feedback is given throughout the
model search process. Moreover, considering the results obtained with the oracles, we see that
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Fig. 7. HVs distribution for different engagement profiles.

model search is not compromised by the fact that the objective of interpretability changes over
time.

These results support the hypothesis that an approach like ML-PIE is a feasible one to pursue.
Indeed, having the human in the loop may ultimately save time for the user, since the user anno-
tates relevant models that the model search is discovering; rather than a collection of examples
taken off-line, which may be out-of-distribution for a specific instance of model search.

Take-home message. We simulate the intervention of the user during the feedback collection
process with different PHIs. We test different user behaviors with different engagement trends.
We observe, by analyzing the final Pareto fronts, that the more interpretable the formulae, the less
accurate. This confirms that our general estimator is able to capture the tested PHIs and it can be
integrated within an arbitrary GP-based evolutionary process. Moreover, we assess that using a
different PHI may lead to a different level of accuracy, and thus the qualitative performance of the
discovered models also depends upon the interpretability notion to learn. Hence, according to the
interpretability notion, there may be the need to change the GP parameters (e.g., population size
and number of generations) accordingly. Finally, by analyzing different user profiles, we demon-
strate that our framework is robust to different user behaviors, provided that enough feedback is
collected.

6.5 Experiment 3: Survey on Real Users

As last experiment, we deploy ML-PIE with actual users. We involve 42 participants, who are
B.Sc. and M.Sc., and Ph.D. students from computer science and engineering from the University
of Trieste, Italy. We do not give any kind of reward to the users for performing the experiment.
The users are presented with a web interface, where the landing page describes the task to be per-
formed (repeatedly select which of two formulae is more interpretable), one time for the Boston
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dataset, and one time for the Heating dataset. The order by which the datasets are presented is ran-
domized for each user. When the user clicks “start on dataset Boston/Heating”, ML-PIE is started
and the interface of Figure 2 is presented. ML-PIE runs with the same settings as in the previous
experiments (population size of 200, 50 generations, i.e., approximately 10 minutes of runtime per
dataset).

After ML-PIE terminates on a dataset, a further feedback page is presented. On this page, the user
is presented with 4 pairs of formulae. The first pair contains the formula at 7 = 25 from the front
obtained by the very ML-PIE run upon which the user had been giving feedback, to be confronted
with another formula obtained in an off-line run that used ¢ as notion of interpretability, and that
has the closest accuracy to the first formula (for the same dataset and train-test split). The other
pairs are obtained in a similar manner, changing 7 to 5, and/or ¢ to #. We do not tell the user
which formula was obtained with ML-PIE, and randomize whether the formula obtained with
ML-PIE appears as first or second in the pair (blind test). In this comparison, besides indicating
preference for the first or second formula, the user can indicate that they find both formulae to be
equally (un)interpretable. Ultimately, our survey should capture whether users actually prefer the
personalized approach that ML-PIE is intended to provide.

In Figure 8, we show the results of the survey conducted with users. We observe that, on average,
users tend to prefer models found off-line using £ or &, rather than ML-PIE-based ones. This is a
negative result that may be due to several reasons: users are not domain experts and, also, they
are not much involved in the feedback collection process (no reward is given). We delve deeper
into this by looking at quantitative results. We can observe in Figure 9 that we barely reach 50
feedback rounds during these experiments. If we compare this result with Figure 4, we see that,
typically across different PHIs, the estimator cannot learn to rank models well when trained with
less than 50 feedback rounds. Indeed, Figure 9 also shows that the amount of mispredictions—we
take the relative ranking between the two formulae in the query as predicted by the estimator and
compare it with the user’s feedback—is relatively large (0.5 corresponds to coin flip).

To better understand this outcome, we analyze the results presented in [Virgolin et al. 2021]. In
that work, the users gave more feedback on average than here (100 instead of 50 by the end of
an ML-PIE run). In other words, users had been more engaged in [Virgolin et al. 2021]. Another
key difference between our study and the one of Virgolin et al. [2021] is that the encoding used in
that study was smaller (it relied on four formulae features) and better tailored for SR than the one
used in this experiment, i.e., counts encoding. Hence, although attempting to use more general
encodings is an interesting avenue for making ML-PIE more general and easy to deploy across
different problems, it may be the case that general encodings are too large to be effective for a
human-in-the-loop setting. Yet, it may be the case that further effort can be done in designing
better warm-up strategies, so that very limited feedback is needed to achieve satisfactory results.

