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Abstract

Since their inception, supercomputers have addressed problems that far exceed those of a single

computing device. Modern supercomputers are made up of tens of thousands of CPUs and

GPUs in racks that are interconnected via elaborate and most of the time ad hoc networks [1].

These large facilities provide scientists with unprecedented and ever-growing computing power

capable of tackling more complex and larger problems [2, 3]. In recent years, the most powerful

supercomputers have already reached megawatt power consumption levels, an important issue

that challenges sustainability and shows the impossibility of maintaining this trend.

With more pressure on energy efficiency [4, 5], an alternative to traditional architectures is

needed. Reconfigurable hardware, such as FPGAs, has repeatedly been shown to offer substan-

tial advantages over the traditional supercomputing approach with respect to performance and

power consumption [6, 7, 8]. In fact, several works that advanced the field of heterogeneous

supercomputing using FPGAs are described in this thesis [9]. Each cluster and its architec-

tural characteristics can be studied from three interconnected domains: network, hardware, and

software tools, resulting in intertwined challenges that designers must take into account. The

classification and study of the architectures illustrate the trade-offs of the solutions and help

identify open problems and research lines, which in turn served as inspiration and background

for the HyperFPGA.

In this thesis, the HyperFPGA cluster is presented as a way to build scalable SoC-FPGA

platforms to explore new architectures for improved performance and energy efficiency in high-

performance computing, focusing on flexibility and openness. The HyperFPGA is an open-

source modular platform based on a SoM that includes power monitoring tools with high-speed

general-purpose interconnects to offer a great level of flexibility and introspection. By ex-

ploiting the reconfigurability and programmability offered by the HyperFPGA infrastructure,
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which combines FPGAs and CPUs, with high-speed general-purpose connectors, novel com-

puting paradigms can be implemented. A custom Linux OS and drivers, along with a custom

script for hardware definition, provide a uniform interface from application to platform for

a programmable framework that integrates existing tools. The development environment is

demonstrated using the N-Queens problem, which is a classic benchmark for evaluating the

performance of parallel computing systems. Overall, the results of the HyperFPGA using the

N-Queens problem highlight the platform’s ability to handle computationally intensive tasks

and demonstrate its suitability for its use in supercomputing experiments.
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Introduction

Motivation

Supercomputers have been present for almost 60 years. During this period, great inventions

were made in hardware and software, pushing computing capabilities further. With each new

supercomputer generation, bigger data sets could be processed and more complex algorithms

could be implemented, providing more value and further encouraging bigger and faster su-

percomputers. Nevertheless, it is clear that the current growth trend is suffering from the

stagnation of Moore’s law, which required doubling the transistor density with each generation.

In addition, on the current scale, the energy required to power high-performance computing

(HPC) facilities has increased to millions of watts. Cooling facilities and infrastructure costs

continue to increase with larger, faster, and more power-hungry chips. At the same time, the

dark silicon menace is pervading and the potential of newer chips is eroded by it. In recent

years, general-purpose graphical processing units (GPGPUs) and multicore processors have

been considered as a way to continue growing in performance. This has shown some promise,

but other technologies have shown greater potential.

One of the most critical aspects of traditional computing is memory access that cripples von

Neumann architectures. It was shown in a Google [18] research paper that CPUs would suffer

from cache miss half of the time. This increases the energy and time budget required for a given

computation which needs access to external memory. Considering that when accessing external

memory latency and energy increase orders of magnitude compared to accessing internal mem-

ory, just by moving processing as close as possible to memory, valuable improvements can be

attained. This has not gone unnoticed; in fact, modern trends of in/near memory computation

[19] are becoming more common every day.
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The most common implementation of in/near memory computation techniques consists

in integrating small CPUs inside memory chips. These CPUs have a reduced instruction set

architecture (ISA) that enables acceleration of some operations. Nevertheless, one crucial aspect

is that the number of operations is reduced and, thus, it is a matter of time before bigger CPUs

would be required. This is exactly what major CPU companies are doing, such as AMD,

with their EPYC chips consisting of CPU chiplets interconnected with up to 512 GB of high-

bandwidth memory (HBM) on the same die [20].

Alternatively, field-programmable gate arrays (FPGAs) offer the possibility of a more flexible

approach to in/near memory computing by allowing to instantiate several custom logic circuits

to massively parallelize critical tasks, relying on configurable logic blocks and interconnection

fabric. FPGAs were initially envisioned as a prototyping platform for application-specific chips

(ASICs), while their flexibility made them ideal for low-latency, high-throughput applications

with low production volumes. FPGAs evolved into Systems-on-Chip (SoCs or SoC-FPGAs) [21,

9] by including CPUs, digital signal processors (DSPs), embedded memory resources, high-speed

transceivers, network-on-chip (NoC), GPUs, and, more recently, neural engines to accelerate

deep learning applications. Their capabilities have led to increased interest in specific and

general purpose systems [22, 23] with mass adoption yet to occur.

This work focuses on new methodologies and hardware/software architectures for the effi-

cient implementation of SoC-FPGA clusters for supercomputing of interest in both science and

engineering. The research plan envisages hardware prototyping, FPGA design, and software

development for the creation of the HyperFPGA, a reconfigurable cluster for novel experi-

mental architectures for supercomputing. The hardware development is oriented to define the

best computational architecture for the cluster of SoC-FPGA devices and the communication

protocol among them. Software development focuses on finding optimal ways to exploit oper-

ating systems (OS) to efficiently distribute and execute computations in the cluster, optimizing

the involved data transfer times and mechanisms for critical data movement and distributed

memory.

The HyperFPGA is based on custom uniform SoC-FPGA boards to build a scalable cluster

of cooperative computational units. Each unit of the cluster is configured with a fixed shell

to facilitate efficient interaction between the FPGA fabric and its corresponding embedded

processor, as well as its interconnections with similar adjacent units. The integrated multicore
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processor embedded software programming includes a custom Linux operating system, general

purpose functions, and routines for communication with the FPGA, standard personal computer

for remote control, and user interface.

Given the nature of the HyperFPGA, all design decisions were made to maximize flexibility,

from the hardware which consists of carrier boards that host a system-on-module (SoM) for

upgradability to the software that relies on open Python functions to allow users to customize

the programming flow. The HyperFPGA provides unprecedented plasticity to allow any type

of new architecture to be implemented.

As part of the validation process, the HyperFPGA was tested with a common supercom-

puting problem, the N-Queens problem. By leveraging the massive parallelism of the platform,

it was possible to implement a backtracking algorithm with relative ease. Exploiting the depth-

first approach of the algorithm, a parallel implementation was carried out to demonstrate the

suitability of the HyperFPGA for supercomputing tasks.

Objectives of the Thesis

The objectives of this thesis can be summarized as follows:

1. Perform an analysis of the state-of-the-art.

2. Determine the ideal design characteristics of the cluster.

3. Design and build a modular hardware platform.

4. Build a customizable software framework to implement multiple programming paradigms.

5. Validate the programability and scalability of the platform for supercomputing applica-

tions.

Scientific Publications

During the development of this thesis, several journals and conference papers were prepared

and published on various topics. In particular, [1,2,3] are directly related to the creation of the

HyperFPGA.
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In [1], an experimental architecture for SoC-FPGAs is presented. It describes a distributed

memory system in which the FPGAs map all resources in a global memory mapped managed

locally by entities called local resource agents.

The study of the state-of-the-art is presented in [2]. It delves deep into the architectural

decisions of the most relevant FPGA-based clusters by dissecting the clusters into three domains.

When this deep inspection is performed, it provides a solid foundation for the HyperFPGA.

In [3] the HyperFPGA is presented and described in detail in its three domains. The results

of the HyperFPGA experiment are also included in this paper and show the suitability of

the HyperFPGA for supercomputing experiments. The software environment presented in [3]

offers a user-friendly approach to heterogeneous high-performance reconfigurable computing

that shows capabilities for remote education activities, such as the one described in [7].

[1] W. F. Samayoa et al., “An Open-Source Hardware/Software Architecture for Remote Con-

trol of SoC-FPGA Based Systems”, in Lecture Notes in Electrical Engineering, Springer

International Publishing, 2022, pp. 69–75. doi: 10.1007/978-3-030-95498-7_10.

[2] W. F. Samayoa et al., "A Survey on FPGA-Based Heterogeneous Clusters Architectures,"

in IEEE Access, vol. 11, pp. 67679-67706, 2023, doi: 10.1109/ACCESS.2023.3288431.

[3] W. F. Samayoa et al. HyperFPGA: An Experimental Testbed for Heterogeneous Super-

computing, 24 August 2023, PREPRINT (Version 1) available at Research Square, doi:

10.21203/rs.3.rs-3278560/v1. Submitted to The Journal of Supercomputing, Springer.

The development of the HyperFPGA was only possible due to valuable research carried out

in the context of SoC-FPGA systems. Such research includes studies on asynchronous cell au-

tomata networks [4], which are a great fit to experiment with the HyperFPGA given how they

benefit from scalable hardware when studying rules beyond 5 inputs. Furthermore, commu-

nication between FPGAs was explored in [5, 6] by implementing a time-division multiplexing

method in a parallel control system of a low-latency network for precise timing synchronization.

[4] A. Cicuttin et al. , “Physical implementation of asynchronous cellular automata networks:

mathematical models and preliminary experimental results”, Nonlinear Dyn., Jul. 2021,

doi: 10.1007/s11071-021-06754-z.
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[5] L. G. García et al., “High Voltage Isolated Bidirectional Network Interface for SoC-FPGA

Based Devices”, in Lecture Notes in Electrical Engineering, Springer International Pub-

lishing, 2021, pp. 280–285. doi: 10.1007/978-3-030-66729-0_34.
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Thesis Outline

The remainder of the thesis is organized as follows. In Chapter 1, the state-of-the-art is pre-

sented and described in detail. From the state-of-the-art study, a specific discussion leading

to platform design is elaborated in Chapter 2. The hardware of the HyperFPGA, comprising

the printed circuit board (PCB) components, interfaces, and power domains, is discussed in

Chapter 3. The software tools and the development environment are presented in Chapter 4.

In Chapter 5, an application problem is presented along with the results obtained with the

HyperFPGA. Finally, in chapter 6, conclusions are drawn, highlighting the main contributions

and directions for future research.
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Chapter 1

State of the art

The notion of reconfigurable hardware has been present since 1984, when Altera introduced the

first programmable logic device (PLD) to the industry [24]. Then, in 1985 Ross Freeman and

Bernard Vonderschmitt patented the first commercially viable FPGA [25]. Due to production

costs, compared to ASICs, FPGAs are traditionally used in applications with low production

volumes that require high throughput and low latency.

FPGAs are electronic devices that consist of many configurable logic blocks composed of

look-up tables, flip-flops, input/output (I/O) blocks, and interconnection fabric. Being recon-

figurable hardware, in FPGAs algorithms are implemented as custom digital circuits, heavily

contrasting from the software approach used for CPUs. The initial step typically consists of

describing the algorithm using a Hardware Description Language (HDL), such as VHDL or Ver-

ilog. The HDL description is then synthesized into a netlist that is mapped onto the FPGA’s

logic elements and interconnections required to implement an equivalent digital design. The

final implementation in the FPGA is performed using vendor-specific tools such as Vivado [26],

Vitis [27], Quartus [28], and Libero [29]. Once the mapping and routing process is complete, the

design is compiled into a bitstream file that can be loaded onto the FPGA to configure its logic

elements and interconnections to create a circuit corresponding to the algorithm. Proprietary

FPGA vendor tools have dominated the field, but in recent years open source FPGA tools,

such as Yosys [30], F4PGA [31], and RapidSilicon [32], have surfaced providing an alternative

for research and power users.

As a reconfigurable device, FPGA offers the advantage of continuous improvement in hard-
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ware and software. Being able to change architecture offers great freedom when developing

complex systems. Furthermore, FPGAs have been shown to consume considerably less power

than CPUs and GPUs [7], leading to reduced cooling and energy costs.

By studying computing problems, a classification based on repeating algorithmic patterns

was proposed in 2004 [33] and later refined [17] to 13 algorithmic encapsulations, named the 13

dwarfs, shown in Table 1.1. Theoretically, each dwarf can be assigned to a specific computing ar-

chitecture [16, 34], CPU, GPU, or FPGA, which encourages heterogeneity in high-performance

computing platforms. Likewise, this inspired the creation of benchmarks for heterogeneous

systems such as DwarfBench [35], Rodinia [36], and OpenDwarfs [37].

Table 1.1: The 13 dwarfs [17] with application examples, where each represents an algorithmic

method that encapsulates the patterns of communication and computation.

Dwarf Example applications

1 Dense matrix Linear algebra (e.g., Cholesky decomposition)

2 Sparse matrix Linear algebra (e.g., machine learning)

3 Spectral FFT-based methods

4 N-body Particle-particle interactions, molecular dynamics

5 Structured grid Fluid dynamics, meteorology

6 Unstructured grid Adaptive mesh FEM

7 MapReduce Monte Carlo integration, distributed pattern-based

searching

8 Combinational Logic gates (e.g., N-Queens)

9 Graph traversal Searching, selection

10 Dynamic programming Tower of Hanoi problem

11 Backtrack/global optimization Branch-and-bound

12 Graphical models Probabilistic networks

13 Finite state machine Transistor-transistor logic counter
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1.1. APPLICATION FIELDS

Several implementations of heterogeneous HPC systems housing FPGAs can be named,

such as Project Catapult at Microsoft [38], Alibaba FaaS (FPGA as a Service) [39], Amazon

EC2 F1 instances [40], and ARUZ cluster at Lodz University [41]. At CERN, the massive

adoption of FPGAs for online data processing has motivated the development and adoption of

specific tools to aid the development of applications based on FPGAs, such as hls4ml [42] (high-

level synthesis for machine learning). This tool, along with many others [43, 44, 45, 46, 47],

allows for a higher level of abstraction, thereby significantly reducing implementation errors

and development time. The preference for FPGAs is due to their reconfigurability, which

allows extreme hardware specialization when needed. In addition, the fact that FPGAs offer

a wide array of input-output ports makes them ideal for stream computation and for creating

pipelined systems that can maintain high throughput with low latency.

With such a significant number of parameters to optimize when designing and implementing

FPGA clusters, they have mainly been developed with an application-specific mindset. The

heterogeneous aspects of most applications make compromising flexibility in different domains

(hardware, network, or software) reasonable. In the following sections, some of the most relevant

FPGA-based clusters are introduced with their contributions. Each cluster is broken down to

its smallest functional units from which the systems scale, called computational units (CUs).

Likewise, each CU is composed of one or many diverse computing elements (CEs), namely

CPUs, GPUs, and FPGAs, which actually perform the processing.

1.1 Application fields

Given that FPGAs serve specific purposes, they have found a place in some computing fields.

One of the first applications field of FPGAs was the emulation of integrated chips, particularly

multicore chips. From this field, the potential of FPGAs was demonstrated leading to exper-

imental implementations in science computing and other fields requiring high-throughput of

online data processing. The specific requirements of each application brought to light numer-

ous advantages of reconfigurable computing architectures, while also showing the difficulty of

working with these technologies.
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1.1.1 Emulation of multicore processors

Developing multicore integrated chips is a long and expensive process that involves several

stages of experimentation, validation, and integration. There are software tools that help

simulate architectures for easy parameter tuning, with the major drawback of speed. In this

particular aspect, FPGA prototyping allows faster execution times and benefits from insights

from real hardware. It is not uncommon for a complete platform to exceed the logic available

in a single FPGA, pushing for a cluster of FPGAs.

This was the case since 1997 when one of the first FPGA clusters was used to emulate

the RAW architecture [48]. The RAW cluster consisted of 5 boards or CUs, each with 64

FPGAs, totaling 320 FPGAs. Its results showed orders of magnitude speed-up compared to

contemporaneous scalable processors with the disadvantages of reduced flexibility, high cost, and

high implementation complexity, which hindered their adoption in other research applications.

In 2006, the FAST [10] cluster was presented to bring hardware back into the research

cycle to address the disadvantages of RAW. FAST combined dedicated microprocessor chips

and static random access memories (SRAM) with FPGAs into a heterogeneous hybrid solution

to simulate chip multicore architectures. The vision was to reduce hardware costs and ease

development, both for programming and portability. Each FAST CU consisted of 8 processors,

10 Xilinx Virtex FPGAs, and 4 tiles interconnected with memory. The 2 processors in each

tile acted as the CPU and floating processing unit, respectively, and the 2 FPGAs acted as the

level-one memory controller and co-processor.

A central hub, made up of 2 FPGAs, was used to manage shared resources and orchestrate

communication between tiles, allowing access to off-the-board devices through external I/Os.

Additionally, the expansion connector available to the FPGA hub allows multiple FAST CUs

to be connected. The CU implementation is illustrated in Figure 1.1.
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Figure 1.1: FAST [10] computational unit (CU) with the computing tiles in orange and the

FPGA hub in purple.

A custom software stack was specifically developed for FAST. It included several modules

and pre-defined interfaces for functionality and benchmarking. An operating system was de-

veloped to manage control tasks, such as programming and configuration. Portability was

demonstrated by implementing several architectures; however, scalability and costs remained

open to discussion.

Similar to FAST, the RAPTOR cluster was presented as a baseboard that hosts up to 4

daughter cards based on complex programmable logic devices (CPLD) [49]. In 2010, a second

version was presented using FPGAs and a renewed architecture [11]. This new version consisted

of a RAPTOR-Xpress baseboard (CU) that provides two buses for Gigabit Ethernet (GbE),

universal serial bus (USB) 2.0, and peripheral component interconnect express (PCIe) 2.0 x8

for the host connection to configure and manage up to 4 DB-V5 (daughter board version 5).

Figure 1.2 shows the RAPTOR-Xpress baseboard with 4 DBs that directly interface with

their neighbors in a ring topology. Each has a Xilinx Virtex-5 FPGA with up to 4 GB of DDR3

memory and a dedicated FPGA as a PCIe interface. Multiple baseboards can be connected via

4 high-speed connectors, each consisting of 21 full-duplex serial lanes, allowing resource scaling

beyond the 4 DB on board. The baseboards can also be interfaced with the host via dedicated

FPGAs in Nallatech front-side bus acceleration modules [50], providing an additional 8.5 Gb/s

for writing and 5.6 Gb/s for reading.
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Figure 1.2: Simplified diagram of the RAPTOR-Xpress board [11] or computational unit (CU)

with the daughter boards in orange.

The RAPTOR project also includes a custom software development environment that in-

cludes RAPTORLIB, RAPBTORAPI, and RAPTORGUI tools, which aid developers by pro-

viding hardware-supported protocols, remote access, and a graphical user interface to facilitate

testing. The design flow offers tools for design partitioning, which is a manual process as-

sisted by a graphical integrated development environment (IDE) and standard synthesis tools

developed in vMAGIC [51].

Convinced by the need for cheaper and smaller hardware, the Formic cluster [52] based on

the Formic board [53] was presented in 2014. The Formic board acts as the building block

for a larger system, with a maximum size of 4096 boards. All boards consist of an FPGA,

SRAM, 1 GB of double data rate (DDR) RAM, a power supply, buffered joint test action

group (JTAG) connectors, and configuration memory, making them independent and perfectly

symmetric. Eight multi-gigabit transceivers (MGT) at a maximum speed of 3 Gb/s are available

for interconnection on 8 serial advanced technology attachment (SATA) connectors. Inside each

board, a full NoC with a 22 port crossbar switch interfaces the configured blocks with MGT

links and allows developers to scale the designs. Access to local and remote memories is done

using the Remote Direct Memory Access (RDMA) protocol [54]. The first application consisted

of a 512-core cluster [55] based on 8 custom MicroBlaze [56] processors per module.

Moreover, the industry has produced exciting developments in multicore emulation. In an

attempt to reduce the time to market for new ICs, Cadence [57] and Siemens [58], among

others, developed solutions for the prototyping of ICs. Unfortunately, there is little accessible
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information regarding the architecture of most implementations, and the high costs make them

uncommon in academia, with some exceptions, such as the Pico Computing board (now Micron)

used for image processing [59] and the DINI (now Synopsys) board FPGA board used for online

video processing [60].

From the described works, it can be seen that there is a trend to reduce the complexity of

CUs, as shown in Figure 1.3. In this field, costs tend to be the leading factor, making granularity

a desirable characteristic. With smaller CUs, it is possible to reduce the implementation costs,

depending on the requirements of the chip to emulate. Smaller CUs also make it easier for

clusters to scale, maintain, and upgrade.
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Figure 1.3: Clusters targeting multicore emulation have shown a trend of reducing the com-

plexity and increasing the granularity of computational units (CUs) to favor production costs

and scalability.

Table 1.2 shows a summary of the most relevant clusters in the field of manycore emulation

along with their contributions and performance improvements.
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Table 1.2: multicore emulation clusters’ contributions and reported performance improvement.

Work Contribution Performance

RAW [48] First academic FPGA cluster for the emu-

lation of multicore systems.

10 to 1k times more performant

than commercial Sparc 20/71.

FAST [10] First hybrid platform for multicore re-

search using dedicated FPGAs, SRAMs,

and microprocessors.

Over 2x more performant than

any previous emulation plat-

form.

RAPTOR

[11]

Scalable MPSoC emulator with multi-

plexed PCIe access from the host.

Formic

[53]

Cost-efficient scalable cluster based on a

minimal independent building block.

50k times faster than that of the

software simulation.

1.1.2 Scientific computing

The complexity of scientific computing problems has always pushed technology to its limit,

making computer clusters a basic requirement. Regardless of whether complex algorithms

process huge amounts of data or massive system simulations, reconfigurable computing provides

the level of customization often required by these problems. Since 1991, programmable hardware

was already part of custom supercomputers for specific problems like in RTN [61], RASA in

1994 [62], and later in SUE 2001 [63].

The first massive cluster was created in 2006. Janus [64] was a massively parallel modu-

lar cluster for the simulation of specific theoretical problems in physics developed by a large

collaboration of European institutions [65].

The core of Janus comprised an array of 4 by 4 FPGA-based simulation processors (SP) that

were connected with their nearest neighbors. Another processing unit called an Input/Output

processor (IOP), acted as a crossbar and was in charge of managing communications between

FPGAs and the host.

A two-layer software stack was created to help developers build applications. The firmware

layer consisted of a fixed part targeting the IOPs, which included a stream router and dedicated
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Figure 1.4: COPACOBANA [12] computational unit (CU) with dual inline memory module

(DIMM) modules in orange, each with 6 FPGAs, and the controller module in purple.

devices to communicate, manage, and program the SPs. The second layer, the Janus Operating

System (JOS ), consisted of the programs running on the host PCs, including a set of libraries

(JOSlib) to manage IOP devices, Unix socket application program interfaces (APIs) to integrate

high-level applications and new SP modules, and an interactive shell (JOSH ) for debugging and

testing.

In the worst case, Janus performed just 2.4 times faster than conventional PCs. However,

Janus was limited by its performance and limited memory for some applications [66].

In parallel, great interest was shown in the field of cryptanalysis with the development of

the COPACOBANA FPGA cluster [12] in 2006. Figure 1.4 shows the COPACOBANA cluster

which was built over a CU that held up to 20 dual inline memory modules each with 6 Xilinx

Spartan-3 FPGAs directly connected to a 64-bit data bus and a 16-bit control bus. A controller

module allowed the host PC to interact via USB or Ethernet through a software library that

provided the necessary functions for the PC to program, store, and read the status of the cluster

as a whole or as individual FPGAs. This made it possible to scale resources by attaching another

CU to the host PC. Its capabilities were demonstrated by testing several encryption algorithms,

which resulted in it outperforming conventional computers by orders of magnitude [67].

The positive result of this project motivated the creation of a hybrid FPGA-GPU cluster

[68] based on commercial off-the-shelf (COTS) components in 2010. The Cuteforce [69] system

implemented 15 CUs, 14 with Xilinx Virtex FPGAs, and the last with an NVIDIA GPU inter-

connected through a CPU on a CU via Infiniband. The results were not as expected, in part
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because of complications in FPGA implementation.

The same approach was later used in 2010 by Tse, et al. [70] who focused on Monte Carlo

simulations. However, instead of using one CE per CU, a single CU was used to host 2 CPUs, an

NVIDIA GPU, and a Xilinx FPGA, which was further supported by a comprehensive analysis

of the performance and energy. The network remained practically unchanged from Cuteforce,

where the CPUs are the main communication CEs and relegate GPUs and FPGAs to an accel-

erator position. To further demonstrate the scalability of this strategy, Superdragon [71] was

created to accelerate single-particle cryoelectron 3D microscopy. Similarly to its predecessors,

Superdragon implemented a mixed parallel approach in which the load is distributed in the

CPUs using task-parallelism to later offload particular tasks on GPUs and FPGA using data-

parallelism. A set of pre-defined blocks are made available to the user in a dataflow module

(DFM) with runtime reconfigurability of the data path.

Bluehive [72] also sought to distance itself from custom PCBs by embracing commodity

boards to build a custom FPGA cluster for scientific simulations and multicore emulation [73]

requiring high-bandwidth and low-latency communication. These challenges were overcome

with the development of a 64-node FPGA cluster based on Terasic DE4 boards that host

an Altera Stratix IV FPGA, an 8xPCIe connector, and a DIMM with 4 GB of RAM and

interfaced through a custom interconnect called BlueLink [74] with four 8U rack boxes, each

with 16 boards. The boards in the boxes were interconnected through a PCIe to the eSATA

board. A small Linux computer allowed remote programming using a USB-to-JTAG converter

and a DE2 board as a JTAG fan-out to parallelize the configuration.

The Bluehive development environment was supported by Quartus. Blocks were provided

to developers, routers for inter-FPGA communication, functional blocks (FBs), and high-speed

serial link controllers [74], all developed on Bluespec SystemVerilog [75]. Its effectiveness was

demonstrated with a simulation of 64k spiking neurons.

In 2014, Janus received an important upgrade [76], which significantly improved its perfor-

mance. The architecture remained mostly the same, with the largest change in the adoption of

newer FPGAs with 8 GB of RAM and MGTs instead of ordinary I/Os for interconnection.

Janus 2 and Bluehive were successful in addressing the memory problem, but as the applica-

tions scale, larger clusters were needed. This was the case for ARUZ [41], an application-specific

cluster formed by approximately 26,000 FPGAs distributed over 20 panels, each consisting of
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12 rows, which in turn contained 12 CU. The CUs are made up of eight slave FPGAs that con-

stitute the resources and a central master SoC-FPGA that manages operations. The addition

of the SoC-FPGA is motivated by the higher abstraction level provided by the ARM processor

for slow-control tasks. In addition, each CU is interfaced with a concentrator board (CB) that

feeds the state of the simulations to a host that controls the entire process.

Global communication is based on Gigabit Ethernet and allows data exchange between

SoC-FPGAs to configure its 8 FPGAs. All nodes are connected in a daisy chain, and only one

board is connected to an external switch. A custom protocol for data transfer was developed

consisting of a small packet of no more than 256 bytes, with a constant overhead of 11 bytes.

ARUZ designers developed their own methodology [77], as there are no standard solutions

available. Taking into account the multitude of combinations of mechanisms for programming

and controlling ARUZ, a high level of flexibility is required. VPP [78] was selected for code

pre-processing and parameterization. DLLDesigner was developed to generate VHDL code to

interconnect as many FBs as required. All of these tools allow for the implementation of highly

optimized architectures for molecular simulations.

FPGAs have also found a place in neuromorphic computing, as demonstrated by Bluehive.

Spiking neural networks (SNN) require many densely interconnected elements. A substantial

level of parallelism is suitable for hardware acceleration; however, the challenge is scalability.

This was specifically addressed by Astrobyte [79] using a fully scalable NoC-based FPGA cluster

with functional verification and real-time monitoring. However, more specialized platforms

presented better results at higher costs. This is the case for BiCoSS [80], a 35 system-on-

module cluster, each with a Cyclone IV FPGA and 2 SDRAMs capable of simulating 4 million

spiking neurons in real-time.