Take-home message. We test our framework with real users involved in the feedback collection
process. We highlight that if a low number of feedback is provided then the user, who is not a
domain expert in our experiments, tends to prefer other models than those built with ML-PIE.
On the other hand, ML-PIE-based models are preferred in cases in which many feedbacks are
given. This highlights that this system has the potential to discover interpretable models. However,
according to the interpretability definition to approximate, the system may need a reasonably large
amount of feedback for an accurate estimation.

7 CONCLUSION

In this article, we investigated several aspects to generalize A/Z-F/E, a human-in-the-loop approach
to learn personalized interpretable models.
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Fig. 8. Amount of preferences for each model collected in the survey at the end of the user study w.r.t. the
amount of feedback provided by the user during the GP run. We consider bins of size 5 for the x-axis.

We proposed three different representations, at varying level of complexity and expressiveness,
that can be employed to map GP trees with arbitrary function and terminal sets to fixed-sized
numerical embeddings. This way, we enabled the original A/Z-P/Fto be applied even with problems
other than SR, which will be experimentally verified in future works.

We studied how well these representations enable an estimator of interpretability (here, an arti-
ficial neural network) to learn to rank models in agreement with different PHIs from the literature
(i.e., different simulated users). We found that while larger, more complex representations allow
the estimator to better approximate more complex PHIs, provided that a large training is executed,
simpler representations require much less feedback to achieve decent results, even though they
struggle to further improve accuracy when more feedback is provided.

By using GP as model search algorithm, we then simulated different user profiles and assessed
how these affect what models ML-PIE can discover, in terms of accuracy and HV of the Pareto
fronts. We found that using different PHIs, to simulate what the user may want, results in different
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Table 2. Examples of Models Found by the Bi-objective GP with a Simulated User (NW-PHI), Employing
Random Sampling within Active Learning and a ¢-driven Warm-up for the Interpretability Estimator

A
Dataset 7 Train Test Model
0.81 0.59 max (x2,—0.15 — 4.39) — max (x, 15) + 1 — 13
10 0.77 0.78 xj2 — x3 — xj2 — max (xp, x35)
0.75  0.72 a2 — max (¥ 230, x5 — X712 + x10)
0.71  0.56  x12 — a5 —x3 + a7y
Boston 50 0.72 0.68 iy —max (x» — max (xg, x5), a5)
0.72  0.63 (x4 + x10) x5 — X5 + X2
057 054 15—13
90 0.27 029 xy—aptas—am—x
0.42 043 xp+max(xy, 0 —x — 1)
0.9 0.9 x-—In(lxg—In(jx )
10 09  0.86 x5 +4.61x +2.33° (x — x3) — max (10, x5 + x) — In (| 5% )
0.93 0.94 In(]0.14 - xp)) — x5 — (0 — 1 — —2.22%) (x® + 1)
0.82 079 x—xm—x —1n(|X3|)
Heating 50 0.9 086 xy—ay— 21— xy— X
091 093 x—45—-—x—x+x—x— 1
0.7 0.7 Xo — ] — Xy
90 0.8 0.73 -2 —x— 1 — X
0.68 0.66 ayp—ay—xp— X5 —Xp

For each dataset, we report the results of three runs. We sample models according to their interpretability percentile
(7) in the Pareto front—higher 7 meaning higher interpretability, and report the & score of each model on both train

and test sets.

obtainable accuracy for the models. At the same time, ML-PIE showed a good robustness with
respect to the rate at which the (simulated) user provides feedback.

Finally, we involved real users (students) to use ML-PIE and indicate, in a blind survey, whether
they prefer models learned with the system over models learned with unpersonalized PHIs. This

25



last experiment showed a negative result, suggesting that the use of a general but large encoding
can require too much feedback for ML-PIE to be successful. Further research is needed to assess
whether this problem can be ameliorated with better warm-up strategies and better types of gen-
eral representations, or designing problem-specific representations is the most promising avenue
for real-world usage.
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