Another relevant application in the scientific context is real-time control (RTC) systems of

adaptive optics (AO) instruments. This is the main focus of the Green Flash project [81] that

aims to develop energy-efficient real-time HPC accelerators and smart interconnects, based on

GPUs and FPGAs [82]. The RTC modules have a standard CPU server that hosts an NVIDIA

GPU, Intel CPU, and Intel Arria 10 FPGA. The FPGAs are hosted on a custom mainboard

called µXComp which includes 2 GB of RAM onboard, PCIe 3, an FMC connector, Ethernet,

4 QSFP, and other valuable resources.

In this heterogeneous system, communication between GPUs is performed by a Smart Inter-
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connect system implemented on FPGAs. The SI uses the UDP protocol, which is implemented

in the FPGA fabric alongside the device protocol handlers and dedicated direct memory access

(DMA) engines. This is configured with the QuickPlay FPGA framework, which extends its ca-

pabilities by using abstraction models and board support packages (BSPs) for portability. This

architecture allows us to pipe-line several GPUs and FPGAs. A similar approach can be seen in

Spinnaker [83] and BrainscaleS [84] supercomputers, which implement dedicated ASICs inter-

connected by FPGAs for neuromorphic computing, and MDGRAPE [85] for modular dynamics

simulations.

Table 1.3 resumes the most relevant scientific computing clusters and shows their contribu-

tions with the impact in power consumption and performance.

Table 1.3: Scientific computing clusters’ contributions, reported power and performance gains.

Work Contribution Power Performance

Janus [64] Fine-grained memory struc-

tures for statistical physics

simulations on a reconfig-

urable cluster, evidence of

memory as the performance

bottleneck.

9x more efficient

than an Intel Core

2 Duo cluster.

1k times faster

than Intel Core 2

Duo cluster.

COPACOBANA

[12]

Cost-effective FPGA cluster

for cryptanalysis.

8x more efficient

than a PC cluster.

More than 650x

faster than an

equivalent cost PC

(Pentium-M) for

exhaustive DES

key search.

Cuteforce [69] Efficient framework for

FPGA-GPU collaborative

cluster programming.

7.9M keys per

second for PDF

encryption brute-

force attack.

Continued on next page
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Table 1.3: Continued from previous page

Work Contribution Power Performance

Tse, et al. [70] Research on efficiency of

collaborative clusters of

CPUs, GPUs, and FPGAs

with dynamic scheduling

showing that FPGA and

GPU collaboration offers

the best energy-performance

trade-off.

19.6x more effi-

cient.

44x faster with

FPGA-GPU nodes

over 2 CPU nodes

(AMD Phenom

9650 quad-core).

Bluehive [72] Usage of commercially

available boards as building

blocks to simulate millions

of neurons in real-time.

162x faster than

software simula-

tion.

Janus 2[76] Janus update with more

memory, larger FPGAs, and

tightly coupled to host com-

puters.

12x more efficient

than Xeon-Phi.

26x faster than a

Xeon-Phi.

Superdragon

[71]

CPU, GPU, and FPGA clus-

ter for 3D reconstruction

of cryoelectron microscopy

mixing parallel patterns.

GPU and FPGA

improved effi-

ciency by 7.2x and

14.2x, respectively

compared to a

Multicore CPU.

GPU and FPGA

speed up of 8.4x

and 2.25x, respec-

tively, compared to

a multicore CPU.

ARUZ [41] Biggest FPGA cluster to

date based on the Dynamic

Lattice Liquid model with

low latency communication.

1.6x more efficient

than a 6-core CPU

for simulating 1.5M

molecules.

1600x faster than a

6-core CPU.

Continued on next page
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Table 1.3: Continued from previous page

Work Contribution Power Performance

Greenflash [82] Heterogeneous cluster for

critical real-time application.

FPGA and GPU

parts show dou-

ble the energy effi-

ciency compared to

Xeon Phi CPUs.

GPU and FPGA

parts show an im-

provement of 2.6x

and 3.5x, respec-

tively, over Xeon

Phi CPUs.

Astrobyte [79] FPGA cluster for simulat-

ing spiking neuron networks

with NoC routing mecha-

nisms.

188 times faster

compared to

Matlab implemen-

tation.

BiCoSS[80] Biologically inspired multi-

FPGA cluster for neuromor-

phic computing.

2.8k times more

efficient than an

NVIDIA GTX 280

GPU platform.

Computational

efficiency of 540k

times more than

traditional CPU-

based serial solu-

tions.

1.1.3 FPGAs in data centers

The positive results obtained by FPGAs attracted great interest outside of the scientific commu-

nity, specifically in the data center (DC) context, where computing tasks can quickly overwhelm

CPUs. DC workloads demand reduced power consumption, latency, and cost while maximizing

computing power and flexibility.

Catapult [38] is a successful example of the inclusion of FPGAs in high-reliability commodity

DC. FPGAs were specifically selected given that the flexibility of reconfigurable hardware helps

tackle the 2 main requests in DCs. First, the desire for homogeneity greatly facilitates the

installation, maintenance, and deployment of services. Second, there is a need for flexibility,

considering that such services evolve rapidly, making fixed hardware impractical.
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A custom half-width unit motherboard was developed to host 2 high-end CPUs and the

daughter FPGA card, which consisted of a Stratix V D5 FPGA with 8 GB of DRAM and acted

as the CU. Two 12-core Sandy Bridge processors with 64 GB of RAM, 2 SSDs, and 4 HDDs

complete the resources present on the motherboard. The FPGA and host CPUs communicate

via PCIe, and high-speed transceivers are used in the inter-FPGA network. A two-dimensional

6x8 node torus was selected for the network configuration in each rack. For the final system,

34 of these racks were used for a total of 1632 nodes.

To evaluate the performance of Catapult, a significant portion of the ranking stack of Bing

was offloaded to each rack. To guarantee the reliability of the system, the following services

were implemented: 2-bit error detection and 1-bit error correction on top of the CRC in the

DRAM and high-speed network. For user productivity and reusability, the FPGA space was

split into 2 parts. A shell that hosts hardware controllers, an inter-FPGA network stack, a

status notifier, and a single-event upset logic to reduce system errors that consume 23% of

the FPGA resources, and a role part where the computing logic lies. In addition, a mapping

manager and health monitor continuously scanned each node in the network. In case of failure,

the faulty node is immediately reconfigured. If the issue persists, the node is flagged for manual

intervention, and the mapping manager automatically relocates the services to the available

resources.

With custom hardware and communication protocol, Catapult achieved an improvement of

95% in throughput in a production search infrastructure compared to a software-only solution.

Furthermore, the inclusion of the FPGA increased power consumption by only 10%, and the

added cost of ownership did not exceed the limit of 30%. These results show the significant

advantage that FPGAs can offer in terms of throughput and power consumption.

With the success of Catapult [38], it was only a matter of time before FPGAs were made

available for cloud computing tasks, which is exactly what IBM cloudFPGA [86] did. Virtualiz-

ing the user space makes FPGAs in an Infrastructure-as-a-Service (IaaS) environment feasible

for education, research, and testing.

In the architecture presented, the FPGAs are standalone nodes in the cluster directly in-

terfaced to the DC via PCIe, unlike the approach of Amazon [40], Alibaba [39] and IBM Su-

pervessel [87] which bind the FPGAs to the host CPUs. Under this approach, a daughter card

consisting of an FPGA and abundant RAM was developed. By creating a custom carrier board,
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64 daughter cards can be accommodated in a single 2U rack chassis [88]. To achieve the desired

homogeneity within the DC, FPGAs have been provided with a soft network interface chip,

with the advantage of loading only the required services.

The multi-FPGA fabric formed by multiple prototypes of a network-attached FPGA was

evaluated with a text-analytics application. The results, compared to a software implementation

and an implementation accelerated with PCIe-attached FPGAs, show that the network-attached

FPGAs improved in latency and throughput. Additionally, network performance was compared

with bare metal servers, virtual machines, and containers [89], with results showing orders of

magnitude better for the FPGA prototype. To further improve the usability of the platform,

continuous development has been carried out to integrate MPI into the system [90, 91] and

OpenMP implementations [92, 93]. An in-depth study of FPGA cloud computing architectures

is available in [94, 95].

A summary of the main heterogeneous cluster in the domain of data center applications is

presented in Table 1.4 with their contributions, power consumption metrics, and performance

gains.

Table 1.4: Data center FPGA clusters’ contributions reported power and performance improve-

ment.

Work Contribution Power Performance

Catapult [38] An FPGA-based cluster

to accelerate the Bing web

search engine ranking service.

Peak power con-

sumption of 287

GFLOPS/W when

running large deep

neural network

models with high

device utilization.

Twice the improve-

ment in search

throughput and a

29% reduction in

the latency delay to

process the search.

Continued on next page
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Table 1.4: Continued from previous page

Work Contribution Power Performance

IBM

cloudFPGA[86]

Disaggregated FPGAs to in-

crease computing density in

racks for multi-tenant cloud

system.

10x more efficient

than the MareNos-

trum 4 supercom-

puter

Peak performance

of 344M force inter-

action calculations

per second for the

N-body problem.

1.1.4 General-purpose clusters

Over-specialized systems tend to constrain the potential of reconfigurable hardware in favor of

optimizing performance or costs for a particular application. However, general-purpose clus-

ters are addressed by a larger group of projects that seek to change the current programming

paradigm. These clusters, rather than being general-purpose in the broad sense of the word,

serve as experimental platforms to test solutions to all heterogeneous supercomputing chal-

lenges, ranging from network to user experience.

One of the first projects was the Reconfigurable Computing Cluster (RCC) [96] in the early

2000s. It was a multi-institution investigation project that explored the use of FPGAs to

build cost-effective petascale computers, with its main contribution being the introduction of

microbenchmarks for software, network performance, memory bandwidth, and power consump-

tion. To evaluate each test Spirit, a cluster was built consisting of 64 FPGA nodes. Each node

had a Virtex 4 FPGA with 2 Gigabit Ethernet ports, 8 DIMM slots for onboard RAM, and 8

MGTs for board-to-board interconnection [97] using the Aurora protocol [98].

For internode communication, a configurable network layer core was developed as part of

an Adaptable Computing Cluster project [99]. It consists of a network switch implemented in

the FPGA that acts as a concentrator for the router.

Considering that the head node is a workstation, a message-passing interface (MPI) approach

offered the flexibility that the cross-development environment required. A custom compiler

based on GNU GCC was built to support MPI and its modular component architecture (MCA)

[100], which was adapted to support the high-speed network. A software infrastructure based
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on a Linux system allowed users to access, manage, and configure all nodes in the cluster via

SSH [101].

Similarly to the RCC project, the FPGA High-Performance Computing Alliance (FHPCA

[102]) was established in 2005 with the Maxwell supercomputer [103]. The Maxwell CUs were

built on a standard IBM BladeCenter chassis, in which an Intel Xeon and 2 FPGAs were in-

terfaced via PCI-X. Additionally, an FPGA-dedicated network is available via MGTs without

routing logic, given the nearest-neighbor scheme. By supporting standard parallel comput-

ing software, structures, and interfaces, it sought to disrupt the HPC space without causing

significant friction.

To facilitate the development of applications targeting Maxwell, the Parallel Toolkit (PTK)

[104] was developed. It included a set of practices and infrastructure to solve issues such

as associating tasks with FPGA resources, segmenting the application into bitstreams, and

managing code dependency. PTK provided a set of libraries where common standard interfaces,

data structures, and components were defined.

Likewise, Cube was created to explore the scalability of a cost-effective massive FPGA

experimental cluster for real-world applications. It consisted of 8 boards that host a matrix of

8 by 8 Xilinx FPGAs [13] that form a cluster of 512 FPGAs, as shown in Figure 1.5. It features

a single configuration of multiple data programming paradigms that allowed all FPGAs to be

configured with the same bitstream in a matter of seconds. The FPGAs were interconnected

in a systolic array that reached up to 3.2 Tb/s inter-FPGA bandwidth, offering significant

advantages as it simplified the programming model and greatly relaxed the requirements of the

PCB layout.

Simultaneously, Quadro Plex (QP) [105], a hybrid cluster was introduced. It was composed

of 16 nodes, each consisting of one AMD CPU, 8 GB of RAM, 4 NVIDIA Quadro GPUs, and one

Xilinx Virtex 4 Nallatech FPGA accelerator. The nodes were interconnected using Ethernet and

Infiniband. Cluster communication was managed using the OpenFabrics Enterprise Distribution

software stack. The complete system occupied four 42U racks, consumed 18 kW, and had a

theoretical performance of 23 TFLOPS. CUDA was used for GPU development, and the FPGA

workflow was entirely dependent on the Xilinx ISE design suite [106].

Several applications were developed, showing that there were substantial difficulties in taking

advantage of the entire system. Applications would only use a combination of CPUs and GPUs
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Figure 1.5: Cube [13] computational unit (CU) showing the configuration controllers in purple.

Dotted lines show the control and configuration bus, and solid lines show the data path.

or CPUs and FPGAs. A framework was developed to facilitate the porting of applications and

provide a compatibility layer for different accelerator workflows, called Phoenix [107].

In the same spirit, Axel [15] was built. It consisted of 16 nodes, each node with an AMD

CPU, an NVIDIA Tesla GPU, and a Xilinx Virtex 5 FPGA occupying a 4U full-scale rack. All

CEs were connected to a common PCIe bus for intranode communication and between nodes

in a Gigabit Ethernet network. Considering the high latency and non-deterministic nature of

Ethernet, a parallel network was also available through the 4 MGT of the FPGA.

The cluster was remotely managed from the central node using the Torque [108] resource
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manager and the Maui [109] scheduler. A custom resource manager (RM) was responsible for

the management of GPUs and FPGAs. For this to be feasible, all Axel programs needed to

allocate part of the resources in the CEs to interface with the RM runtime API. Using an

inter-process communication (IPC) message queue framework, CEs communicated their state

to the head node. The central node collected information from all nodes with the help of the

RM and prepared a script to submit the jobs to Torque. Communication between tasks was

performed through MPI using gigabit Ethernet.

To implement an application in Axel, users provide a data flow graph and a hardware

abstraction model. A MapReduce framework then rewrites the application for partitioning the

analysis into tasks. These tasks are assigned to the corresponding CEs on the basis of the

targeted attributes.

Axel also introduced an architecture classification for heterogeneous systems based on uni-

formity. Following this classification, Axel is a Non-Uniform Node Uniform System (NNUS)

architecture. This means that all nodes are equal but built with different CEs. The advantage

of this architecture is that the single-program multiple-data (SPMD) programming paradigm

can be implemented throughout the system. Axel also brought to light the need to reduce the

design time and implementation time of FPGA, possibly by parallelizing the process to use

heterogeneous clusters to optimize its executable. Furthermore, it showed that design explo-

ration tools were essential to automate performance estimation and code generation for multiple

accelerators.

In 2010, Novo-G was presented as an experimental research cluster [110] consisting of 68

compute nodes built with COTS components. Its purpose was to help understand and advance

the performance, productivity, and sustainability of future HPC systems and applications,

focusing on the sustainability problem of current HPC systems using three different PCIe Intel

FPGA boards: 24 nodes with 192 Stratix III FPGAs boards, 12 nodes with 192 Stratix IV

FPGA boards, and 32 nodes with 128 Stratix V.

Novo-G has been used for several acceleration projects, ranging from biology to finance. One

aspect that all applications have in common was being embarrassingly parallel and, therefore,

naturally scalable. All of these applications were developed using the software offered as part of

the Novo-G platform, and the results showed a huge speed increase compared to CPU clusters.

Chimera was the first work to focus on implementing an algorithmic FPGA and GPU
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pipeline. The Chimera cluster [16] was built using commercial components to explore alternative

solutions to the computational constraints found in astronomy and provide access to HPC

hardware for inexperienced users. The system is formed by CUs equipped with one CPU for

management tasks, which is interfaced with 3 NVIDIA Tesla GPUs and 3 Altera Stratix IV

FPGAs through PCIe via a backplane.

The success of Novo-G and the advancement of technology have allowed Novo-G to be

upgraded to Novo-G# [111]. The cluster is made up of Gidel ProceV accelerators that house

Stratix V FPGAs, two 8 GB DDDR3, and 32 Mbits of SRAM memory. The boards were

interconnected by grouping 24 transceivers into six groups to support a torus topology with a

total bandwidth of 300 Gb/s. The physical connection is done with fiber optics using QSFP+

modules. Data are transmitted via packets through a configurable single-level router network.

This allows one to instantiate as many routers as necessary to service the ports and increase the

internal bandwidth at the expense of the hardware resources. The network flexibility enables

users to experiment with a variety of routing modalities, depending on the requirements of the

application. Novo-G# nodes support three communication blocks: Low Latency, Custom, and

Interlaken [112] to allow optimization of the physical layer depending on the application.

A common problem in custom computing is the lack of software development tools to help

users build applications. To solve this problem, the Novo-G# team developed a modified Altera

OpenCL to provide extended support for the 3D torus network present in the cluster.

An important aspect that most clusters left out, in addition to those focused on communi-

cation, was the interface with the physical world. This is the space that the Axiom platform

[113] seeks to fill with a custom scalable cluster based on a board with a Xilinx MPSoC (Mul-

tiprocessor System on Chip) supporting the Arduino interface.

The MPSoC has an FPGA fabric, four 64-bit ARM cores for general-purpose applications,

and two 32-bit ARM cores for real-time applications on the same die. Four USB-C ports

managed by the FPGA MGTs are available for interconnecting the boards. A custom network

interface (NI) in the FPGA provides support for all communications, allowing users to focus

on their applications written on an OpenMP extension called OmpSs. The NI is divided into

six main groups: a data mover that deals with DMA transfers, RX and TX controllers, and

FIFOs to cache packets. A router is interfaced with each NI and is responsible for handling the

USB-C channels, monitoring the network, and establishing virtual circuits.
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As part of the Axiom project, a custom software stack [114] consisting of multiple layers was

also developed. Its foundation is a distributed shared-memory (DSM) architecture. The main

advantage of this approach is that it allows applications to directly address physical memory

by transparently relying on an OS network. Several tests [115] and benchmarks have validated

the effectiveness of the platform, pushing the project into IoT and edge computing [116].

Progress in this field has led to the creation of the Xilinx Adaptive Compute Clusters

(XACC) [117] group under the Xilinx Heterogeneous Accelerated Compute Clusters (HACC)

[118] initiative. This industry and academic collaboration focuses on the development of new

architectures, tools, and applications for next-generation computers.

As part of this initiative, several clusters were built at some of the world’s most presti-

gious universities in Switzerland, the US, Germany, and Singapore. At Paderborn University’s

National High-Performance Computing Center (PC2), high-performance clusters Noctua [119]

and Noctua 2 [120] were built to provide hardware to accelerate research on computing systems

with high energy efficiency.

The Noctua 2 cluster was designed to fit common server racks and be compatible with the

standards of the network industry. It has 36 nodes with 2 AMD Milan. A combination of 48

Xilinx Alveo and 32 Intel Stratix 10 GX FPGAs comprised the reconfigurable computing part

of the cluster. Each Stratix node has 4 plugable QSFP+ at 40 Gb/s and each Alveo has 2

QSPF+ at 100 Gb/s links and depends on Intel tools, such as oneAPI [121], OpenCL, and

DSP Builder. A specific optical switch is used to build a configurable point-to-point network

between all FPGAs.

More recently, Enzian [122] was developed as a scalable platform to fill the void left by

industry-specific hybrid platforms. The reason behind Enzian is to provide a general, open, and

affordable platform for research on hybrid CPU-FPGA computing, escaping the niche of specific-

purpose hybrid platforms by providing a lot of flexibility. Explicit access to coherence messages,

thermal and power monitoring, and an open baseboard management controller (BMC) allows

for research that is not possible in any current commercial systems.

Similarly, UNILOGIC [123] presented a new approach, this time from the management

of the cluster by introducing a Partitioned Global Address Spaces (PGAS) parallel model to

heterogeneous computing. This allows hardware accelerators to directly access any memory

location in the system, and locality makes coherency techniques unnecessary, greatly simplifying
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communication. By integrating Dynamic Partial Reconfiguration (DPR) into the framework,

accelerators can be installed on the go. The UNILOGIC architecture was evaluated on a custom

prototype consisting of 8 interconnected daughter boards, each with 4 Xilinx Zynq Ultrascale+

MPSoCs and 64 Gigabytes of DDR4 memory, yielding better energy and computing efficiency

than conventional GPU or CPU parallel platforms.

In 2022, the supercomputer Cygnus [124] was updated [125] to follow a multi-hybrid accel-

erators approach based on GPUs and FPGAs. 32 Albireo nodes were added to Cygnus, each

consisting of 4 NVIDIA V100 GPUs and 2 Intel Stratix 10 FPGAs. Similar to previous sys-

tems, a dedicated FPGA network was created with a 2D torus topology with improved stream

capabilities, called CIRCUS [126]. Collaboration between the FPGAs and GPUs is achieved

by using a DMA engine in the FPGA that accesses the GPU directly, bypassing the CPU, and

offering almost double the throughput.

Finally, Fugaku [14], the first supercomputer to win all four categories in the Top500, pre-

sented a prototype FPGA cluster, ESSPER [127]. Motivated by the impressive continuous

improvements in FPGAs regarding energy and performance, a cluster of 8 nodes, each with

2 Intel Stratix 10 FPGAs, was built and tested. This cluster was interfaced with Fugaku us-

ing a novel approach called loosely-coupled, where a host-FPGA bridging network provides

interoperability and flexibility to all nodes in Fugaku.

Table 1.5 resumes the most relevant general-purpose clusters and shows their contributions

along with the impact on power consumption and performance.

Table 1.5: General-purpose clusters’ contributions, reported power and performance gains

Work Contribution Power Performance

Maxwell [103] One of the first general-

purpose FPGA supercomput-

ers.

10x to 100x faster

than Intel Xeon

CPUs.

Spirit [96] Prototype FPGA cluster to

explore methodologies for fu-

ture PetaFLOP computers.

Continued on next page
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Table 1.5: Continued from previous page

Work Contribution Power Performance

BEE3 [128] Industry and academia’s re-

configurable supercomputing

ecosystems.

More than 10x

faster when simu-

lating systems with

16 processors com-

pared to a software

implementation.

Cube [13] Low-cost architecture for

scalable FPGA clusters

with a single-configuration

multiple-data programming

paradigm for systolic arrays.

600x more efficient

than a 180 dual

Xeon quad-core

cluster.

8x faster than a 359

high-end CPU clus-

ter.

QP [105] A heterogeneous cluster to

explore multi-accelerator

collaboration within a new

framework.

FPGA part speed-

up of 48.4x with re-

spect to a 16 AMD

dual-core cluster.

Axel [15] MapReduce framework for

asymmetric parallel comput-

ing on heterogeneous clusters.

19x increase in effi-

ciency was obtained

for the FPGA and

GPU implementa-

tion when compared

to CPU.

The FPGA and

GPU collaborative

approach resulted

in a 44.5x speedup

for GARCH asset

simulation com-

pared to CPU-only

implementation.

Continued on next page
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Table 1.5: Continued from previous page

Work Contribution Power Performance

Novo [110] Experimental cluster to in-

vestigate productivity, perfor-

mance, and sustainable archi-

tectures.

8 kW More than 800x

faster on bioinfor-

matics applications

over an AMD

Opteron CPU.

Chimera [16] Evaluation of a scalable het-

erogeneous desktop platform

in the context of Berkeley

dwarfs.

Peak performance

4.3 Gflop/J for the

GPU part and 25

Mflop/J for the

FPGA part.

Novo G#[111] Reconfigurable cluster with

reprogrammable intercon-

nects to explore ways to

minimize communication

latency between nodes.

For 3D FFT, the

cluster matches the

latency of 512-core

BlueGene/Q.

Axiom [113] Scalable reconfigurable physi-

cal computing for low-cost ap-

plications.

8x more efficient for

iris plus voice recog-

nition than software

implementation.

1.5x faster than a

pure software im-

plementation.

Noctua [119] Data-center-grade FPGA

cluster with optically

switched interconnects

for dynamic topology config-

urations.

Peak performance

of 8.2 PFLOPS.

Continued on next page
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Table 1.5: Continued from previous page

Work Contribution Power Performance

Enzian [122] Open hardware platform for

CPU / FPGA systems with

coherent access to asymmet-

ric cache and fine-grained

profiling.

Unilogic [123] First implementation of a

Partitioned Global Address

Spaces parallel computing

model for heterogeneous clus-

ters.

At least 10 times

more efficient than

CPUs or GPUs.

More than 2.5x

faster than CPUs

or GPUs.

Cygnus [125] First hybrid cluster with di-

rect collaboration of FPGA-

GPU over DMA.

Radiative transfer

simulation results

show a speed-up

of 12.8x for the

FPGA-GPU collab-

orative approach

over the GPU-only

solution. Peak

performance 2.4

PFLOPS.

ESSPER [127] Loosely-coupled FPGA clus-

ter prototype upgrade of Fu-

gaku supercomputer in the

world.
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1.1.5 Communication systems infrastructure

Another field of application where clusters of FPGAs are relevant is the emulation of the com-

munication system infrastructure. The most important difference from many-core emulation

is the need to interface with analog systems. This requirement implies providing additional

external ports to interface with radio front-ends.

One of the first implementations was the Berkeley Emulation Engine (BEE) [129] in 2003.

Its main purpose was to support design space exploration for real-time algorithms, focusing

mainly on dataflow architectures for digital signal processing.

BEE was designed to emulate the digital part of telecommunication systems and to provide

a flexible interface for radio front-ends. Computations are performed inside BEE Processing

Units (BPU). Each BPU has a main processing board (MPB) and 8 riser I/O cards for 2400

external signals. The MPBs are the main computing boards that host 20 Xilinx Virtex FPGAs,

16 zero-bus turnaround (ZBT) SRAMS, and 8 high-speed connectors. FPGAs on the periphery

of the board have off-board connectors to link other MPBs. A hybrid network consisting of a

combination of a mesh network and partial crossbar, called a hybrid-complete graph and a par-

tial crossbar (HCGP) [130], was implemented. A single-board computer (SBC) running Apache

web services over Linux allows users to deploy their applications and perform configuration and

slow control tasks.

To take full advantage of the platform, an automated high-level workflow was used [131] that

relied on MATLAB and Simulink to develop the main hardware blocks. The BEE compiler then

processes the output and generates the required VHDL files for the simulation and configuration

of the system. A time-division multiple access (TDMA) receiver was fully implemented to satisfy

real-time requirements and validate the workflow.

Following the BEE success, the BEE2 [132] was conceived as a universal, standard recon-

figurable computing system consisting of 5 Virtex 2 FPGAs, each with 4 DIMM connectors

for up to 4GB of RAM. Four FPGAs are available for computing, and one was reserved for

control tasks. Pivoting away from the HCGP, an onboard mesh was implemented between the

4 computing FPGAs. Using high-speed links, it was possible to aggregate the 5 FPGAs and

use them as a single, larger FPGA. The workflow remained almost the same for BEE2, with

the main change being the use of a computational model of synchronous data flow for both the

microprocessor and FPGA.
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To overcome the shortcomings of BEE2 and take advantage of the already validated Spirit

architecture [133], a digital wireless channel emulator (DWCE)[134, 135] was developed. It

consisted of 64 nodes in the same way as Spirit, but with valuable upgrades to demonstrate the

capabilities of FPGA clusters with military radios. Its capabilities improved with an upgraded

FPGA, additional 2 FMC connectors, and the adoption of a standard MicroTCA.4 form factor.

Taking into account the possible improvements to BEE and because it was being developed

as part of the research accelerator for multiple processors (RAMP) community [136], a fast

response was presented in the form of BEE3 [128]. The development of BEE3 differed from

previous iterations and successfully demonstrated a new collaboration methodology between

industry and academia [137].

The architecture of BEE3 changed substantially from that of its predecessor by removing

the control FPGA and introducing a control module on a smaller PCB. Another important

aspect worth highlighting is that, for the first time, a PCB was intentionally developed to

support different FPGA parts, all interconnected using a DDR2 interface in a ring topology.

The BEE3 prototype had approximately 30 collaborators, most of whom were professionals

with extensive knowledge of computer-aided design (CAD). Relying on industry specialists for

PCB design has resulted in simpler and more reliable PCBs within a shorter project time

horizon. Additionally, it was possible to parallelize the design process, allowing the academic

community to focus on firmware development.

The BEE collaboration presented its final iteration in 2010, consisting of BEE4 and miniBEE

[138, 139]. BEE4 was updated to support Virtex 6 FPGAs and up to 128 GB of DDR3 RAM

per module. The QSHs connectors were replaced with FMC connectors to support a wider range

of mezzanine boards. BEE4 was built around the Honeycomb architecture using the Sting I/O

intermodule communication protocol. The design tools were further refined to include Nectar

OS and BEECube Platform Studio in MATLAB/Simulink, which are unfortunately proprietary.

However, being a proprietary system did not discourage its use in academia [140]. The success

of BEECube attracted further interest from the industry, and was bought by National Instru-

ments in 2015 [141]. Today, it is part of the FlexRIO [142] line-up, and software development

is supported by proprietary tools. From this point onward, almost all implementations depend

on commercially available emulation platforms.

To demonstrate the scalability of such implementations, the world’s largest wireless network
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emulator was built, Colosseum [143], which can compute workloads of 820 Gb/s and perform

210 T operations per second. It was formed by CUs that consisted of three FPGAs in a chain.

The outer FPGAs were used to interface with the radios and provide some processing. The

central FPGA is dedicated to digital signal processing. Commercially available solutions were

selected to avoid complications when designing the custom board. For radio-attached FPGAs,

128 USRP-X312 [144] software-defined radios were used. Each provides the analog interfaces

required for the antennas, along with a Kintex 7 FPGA. As dedicated processing FPGAs,

16 ATCA-3671 [145] modules were used, each hosting 4 FPGAs. The 64 processing FPGAs

were interconnected in a 4 × 4 × 4 HyperX topology [146], allowing the data to be efficiently

distributed for processing.

The ATCA-3671 modules are based on the BEE architecture and support the same devel-

opment tools. Given the complexity of the system, a Python dataflow emulator [147] was built

to confirm the topology and architecture of the system. It is possible to confirm the latency of

the system by providing models of the implemented components and topology.

Another notable contribution of this study is the proposal of a data flow methodology [148].

It comprises three guiding principles that highlight the issues present in other implementations.

The first principle is the use of a unified interface for modular components to favor portability.

Second, when dealing with heterogeneous systems, the suggested approach is asynchronous

processing to decouple operations from time and favor parallelization. Finally, based on design

best practices, solutions are urged to be vendor-independent.

A summary of the most relevant implementations in the domain of communication systems

infrastructure is presented in Table 1.6 with their contributions, power consumption metrics,

and performance gains.
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Table 1.6: Communication systems emulation clusters’ contributions, reported power and per-

formance gains.

Work Contribution Power Performance

BEE [129] Custom multi-chip FPGA

emulation engine for ultra-

wideband and multi-channel

multi-antenna radio re-

search.

More than 100k

times faster than

the best simulation

software at that

time.

BEE2 [132] High-level block diagram de-

sign environment based on

MathWorks Simulink and

Xilinx System Generator li-

brary for one unified com-

putation model for micropro-

cessors and FPGAs.

100x more efficient

than Intel Pentium

4 CPUs.

10x more comput-

ing throughput

than a DSP-based

system.

DWCE [134] FPGA cluster for decentral-

ized signal processing for ra-

dio emulation scalability.

Same performance

as 15k CPUs cores

running at 2 GHz.

Colosseum [143] A scalable architecture to

implement real-time chan-

nel emulators using software-

defined radios and FPGA

with a hardware-in-the-loop

approach.

Emulation of more

than 65k wireless

channels with an

area of up to 1 km2.

1.2 Summary

In this chapter, relevant implementations of FPGA-based clusters are presented. Each cluster

was described in detail with a focus on the contributions that were made. On top of this,

the most impressive results from each platform are recounted to emphasize the potential of
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heterogeneous computing. The contributions go further than showing the potential of the dif-

ferent approaches, but also provide useful classifications. From these it can be appreciated that

improvements in performance and energy efficiency are real and of orders of magnitude when

compared to clusters based on CPU or GPU. However, this does not suggest that FPGAs alone

are the answer to high-performance computing scaling, but rather the importance of the correct

utilization of all technological resources while taking advantage of several levels of optimization

provided by each platform. This is a complex challenge that requires a programming paradigm

that efficiently and seamlessly integrates various CEs to allow users the maximum possible

throughput by exploiting the physical characteristics of each CE.

31



Chapter 2

Reconfigurable cluster design

The state-of-the-art provides an ample view of the evolution of the heterogeneous supercom-

puting field. With this broad perception, it is hard to focus on the important design decisions

for each cluster. One way to make it easier to drill into the details of the implementations

is to divide the clusters into three domains, namely hardware, software, and network. These

three domains with well-defined boundaries provide a scaffolding for designers, allowing one to

weight different trade-offs related to design decisions. The relationship that each domain has

with the others follows a layer model in which each layer provides services to the others. By

correctly defining services and data flow, designers are better prepared for critical decisions

when optimizing their clusters in the planning and design phases.

The proposed segmentation of the cluster infrastructure into three domains is shown in Fig-

ure 2.1. The first aspect, the network, covers the physical interfaces, communication protocols,

and topologies chosen to interconnect the nodes. Another important aspect to consider is the

hardware available in the CU. Each CU can have more than one CE type. Finally, software

tools that allow the cluster to be securely available to users for development have to be con-

sidered. They encompass isolation tools that protect hardware from misbehavior, which are

discussed in [149, 150] and go beyond programming languages, APIs, libraries, etc. Depending

on the target application, these tools vary in scope, flexibility, and complexity. With a study

of all previous contributions, it is possible to build a broad base that helps to understand the

greatest challenges, future trends, and real capabilities of heterogeneous supercomputing, and

also to make the correct design decisions understanding the compromises to maximize flexibil-
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Figure 2.1: Main domains for the proposed segmentation of the cluster infrastructure.

ity. All of this is fundamental for making the correct design decisions during the planning and

construction of the HyperFPGA.

2.1 Network

A cluster is no more than a set of computational elements (CE) that collaborate toward a

common goal. The collaboration method and its means are crucial to ensure implementation

efficiency. The means of collaboration extend from the hardware interfaces to the communica-

tion protocols and, ultimately, to the schedulers or other methods of synchronization. With this

consideration, we can draw a line between systems that delegate communication tasks to an

external entity (indirect) and those that incorporate the network stack inside the CE (direct).

Another important aspect of the physical link is how it is used, in other words, the communica-

tion protocol. For example, in high-speed stream computing, it is desired that communication

will be established as direct data channels with back pressure, which is particularly difficult to

replicate with purely routed networks that rely on packets.

The physical link is discriminated according to the existence of any additional hardware

that processes, redirects, or interprets a stream of data or packages between adjacent nodes as
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an indirect interconnection. This implies that a direct link is such that one node can interact

directly with the nearest neighbor without the need for additional networking hardware. In a

direct interconnection network, services are provided by in-fabric routers and switches, allowing

users to experiment with different protocols at the expense of resources. This is particularly

crucial in implementations that target heavy communication problems that require low latency.

However, the dependence on external hardware also offers advantages. As in the case of ARUZ

[41], which effectively interconnects thousands of CEs showing that indirect physical links are

capable of extending scaling capabilities.

Furthermore, [151] provides an important comparison between the two physical link ap-

proaches. To compare the impact of both networks, a leaf-spine topology was implemented for

the indirect switched network and a ring topology was implemented for the direct physical link.

The switched network was modeled for 2048 FPGAs using 64 radix switches. These simulations

showed that for a small message size (≈< 1 MB), a direct network offers a shorter transmission

time than a switched network, regardless of the number of nodes. In contrast, larger payloads

(> 227 MB) benefit from a switched network, but only up to 1024 nodes when the direct net-

work transmission time catches up. These results show that one approach is not necessarily

better but that it comes down to the specific purpose of each cluster.

In addition, an architectural classification was proposed in [14]. This classification describes

4 different ways of integrating FPGA with other processing elements. All 4 different methods

are based on the accessibility of the resources and the closeness between FPGAs and other

processing elements.
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Figure 2.2: ESSPER [14] cluster classification based on the way the CPUs and FPGAs inter-

connect in a given implementation.

Figure 2.2 shows the proposed classification that consists of four different cases. Type A

networks describe a cluster in which the FPGAs are directly attached to the CPUs. This is the

most simple case for SoC-FPGAs or PCIe-mounted FPGAs. It has the limitation of constraining

communication to a single network where all communications compete for the same bandwidth.

As long as a data partitioning model that requires minimum communication between nodes is

implemented, the penalties of the limited throughput might not be noticeable. The type B

case shows one possible implementation of disaggregated FPGAs. These have the advantages

of having FPGAs at the same level as CPUs and a uniform network infrastructure. Given the

unbalanced throughput and latency of the devices, the network can be subjected to unexpected

conditions that could decrease the final performance. This design can be found in cloud imple-

mentations such as IBM CloudFPGA [86] and Catapult [38]. The two remaining cases propose

an FPGA dedicated network which allows for direct FPGA-to-FPGA communication without

the interference of CPU communication. For type C, the implementation of the first case is

extended to the dedicated FPGA network. Although it is a great improvement given that the

network can be tuned specifically for the FPGAs, it has the disadvantage of grouping the CPUs

to their attached FPGAs nonetheless, at least one CPU has to be present in the FPGA for

control and configuration tasks. Finally, the most flexible approach is the type D network. It

consists of a multiple network system in which the CPUs and FPGAs have dedicated networks,

and an interface network which provides interconnectivity between the two systems. However,

flexibility is paid for with the overhead in the cost and maintenance of a third network. This

35



2.1. NETWORK

model is present in ESSPER [14], which is planned to provide FPGA resources to the existing

Fugaku supercomputer.

Similarly, the topology of the clusters is a decisive design factor. The network topology

describes the way nodes are interconnected. It can be physical when the topology defines the

placement of the components or logical when it illustrates how the data flows in the network.

Given that it is desired that nodes have the highest throughput with the lowest latency, most

researchers have chosen a tightly interconnected topology, such as a mesh or a two-level mesh

(TLM) [48, 129, 132, 72, 16, 113, 152, 79, 80]. These are great for providing consistent latency

between nodes in the system, but they strongly impact scalability.

Other popular topologies are the 2D torus [65, 103, 96, 38, 76] and the 3D torus [53, 134,

111, 41]. They have the advantage of limiting the longest distance between nodes; however,

as mentioned before, this distance continues to grow as more nodes are added to the system.

There is also a restriction on how the system scales, given that it must keep a uniform shape and

nodes should be added to fill columns or rows to avoid introducing inconsistencies in latency.

Topologies such as BFT, systolic array, and star are application specific, since they restrict the

connectivity of the nodes and most of the time require specific hardware, such as in the case of

BiCoSS [80], Cube [13] and COPACOBANA [12].

Later works, such as Noctua and Enzian [122], are not bound by a fixed topology. In

particular, Noctua’s [119] infrastructure provides an optical switch capable of implementing

different topologies in runtime based on user requests. Naturally, since this is an external

device, it can be implemented in any indirectly connected cluster. For some of the directly

interconnected clusters, it may be possible to add an external switch, but only if a standard

protocol and interface are used, such as Novo-G [110] and Novo-G#[111].

Standard protocols tend to place a strong dependence on physical interfaces. For this reason,

most MGT implementations are based on the Aurora protocol or similar for the physical layer,

and the data link relies on Ethernet. However, Bluehive [72] challenges this reasoning by

implementing eSATA over PCIe connectors because PCIe was the only high-speed connector

available on the FPGA nodes. On top of this, more drastic approaches implement a custom

communication stack from the ground up, such is the case of BEE [129], BEE2 [132], and BEE3

[128] that use custom DDR protocols over GPIOs on same-board communications. Similarly,

MGT implementations can benefit from custom protocols as demonstrated by Novo G [110]
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and [1] where optimizations to favor latency were performed at the physical level. Although

there are benefits to be obtained by developing a specific software stack, it can be appreciated

that, considering the complexity of bringing up one of these systems, standard protocols and

interfaces have been more favored. This stems from the fact that proven technologies shorten

design times, allowing developers to focus on other issues.

Table 2.1 shows in detail the characteristics of the clusters studied for each of the aspects

discussed previously. The platforms are listed in ascending order by date.

Table 2.1: Network infrastructure.

Work Link Topology Interface Protocol Type

RAW [48] Direct TLM GPIO Custom B

BEE [129] Indirect TLM GPIO Custom B

BEE2 [132] Direct Mesh MGT Internal DDR,

External Infiniband

B

COPACOBANA

[12]

Direct Star GPIO Custom C

FAST [10] Direct Star GPIO Custom B

Janus [65] Indirect 2D Torus GPIO Internal Custom,

External GbE

B

Maxwell [103] Direct 2D Torus MGT Custom B

Spirit [96] Direct 3D Torus MGT Aurora C

BEE3 [128] Direct Ring GPIO,

MGT

Internal DDR,

External GbE

B

Cube [13] Direct Systolic GPIO Custom B

QP [105] Indirect Star MGT Ethernet, Infiniband A

Axel [15] Indirect Star MGT Ethernet, Infiniband C

Continued on next page
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Table 2.1: Continued from previous page

Work Link Topology Interface Protocol Type

BEE4 [139] Direct Ring GPIO,

MGT

Internal DDR,

External GbE

B

Formic [55] Direct 3D Torus MGT Sata C

Novo G [153] Direct Systolic MGT Custom C

Raptor [11] Indirect Star MGT PCIe B

Tse et al. [70] Indirect Star MGT Ethernet A

DWCE [135] Direct 3D Torus MGT Aurora B

Bluehive [72] Direct Mesh MGT PCIe B

Chimera [16] Indirect Mesh MGT PCIe A

Cuteforce [69] Indirect Star MGT Infiniband A

Catapult [38] Direct 2D Torus MGT Serial Lite III C

Janus 2 [76] Indirect 2D Torus MGT Internal Custom,

External GbE

B

Superdragon

[71]

Indirect Star MGT Infiniband C

Novo G#

[111]

Direct 3D Torus MGT Custom C

Axiom [113] Direct Mesh MGT Custom C

IBM

cloudFPGA

[88]

Indirect Star MGT GbE B

ARUZ [41] Indirect 3D Torus GPIO,

MGT

Internal Custom,

External GbE

A

Continued on next page

38



2.2. HARDWARE

Table 2.1: Continued from previous page

Work Link Topology Interface Protocol Type

Greenflash

[152]

Indirect TLM MGT Internal PCIe,

External GbE

C

Noctua [119] Direct Flexible MGT Custom C

Astrobyte [79] Direct Mesh MGT Custom B

Enzian [122] Direct Flexible MGT Internal PCIe,

External GbE, Custom

C

UNILOGIC

[123]

Direct Hypercube MGT AXI Chip-2-Chip C

BiCoSS [80] Direct BFT GPIO Custom C

Coloseum

[143]

Direct Ring, Hy-

percube

GPIO,

MGT

Internal DDR,

External GbE

B

Cygnus [125] Direct 2D Torus MGT CIRCUS C

ESSPER [127] Direct 2D Torus MGT Internal Avalon-ST,

External custom

D

2.2 Hardware

The hardware of a cluster can be divided into computational units (CU), which are any entity

that is available for computing and is the smallest independent functional part of the cluster.

According to this definition, devices that act as pure network appliances, routers, and switches

are not considered. A CU can be made up of multiple CEs (CPU, GPU, or FPGA). Over

time, smaller CUs are preferred when dealing with general-purpose clusters, whereas specific

problems can benefit from larger CUs with an ad hoc network topology. Another critical aspect

of the CU is its form factor or physical shape. A custom form factor will require custom

support structures and cooling solutions, while standard form factors can benefit from existing
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hardware.

In the context of the Axel [15] cluster, a classification structure was proposed. It focuses on

assigning a class to CUs based on the heterogeneity of their CEs. Four different classes were

considered, as shown in Figure 2.3. The Uniform-Node Uniform-System (UNUS) corresponds

to a homogeneous cluster and is typically formed by CPUs. However, we can also find FPGA

implementations such as Formic [53], Janus I [65], and Janus II [76]. Uniformity significantly

simplifies the management, programming model, and maintenance of clusters. Interestingly,

the advantages have not been critically outweighed by the disadvantages, since several other

studies have explored other more complex approaches. Performance-wise, there is a lot to win

when dealing with non-uniform nodes. As shown in Table 1.1, all computing problems can

be classified into 13 categories. By carefully studying the affinity between each category of

problems and the resources encapsulated in each CE, ideal candidates can be found to solve

each problem. This means that, by mixing and matching, a heterogeneous cluster may offer

performance advantages over a homogeneous cluster.
















Uniform Node Uniform System (UNUS)

Node "1" Node "n"

...FPGA FPGA FPGA FPGA FPGA FPGA

Uniform Node Non-uniform System (UNNS)

Node "1"

CPU

Node "n"

FPGA... FPGACPUCPU FPGA

Non-uniform Node Uniform System (NNUS)

Node "1"

CPU GPU

Node "n"

CPUFPGA ... FPGAGPU















Non-uniform Node Non-uniform System (NNNS)

Node "1"

CPU GPU

Node "n"
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Figure 2.3: Axel [15] node or computational unit (CU) classification showing possible uniform

and non-uniform node and system configurations for heterogeneous clusters of CPUs, GPUs,

and FPGAs.

Figure 2.4 shows how each of the problems (dwarfs) is assigned to CEs (CPUs, GPUs, or

FPGAs) depending on their characteristics [16]. This map shows that there are clear advantages
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in using one type of CE over another, mainly between GPU and FPGA. This is further supported

by the implementations of Chimera [16] and Green Flash [152]. In both cases, GPUs and FPGAs

are intended to be used as collaborative CEs. However, this new paradigm makes development

much more complicated, not because of the lack of tools for FPGA and GPU co-processing, but

also because of the required radical change of mindset when leaving the traditional CPU plus

accelerator context. This is reflected in the reported applications of QP [105] in which users

used only a combination of CPU plus GPU or FPGA.

CPU

GPU FPGA

6
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11    12                           1*   2*   

            8
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4   5

7

1^
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Figure 2.4: 13 dwarfs (Table 1.1) mapped-out according to highest affinity computational ele-

ment (CE); the superscriptˆrefers to floating point and ∗ to fixed point [16].

As previously described, classification based on node (CU) and system uniformity is useful to

understand the programming paradigm. According to the previous definition of nodes, multiple

CEs can be hosted on a single node. The balance between a crowded node or a simple node

lies in the diversity of CEs and network infrastructure. Diverse CEs in a single node allow for

the highest resource availability per CU for developers, but it remains a challenge to interface

all devices considering all the different ports. This leads to different form factors that directly

impact the way the cluster scales and, more importantly, the availability of physical structures

to hold the nodes in place and provide efficient cooling. Custom CU form factors usually host
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several CEs and can compromise not only scalability, but also fault tolerance. This is the case

for ARUZ [41], where a single node hosts up to 11 FPGAs. In the unfortunate case where one

or more CEs break down, the OS must be notified to circumvent these nodes or completely

ignore them until they are fixed. In this regard, COTS clusters have a great advantage: the

up-bring cost is mainly absorbed by the industry by providing tested and validated nodes for

quick installation, which is the case for Noctua 2 [120] and Catapult [38], among others. Some

rare cases of industry and academia collaboration greatly benefit from COTS advantages with

specific research-motivated modifications, such as in Novo-G [110] and BEE3 [137].

Table 2.2 shows the most relevant clusters studied, classified according to the characteristics

of their CU. The Axel classification system was used to identify the uniformity of the node (CU)

and system. The total number of CUs is also presented to demonstrate the scale of the cluster.

Some studies have presented the architecture of a single node as a building block for a future

cluster. These are considered relevant for their contribution to the study of heterogeneous

workloads. The form factor of each work is shown in the respective column. Given that these

are heterogeneous systems, different types of CE may be present in CUs and sometimes even

among CUs.

Table 2.2: Hardware architecture of computation units (CU) with respect to their computational

elements (CE).

Work Class CU Form

factor‡

CE/CU Resources

[48] UNUS 5 Custom 64 320 Xilinx 4013 FPGAs

[129] UNUS 4 Custom 5 20 Xilinx XC2000E FPGAs

[132] UNUS 40 Custom 5 200 Xilinx Virtex-2 Pro FPGAs

[12] UNUS 20 Custom 6 120 Xilinx Spartan-3 S1000 FPGAs

[10] NNUS 2 Custom 8 16 Xilinx Virtex-5 FPGAs

[65] UNUS 16 2U HR 16 256 Xilinx Virtex-4 LX200 FPGAs

Continued on next page. ‡FR and HR stand for Full or Half 19 inch rack, respectively.
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Table 2.2: Continued from previous page

Work Class CU Form

factor‡

CE/CU Resources

[103] NNUS 32 PCI-X 3 32 Intel Xeon; 32 Nallatech HR101s with Xil-

inx Virtex-4 LX160; 32 Alpha Data ADM-

XRC-4FXs with Xilinx Virtex-4 FX100 FP-

GAs

[96] UNUS 64 Custom 1 64 Virtex-4 FX60 FPGAs

[128] UNUS 64 2U FR 4 256 Xilinx Virtex-5 LX155T FPGAs

[13] UNUS 8 Custom 64 512 Xilinx Spartan-3 S4000 FPGAs

[105] NNUS 16 Desktop

PC

6 16 AMD dual-Core CPUs; 64 NVIDIA Quadro

FX 5600 GPUs; 16 Nallatech H101 with Xilinx

Virtex-4 LX160 FPGAs

[15] NNUS 16 4U FR 3 16 AMD quad-core CPUs; 16 NVIDIA Tesla

C1060 GPUs; 16 Xilinx Virtex-5 LX330T FP-

GAs

[139] UNUS 1 2U FR 4 4 Xilinx Virtex-6 475T FPGAs

[55] UNUS 64 Custom 1 64 Xilinx Spartan-6 LX150T FPGAs

[110] NNNS 68 4U FR 4, 8,

16

192 Intel Stratix III E260 FPGAs, 192 Intel

Stratix IV E530 FPGAs, 128 Intel Stratix V

GSD8 FPGAs

[11] NNUS 16 Custom 4 64 Xilinx Virtex-5 FX100T FPGAs

[70] NNUS 8 2U FR 4 16 AMD Phenom 9650 quad-core CPUs; 8

NVIDIA Tesla C1060 GPUs; 8 Xilinx Virtex

5 LX330T FPGAs

[135] UNUS 64 MicroTCA1 64 Xilinx Virtex-6 475SX FPGAs

Continued on next page. ‡FR and HR stand for Full or Half 19 inch rack, respectively.
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Table 2.2: Continued from previous page

Work Class CU Form

factor‡

CE/CU Resources

[72] UNUS 4 8U FR 16 64 DE4 boards with Altera Stratix IV 230 FP-

GAs

[16] NNUS 1 Custom 7 1 Intel i7 hexa-core CPUs; 3 NVIDIA Tesla

C2070 GPUS; 3 Intel Stratix IV 530 FPGAs

[69] UNNS 15 2U FR 1 1 NVIDIA GeForce GTX 680 GPUs; 14 Xilinx

ML605 FPGAs development boards

[38] NNUS 1632 1U HR 3 3264 Intel 12-core CPUs; 1632 Intel Stratix V

D5 FPGAs

[76] UNUS 16 2U HR 16 256 Xilinx Virtex-7 VX485T FPGAs

[71] NNUS 64 2U FR 2 64 NVIDIA Tesla C2050 GPUs; 64 Xilinx

Virtex 5 LX330 FPGAs; 128 Intel Westmere

hexa-core CPUs

[111] NNUS 64 4U FR 3 128 Intel Xeon E5 CPUs; 64 Intel Stratix V

FPGAs

[113] NNNS 16 Custom 1 16 Xilinx Ultrascale+ ZCU9EG SoC-FPGAs

[88] UNUS 16 2U FR 64 1024 Xilinx Kintex UltraSCALE KU060 FP-

GAs

[41] UNUS 2901 Custom 11 23040 Xilinx Artix-7 A200 FPGAs, 2922 Xil-

inx Zynq Z015 SoC-FPGAs

[152] NNUS 5 ATX

mini

3 5 Xeon Phi 7210 CPUs; 5 Intel Arria 10 SoC-

FPGAs; 5 Intel Arria 10 FPGAs

[119] NNNS 36 2U FR 5 72 AMD 64-cores Milan CPUs; 48 Xilinx

Alveo U280 FPGAs; 32 Stratix 10 FPGAs

Continued on next page. ‡FR and HR stand for Full or Half 19 inch rack, respectively.
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Table 2.2: Continued from previous page

Work Class CU Form

factor‡

CE/CU Resources

[79] UNUS 4 Custom 1 4 Intel Stratix IV GX FPGAs

[122] NNUS 1 2U FR 2 Cavium ThunderX CN88XX CPU; Xilinx Ul-

trascale+ VU9 FPGA

[123] UNUS 16 1U FR 4 64 Xilinx Ultrascale+ ZU9EG SoC-FPGAs

[80] UNUS 5 Custom 7 35 Intel Cyclone IV FPGAs

[143] UNUS 16 2U FR 28 128 Intel 48-core Xeon CPUs; 128 NVIDIA

Tesla K40m GPUs; 128 Ettus USRP X310

with Xilinx Kintex-7 410T FPGAs; 64 Xilinx

Virtex-7 690T FPGAs

[125] NNUS 32 4U FR 8 64 Intel Xeon; 128 NVIDIA Tesla V100; 64

Intel Stratix 10 GX2800 FPGAs

[127] UNNS 8 1U FR 4 16 Intel Xeon quad-core CPUs; 16 Intel Stratix

10 SX2800 SoC-FPGAs

‡FR and HR stand for Full or Half 19 inch rack, respectively.

2.3 Software tools

Each work discussed would be incomplete if there were no tools available to help users develop

their applications. These tools provide different layers of isolation, ranging from templates that

encapsulate internode communication to complete operating systems that manage multiple user

access. Each of the tools offers a degree of abstraction that includes all the underlying details

to provide services to the user or to a higher layer. The depth of the tool stack depends on

several factors:

• Purpose of the cluster
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• Degree of freedom intended for the user (isolation)

• Cluster flexibility

A stack of tools can be structured according to the services provided and required, as

shown in Figure 2.5. First, we have the interface with the external world at the physical level.

Naturally, we rely on electrical and optical signals controlled by internal gates, GPIOs, or

MGTs. Typically, in HPC, this is not out for discussion, given that CPUs and GPUs have fixed

interfaces, but FPGAs are not bounded by this. Thus, the communication layer can be either

available for users to freely customize and test or fixed by the developers and provided as a

service. In addition, we have the CEs that can be CPU, GPU, or FPGA cores. It is in this

part where the actual computing is performed, in the form of the ISA in the case of CPUs and

GPUS or FBs in the case of FPGAs.

The OS provides drivers, file system, and a scheduler, among others, to interact safely

with the hardware. This creates a safe space for users to build applications based on hard-

ware and communication services. At this level, users must rely on a programming language

that describes how the underlying parts cooperate for the intended computation. Some studies

have presented new programming languages that aim to capture the different programming

paradigms in heterogeneous clusters [92, 93, 154, 155, 156]. Tools that take the abstract de-

scription of the computation and transform it into instructions may be provided as a contained

solution or along libraries and APIs to facilitate development. Another level of abstraction may

be introduced, in which users interact with pre-built blocks in a fixed context inside a GUI.

Depending on the scope of the application, user needs vary and may require deeper access

to the system or more abstract tools. Most general-purpose clusters are intended to be used as

research platforms. This requirement relaxes many management applications and abstraction

layers that, in turn, must be provided to the user in other cases. As research could participate in

the lowest level of communication, users may need the freedom to change the electrical standard

of the GPIOs or the encoding of the MGT. These properties are only available if the user sees

the platform as a bare metal solution or if the development environment has a standardized

way of defining communication devices. In any case, most systems avoid this by providing

the user with a template that abstracts the communication layer. Specific application clusters

seek to contain most of the details such that the user faces only the challenges related to the

46



2.3. SOFTWARE TOOLS

Scheduler

Drivers

Operating system

Logic Functional blocks

User

Programming
language

Libraries, APIs

GUI

Programming

In-chip
communicationCommunication

Physical interface

File system

Isolation level Resources

Highest

Lowest

CPU
and
GPU

FPGA

Figure 2.5: Tool stack divided into different levels depending on the user isolation from the

hardware.

application.

The tool stack can also greatly benefit from being open [157]. In this regard, FPGA devel-

opment frameworks have been significantly delayed as opposed to CPU and GPU. Currently,

one can use complete open-source frameworks to develop applications for CPUs and GPUs,

but FPGAs are radically different. One reason for this is that the stack of tools is fundamen-

tally different. Instead of targeting fixed hardware through a well-known and well-defined ISA,

FPGA tools target configuration memory with architecture-specific information that changes

with vendor and family. These architectural details tend to be industry secrets that force de-

velopers to rely on proprietary tools with all their benefits and limitations. Efforts have been

made to create completely open-source workflows such as Yosys [30] and F4PGA [31], in which

experienced users can actively collaborate to improve the platform.

Lastly, an important aspect directly related to the application is the level of flexibility

provided by the other network and hardware domains of the cluster. Some applications may be

prepared to host external hardware to extend the capabilities of the CU, for example, analog

to digital converters. This is the case for all BEE implementations [129, 132, 137, 139]. Other

clusters may be capable of interchanging CEs, which would require the hardware to be portable,

meaning that updates to the hardware would not force modifications of the development tools.

Similarly, the network domain can provide flexible topologies [119] and communication protocols
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[111].

Table 2.3 shows the development tools provided and the intended application of the studied

clusters. This table shows each cluster with its intended application along with the software

tools and the degree of isolation provided.

Table 2.3: Target application and development tools.

Work Application Development

tools

Open

Source

Isolation level

[48] Manycore emulator Custom tools Programming

[129] DSP emulator BEE Compiler Programming, logic

[132] RF emulation BEE Compiler Programming, logic

[12] Cryptography Copacobana Lib Programming

[10] Manycore emulator FAST Software

toolbox

✓ User

[65] Spin-system

simulator

Joslib, Josd, JOS ✓ User

[103] General Parallel ToolKit User

[96] General

[128] General BEE Compiler Programming, logic

[13] General Template Communication

[105] General OFED, Phoenix

framework

User

[15] General Custom Programming

[139] General BEE Compiler,

Nectar OS, BEE

platform studio

Programming, logic

Continued on next page
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Table 2.3: Continued from previous page

Work Application Development

tools

Open

Source

Isolation level

[55] Manycore emulator Programming

[153] General OpenCL, Custom

tools

Logic

[11] General RAPTORLIB,

RAPTORAPI,

RAPTORGUI

Programming

[70] Monte-carlo

simulations

User

[135] Digital wireless

emulator

[72] Neural network

simulator

Bluespec

[16] General Programming

[69] Cryptography User

[38] Bing search engine Logic

[76] Spin-system

simulator

Joslib, Josd, JOS ✓ User

[71] Cryo-electron

microscopy

User

[111] General LEAP OS, Custom

tools, Bluespec

✓ Logic

[113] General OmpSs@FPGA ✓ Programming

Continued on next page
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Table 2.3: Continued from previous page

Work Application Development

tools

Open

Source

Isolation level

[88] FaaS OmpSs@cloudFPGA ✓ Logic, Programming

[41] General Custom tools ✓ Logic

[152] Astronomic imaging User

[119] General Custom tools ✓ Communication

[79] Neural network

simulator

User

[122] General Coyote OS ✓ Logic

[123] General UNILOGIC,

Hardware

Accelerator

Controller

Programming, logic,

communication

[80] Neural network

simulator

User

[143] Digital wireless

emulator

BEE Compiler,

RFNoC, UHD

✓ Programming, logic

[125] General CIRCUS library and

API

Programming, logic

[127] General R-OPAE, DMA

library, AFUShell

Programming, logic

2.4 HyperFPGA design

The HyperFPGA [158] has been conceived to be an experimental testbed for reconfigurable

computing architectures, where one of the most crucial aspects is flexibility. Naturally, any
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general-purpose cluster should allow the user to express an algorithm in an efficient way that

takes advantage of all available resources. Each of the domains (network, hardware, and soft-

ware) presents opportunities for optimization which can only be profited from if the domain

offers them as services to the user. This puts a lot of pressure on the software tools since, with

user intervention at various levels, the corresponding protections must be placed to avoid fatal

mistakes.

From the ground up, the hardware that offers the highest level of flexibility is the one with

the highest heterogeneity, demonstrated by the 13 dwarf affinity in Figure 2.4. Different cluster

implementations are present in the literature, from multi-CE PCBs such as in FAST [10] to a

more generic approach of using a desktop PC motherboard and mounting GPUs and FPGAs

in PCIe slots, as was the case of Axel [15]. SoC-FPGAs provide a great level of heterogeneity

in a convenient package that reduces power consumption and offers a single-chip solution that

includes CPUs, GPUs, and FPGAs. These ICs also offer a convenient way to offload control

tasks to already existing CPUs, allowing for a more performant implementation by liberating

the FPGA from less critical tasks. Furthermore, by placing these chips on a smaller dedicated

board with memory and power sequencing, the complexity of the PCB is constrained into

a system-on-module (SoM). By using commercially available connectors and an open pin-out,

SoMs are transformed into modules that can be swapped over different carrier boards depending

on the application. This modularity and heterogeneity is ideal for a general-purpose platform

such as the HyperFPGA.

However, choosing SoC-FPGAs as CE has an impact on the network infrastructure. In

SoC-FPGAs, the FPGA is physically interconnected to the CPUs forming a distributed shared

memory cluster of CPUs with FPGAs, shown in the first diagram of Figure 2.2. To avoid the

pitfall of scarce throughput related to a type A system, the platform must be extended by

adding an FPGA-dedicated network. As shown in [113, 110, 111], a dedicated FPGA network

allows one to increase the flexibility of the platform and the overall performance of the cluster

[159, 160].

Speaking of the network domain, it also has its own challenges. The first thing to define is the

nature of the physical link. Whether direct or indirect, it impacts the cost of the implementation

by including additional hardware in the indirect approach. Fortunately, this decision has minor

effects on performance, as shown in [151]. Another advantage of choosing a direct physical link
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is that there are no restrictions on the protocol in addition to the physical constraints of the

connectors. To further extend the freedom, the HyperFPGA should allow the user to choose

the protocol of their liking, which can be achieved by interconnecting the FPGAs through their

GPIOs and MGTs.

To take advantage of this freedom, a software environment that allows for deep interaction is

required. As proven by the analysis in the previous section and the Strategic Infrastructure for

Reconfigurable Computing Applications (SIRCA) [161] report, this is not an easy task. First,

the diversity of users’ expertise implies that the framework must be modular to enable power

users to substitute any part of the stack with their desired implementations while maintaining

compatibility and at the same time friendly to allow application developers to implement their

algorithms. Second, given that the implementations may vary greatly depending on the parallel

paradigm, MPI provides the generic enough approach to encapsulate parallel algorithms with-

out enforcing hard constraints. Third, given that the HyperFPGA is an experimental platform,

the administration must be as simple as possible and preferable open source for continuous

development. All these decisions give shape to the HyperFPGA.

Table 2.4 summarizes the decisions taken by domain to build the HyperFPGA cluster.

Table 2.4: HyperFPGA design description by domain.

Hardware

Class NNUS

CU 16 +

Form-factor Custom

CE/CU 1

Resources SoM with SoC-FPGA

Network

Link Direct

Topology 2D Mesh

Interface GPIO, MGT

Protocol Internal custom

Type C
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Software tools

Application General-purpose

Development tools Modular

Open Source ✓

Isolation level Communication, logic, OS

2.5 Summary

The detailed study of the decisions taken in the design and implementation of other clusters

offers valuable information. First, recognizing the three main domains and their borders allows

one to identify where specific services should be placed for optimal implementation. Second,

being able to identify the related domain to a certain service allows maximizing the flexibility

of such a service by confining the configuration parameters in a modular manner. From this

analysis, it was possible to determine the best way to proceed with the design and construction

of the cluster, which is described in the following chapters.
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Chapter 3

HyperFPGA hardware description

Following the discussion on hardware made in Chapter 2, in this chapter the description of the

hardware that builds up the first HyperFPGA prototype is described. The HyperFPGA follows

an NNUS approach consisting of a heterogeneous node that is uniform throughout the cluster,

diverse enough to provide room for experimental architectures while keeping the simplicity of

a uniform management system.

There are many devices that offer a high level of heterogeneity, from single-board computers

to accelerated processing units that host CPUs and GPUs in the same die. However, there is no

better example of single-chip heterogeneity than SoC-FPGA. They have the great advantage of

being reconfigurable for the most part while having several hard fixed IPs ranging from CPUs

to artificial intelligence engines on the most recent devices, such as the AMD Versal [162].

The incomparable level of heterogeneity and compartmentalization of SoC-FPGAs suffers

from a common issue in the IC world, pinout incompatibility between families or vendors.

To completely circumvent this issue, a SoM was considered, specifically the layout provided by

Trenz [163]. By building around an open and standard SoM, it is possible to develop a platform

that is modular, vendor-independent, and future-proof.

This chapter describes the HyperFPGA carrier board that hosts a SoM that follows an

open pinout. The board constitutes a node or CU that can be interconnected to build clusters.

By exploiting the integration of memory and power sequence in the SoM, the carrier board is

greatly simplified, with a focus on interconnection, safety, and power monitoring.
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3.1 PCB overview

The HyperFPGA was originally envisioned [158] as a 3D array of nodes placed in a cube.

Therefore, the physical topology maximized node interconnection while minimizing the distance

between all nodes by wrapping the edges in a 3D torus. This approach is quite similar to the

implementation in [55], but showed the complication of scalability due to the requirement for

all sides to be scaled equally to keep distance and latency uniform throughout the cluster. For

these reasons, the first HyperFPGA prototype was built with scaling in mind.

The HyperFPGA carrier board is a square of 15 cm per side. On each side there is a

high-speed high-density Hirose FX18 connector with 140 pins. These connectors allow for 2D

uniform tiling and provide physical interconnection between the SoC-FPGAs in each SoM. In

this implementation, the layout was simplified from a 3D torus to a 2D mesh network topology,

while maintaining the flexibility of transforming into a torus with the help of adapter cards and

cables.

The carrier board was designed to provide power, interconnections, monitoring, and booting

facilities for the SoM. Additionally, a peripheral component interconnect express (PCIe) x4 port

is used to increase SoC-FPGA capabilities. To provide access to the SoM, JTAG, Gigabit Eth-

ernet, and USB to UART are available on the board. To increase the static memory capacities

of the board, a micro SD card port was included. Micro SD cards provide an exchangeable

storage medium that can be up to 1 terabyte in size at a low cost, fitted for boot files and a

complete OS with user files. The carrier board with all these components is shown in Figure

3.1.

3.1.1 SoM description

In our specific implementation, the SoMs have an AMD Ultrascale+ SoC-FPGA consisting of a

quad core A53 ARM processor, dual core R5 ARM real-time processor, and Ultrascale+ FPGA.

With the SoC-FPGA, various speeds and sizes of SDRAM and two flash memory chips are

available. The SoM also provides a 10-channel programmable phased-locked loop (PLL) clock

generator and various power converters that handle the power sequencing of the whole system.

These power converters split the power domains giving granularity that helps to monitor the

power consumption of different aspects of a given application. From the FPGA 2 high-density

55



3.1. PCB OVERVIEW

High-speed high-density connector

PCIe

H
ig

h-
sp

ee
d 

hi
gh

-d
en

si
ty

 c
on

ne
ct

or
H

ig
h-

sp
ee

d 
hi

gh
-d

en
si

ty
 c

on
ne

ct
or

High-speed high-density connector

microSD

SDRAM

SoM

SoC-FPGA

GbE

USB to UART
JTAG

H
ig

h-
sp

ee
d 

hi
gh

-d
en

si
ty

 c
on

ne
ct

or
Figure 3.1: HyperFPGA carrier with a System-on-Module, the most relevant parts of the system

are highlighted with colored boxes.

(HD) I/O banks and 3 high-performance (HP) I/O banks are available along up to 16 MGT

lanes. The CPU has a single MGT consisting of 4 lanes, which in the case of the HyperFPGA,

are used for the PCIe x4 onboard connector. All described blocks are shown in Figure 3.2.

On top of this, four 160 pin connectors expose both peripherals and I/Os. Figure 3.3 shows

the 4 connectors present in the SoM. Through these connectors, all the resources on the SoM

are accessible from the carrier board.

Moreover, this pinout supports a wide variety of AMD MPSoC devices. Recently, Sundance

[164] made available a SoM with a compatible pinout and form-factor hosting a Microchip

Polarfire SoC [165]. These developments make the pinout a strong option for a standardized

SoM interconnection. Furthermore, more connectors can be added by increasing the size of the

SoM, extending the life of the platforms.

A wide range of AMD Ultrascale + SoC-FPGAs is supported in the same SoM format, the
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SoC-FPGA

FPGA
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Power

12 A DC-DC
Converter

Power domain converters

Figure 3.2: SoM block design, showing the SoC-FPGA, DDR memory, onboard oscillator, and

power modules.

relevant differences being the external RAM, the amount of FPGA resources, and the gigabit

transceiver (GTH) count, thus impacting the available communication bandwidth. Despite the

differences, all AMD SoC-FPGAs are highly dependent on the proprietary Vivado [26] tool

chain for bitstream generation.

3.1.2 Power and monitoring

Each carrier board has a barrel plug to be connected to a 12 V external power supply. The main

power is filtered and limited through a resettable fuse at 15 A. The 12 V are further converted

by 5 onboard direct-current to direct-current (DCDC) converters that supply each of the power

domains present in the SoM. Additionally, the 12 volts provide power to a PCIe connector,

which is exclusively available to the CPU for a Solid State Drive (SSD) or accelerators.

Each power domain is individually monitored using the INA226 [166] current and power
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Figure 3.3: The 4 connectors of the SoM with the number of pins and details on the signals.

monitoring chip. In total, 4 INA226s are present on the board. All power monitors are read

through a dedicated port using I2C. The monitored power domains are as follows:

• Low power peripherals and ARM R5 CPU

• Full power consisting of GTHs and ARM A53 CPU

• FPGA programmable logic

• Adjustable voltage for FPGA input/output buffers

The different power domains are shown in figure 3.4. As listed above, there are 4 indepen-

dent power domains which serve different parts of the SoC-FPGA. By separating the power

monitoring zones, we can obtain information on specific activities. One of the most crucial

factors is the ability to measure the power consumption of off-board communication, particu-

larly FPGA I/Os supplied by the adjustable voltage power domain. With this information, it

is possible to adjust the implementation for better power consumption and performance. Fur-

thermore, the ability to measure each computing domain separately, FPGA logic, R5 CPU, and

A53 CPU, offers valuable insight into the real performance per watt of heterogeneous algorithm

implementations.
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Figure 3.4: HyperFPGA power domains with their dependant components.

3.1.3 Carrier board interconnection

The carrier board uses four high-speed connectors to interface with four adjacent boards. The

selected parts are the coplanar Hirose FX18 connectors. By placing four of these connectors, one

on each side of the square, we provide 32 pairs of low-voltage differential signals with varying

maximum speeds. The variety of possible electrical signals allows for the implementation of

different protocols at the physical level.

Up to 4 GTH lanes are available per connector. Each GTH is capable of up to 16.3 Gbps in

a point-to-point connection. Given that these rely on hard IP cores, vendors offer proprietary

implementations that might make porting a design complicated. To alleviate this, solutions

such as the Kyokko IP [167] provide an open source wrapper for transceivers, resulting in a

portable and interoperable interface between both Intel and AMD FPGAs.

Figure 3.5 shows the three networks on the platform. ARM processors are connected through

59



3.1. PCB OVERVIEW

G
ig

ab
it 

Et
he

rn
et

 s
w

itc
h

CPU FPGA

CPU FPGA

CPU FPGA

CPU FPGA
C

AN
 N

et
w

or
k

FP
G

A 
di

re
ct

 n
et

w
or

k
FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

Flexible 2D Grid Topology of the FPGA-dedicated network

Figure 3.5: HyperFPGA network organization and FPGA dedicated network topology.

RJ45 CAT 8 cables to a switched Gigabit Ethernet network. Users interact with the system

mainly through this network. The 4 board-to-board connectors and the PCB provide the

infrastructure for a CAN network to join all processors. The CAN bus network is configured

to use a set of headers to create a common network throughout the cluster. At the same time,

these connectors allow developers to take advantage of the large quantity of GPIOs present in

the FPGAs; 18 high-performance and 6 high-density pairs are available on each connector, along

with the GTHs. Each high-performance and high-density pair provides additional throughput

of 1.2 Gbps and 500 Mbps at double data rate (DDR), respectively. The maximum throughput

is 388 Gbps for each board, depending on SoM resources.

Owing to the square shape of the PCBs and the coplanar board-to-board connectors on

their sides, the physical topology is that of a 2D mesh network. However, the topology can be

manipulated by using interface boards and cables. Using such an interface board, it is possible

to transform a 2D mesh into a torus by interconnecting the two pairs of opposite edges.

Figure 3.6 shows the cluster in its current state. It consists of 16 nodes placed on a solid

structure that keeps the connectors from detaching or breaking. All nodes are connected by an

Ethernet cable for management and a power cable.
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Figure 3.6: HyperFPGA cluster in its current state, consisting of 16 nodes.

3.2 Summary

In this chapter, the hardware design of the HyperFPGA prototype is described, with the aim

of creating a versatile platform for experimental heterogeneous computing following the design

proposal presented in the section 2.4. The definition of the carrier board is discussed along

with the physical constraints that satisfy the envisioned characteristics. Being flexibility one of

the most important aspects, custom hardware was developed and manufactured. The primary

hardware choice is the SoC-FPGA due to its diverse capabilities that, combined with an open

and standardized SoM layout, enhances modularity and adaptability. In addition, the design
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simplifies the complexity of the hardware and focuses on interconnections, safety, and power

monitoring.

The HyperFPGA node is presented as a square PCB with high-speed connectors on each

side that can be interconnected to form clusters. It exploits the abundance and variety of I/O

present in the FPGA by offering them through such connectors.

In addition, it incorporates segmented power domains for power profiling. Users can ex-

tract information about how the implementation of their problem impacts both hardware and

software by evaluating the performance of the corresponding power domains. This allows for

fine-tuning algorithms for improved performance and also for developing better power estima-

tion tools. The carrier board employs high-speed connectors to interconnect adjacent boards,

establishing a flexible 2D mesh network topology that can be adapted to a torus.

This chapter lays the foundation for the HyperFPGA prototype, emphasizing modularity

and adaptability. With a theoretical maximum throughput of 388 Gbps, the HyperFPGA board

shows that it is suited for high-performance loads. These along with the other hardware choices

and design principles underscore the platform’s potential for experimentation in heterogeneous

computing architectures. With respect to the state-of-the-art, the HyperFPGA carrier board

offers a unique level of flexibility and introspection, which spans from the use of general-purpose

connectors and independent monitoring of the power domains.

The BSP, schematics, and PCB files required to modify or reproduce the HyperFPGA board

are openly available at the following link:

https://gitlab.com/ictp-mlab/hyperfpga-hw
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Chapter 4

HyperFPGA software and network description

A useful analogy when thinking about distributed systems is to imagine a living organism, for

example, a human. Hardware takes the place of organs that have specific functions. Each of

the organs ingests and produces an output that allows the final organism to thrive and live.

Nevertheless, organs in themselves cannot perform all duties if isolated. Through a standard

way of communicating, organs can interact to perform more complex tasks in collaboration. The

network becomes both the circulatory system and the nervous system. Finally, the software

in conjunction with the application describes how each of the organs collaborates through the

nervous system to achieve a collective goal, for example, to carry out this research and write

this thesis.

CPU Network

FPGA Network

CPU

FPGA

Memory

CPU CPU CPU CPU

FPGA

Memory

CPU CPU CPU CPU

FPGA

Memory

CPU CPU CPU

Figure 4.1: HyperFPGA network implementation of a cluster of SoC-FPGAs with distributed

memory and dedicated FPGA-network (ARM quad-CPUs with interconnected FPGAs).
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From the description of the HyperFPGA design in chapter 2, it was determined that the

best network implementation would be one that would allow FPGAs to interconnect directly.

From Figure 2.2 it can be recalled that the nature of SoC-FPGAs forces a classification to

be type A or C. Type A refers to a cluster of distributed memory where the FPGAs are

attached to CPUs and these act as gateways to the network, wasting the potential of the

FPGA for high throughput and low latency applications. Type C networks allow for taking

advantage of FPGA capabilities by providing an additional FPGA-dedicated network. In this

way, FPGAs can collaborate without having to go through the CPU, which is in fact the case

for the HyperFPGA, as shown in Figure 4.1.

In the case of the HyperFPGA, two major networks were designed to provide maximum

interconnection. One network involves all CPUs, and its main purpose is providing a gateway

for configuration and control of the system nodes. The second major network is made up of all

FPGAs in the system. There is a third network, the CAN bus, that connects all CPUs. This

network has no specific purpose as of now, but is available for users to experiment with.

In addition to the networks, a software environment was developed to allow users to interact

with the system individually and collectively. This environment provides safe abstractions for

both experienced and novice users, to carry out their experiments. When considering that

these experiments may be extremely different in their programming paradigm, synchronization

protocols, and data structures, among other aspects, the environment must be flexible enough.

The pursuit of flexibility may become a slippery slope, where designers decide to abandon

any boundary and provide just the bare minimum to the user. Although this might offer the

highest degree of flexibility, users are forced to become experts in the platform, taking the focus

away from the actual experiment. For this reason, the HyperFPGA software environment is

made up of various modular components that can be swapped by the user according to the

experimental requirements.

4.1 Software and CPU network overview

The software environment not only provides means of interaction, but must also facilitate

managing, monitoring, and developing applications for the cluster. This includes boot files,

the OS, the application environment, and APIs, among others. More often than not, the
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specific characteristics of each reconfigurable supercomputing system push for custom tools.

This was the case for RAPTOR [11], which consisted of the development of a complete software

stack, including a graphical user interface. However, similar solutions tend to restrict users to

paradigms related to the architecture or target application. To escape this, the HyperFPGA

provides the minimum interfaces to guarantee the safe operation of the cluster, such as the CPU-

FPGA communication channel and its high-level abstraction. Additionally, the programming

paradigm remains completely at the discretion of the user given that the base services provide

configuration, monitoring, and safety measures. A completely programmable approach allows

the system to act as a generic testbed for heterogeneous computing strategies.

Boot

Hardware definition

Middleware

Management

Programming

Yocto (Petalinux),
U-boot

Vivado, Application-
agnostic BSP

XSA2Bit, ComBlock
driver

JupypterHub

JupyterLab, IPython
Parallel

ToolsContext

Figure 4.2: HyperFPGA software stack showing the tools and their application context.

The HyperFPGA software stack, shown in Figure 4.2, is open and modular, allowing users

to adapt it according to their experiments. Custom tools were developed in the hardware

definition, boot, and middleware layers to provide an open standard interface that allows inte-

grating already existing tools in the upper layers. From the ground up, the stack begins with

hardware definition tools and facilities that configure the peripherals on the carrier board and

SoM for their usage from the SoC-FPGA. This layer is also accessible for users to implement

their application-specific FBs. On top of this, the boot tools implement the required security

checks and hardware configurations for an OS to run on the ARM CPUs. To interface the OS

and user space with the hardware, the middleware consists of a custom script that generates

the required files to identify the user-created hardware in the FPGA, and a custom ComBlock
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Linux driver, which provides a safe interface with the FPGA.

A management layer consisting of JupyterHub facilitates all administrative tasks. And at the

top of the stack, the programming context consists of JupyterLab along with IPython Parallel

which provides the tools for CPU cluster management. The whole stack depends on open tools,

wherever this was an option, which are easy to adapt and port for other vendors or clusters.

The CPUs are interconnected via GbE over a switch. This allows the system to connect to

the Internet and provide access to users and administrators. Additionally, this network can also

be used to distribute tasks in a cluster of processors, enhancing the possibilities of experiments.

Furthermore, the CAN network provides a deterministic link between processors that could be

used for synchronization and other time-critical tasks without occupying FPGA resources.

4.1.1 Hardware definition

The hardware definition layer is critical given that it provides all the information on the periph-

erals and resources present on the board for the SoC-FPGA. In the case of the HyperFPGA

carrier board and the Trenz SoM, information on SDRAM, UART ports, I2C, Ethernet, CAN,

PCIe, micro SD, and GPIOs must be provided. Given that the selected SoC-FPGA is locked

in the Xilinx environment, the configuration files must be available in a way that Vivado is

capable of processing. For compatibility, the files are provided in the shape of a BSP, greatly

simplifying the setup of the platform.

The BSP should remain fixed for most of the time unless there are hardware changes in the

board or the SoM. At this level, no bitstream is provided. Although most of these configura-

tions regard the CPU, all FPGA developments must be made considering the BSP to avoid

possible incompatibilities with the already configured CPU. The FPGA hardware definition,

which corresponds to the definition of the FBs, is also dependent on Vivado for the bitstream

generation for the selected SoMS. This layer is available to users through the programming

layer by using the OS drivers.

4.1.2 Boot

Establishing the initial state and the correct configuration is crucial for proper operation of

any system. Additionally, the system should be capable of loading the operating system and
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performing all necessary services. The system’s ability to consistently perform these essential

operations with a high success rate is a measure of its robustness.

Typically, SoMs rely on static memory to host parts of the boot files, including the bitstream.

This is suitable for a system with a fixed FPGA configuration, which is in stark contrast to

the HyperFPGA philosophy. Consistent with the fact that the purpose of the HyperFPGA is

to take full advantage of the ARM A53 quad core, a custom Linux-based OS was selected for

which the files required for the initialization of the platform may quickly exceed the available

flash memory on the SoM. To overcome this obstacle, the micro SD card port on the carrier

provides hundreds of gigabytes to host not only booting files, but also the file system and user

space, while being cheap and easy to replace.
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Figure 4.3: HyperFPGA boot sequence showing hand-off points. The custom FSBL ARM R5

processors configures the SoM oscillators to ensure the GTHs are getting a clock signal before

usage. A Debian 11 minimum OS is the last part of the standard booting process. The FPGA

is left without configuration, waiting for the user bitstream.

Figure 4.3 shows the HyperFPGA boot process. Initially, the Platform Management Unit

(PMU) and Configuration Security Unit (CSU) processors boot with the default Petalinux

binaries, which are based on the open-source project named Yocto. If the previous step is
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successful, the CSU loads the boot header to configure the ARM R5 with the First Stage

Boot Loader (FSBL). The R5’s FSBL is the first custom component in the boot process. This

firmware configures the peripherals on the carrier and ensures that the GTHs on the SoM

have a valid clock before continuing. This acts as a failsafe to avoid booting in a state where

the GTHs are unusable. Once this operation is completed successfully, execution is handed

to the ARM Trusted Firmware (ATF). The ATF is the first firmware to run on the ARM 53

processors. It allows using the ARM Exception Model which is essential for deploying any OS

on the SoC. With the ATF running, the U-boot loads the custom Linux kernel. Finally, the

OS, a Debian 11, boots with network access for user interaction. The FPGA is left with the

boot configuration until the user applies a bitstream in the programming layer.

The boot sequence can be implemented in several ways, depending on the desired level of

robustness, such as hosting a minimal boot on the SoC-FPGA flash and using the SD card as a

backup in the event of corruption. Furthermore, a file transfer protocol (FTP) server could be

used to host a copy of the OS for additional resilience in hard environments or when the OS is

part of the user application. These implementations have already been proven to be successful

on other platforms [168, 169]. Nevertheless, given that in the case of the HyperFPGA the

environment is controlled and always accessible. Board initialization is only completed when

the user can interact with the platform remotely, and it makes little sense to give control in

any previous step.

4.1.3 Middleware

The HyperFPGA strives for compatibility and portability and this can only be achieved by using

standard and appropriately documented interfaces. Multiple standards are already available in

the tool stack for interfacing layers.

One of the most useful is the device tree which provides Linux-based OSs with a dynamic

description of hardware and how to interact with it so that the OS does not need to hardcode

details of the platform. This is particularly useful, given that the user-defined hardware in

the FPGA is implemented in runtime. Linux allows partial changes to the device tree through

overlays.

Here is where a custom in-house developed Python script called XSA2Bit becomes essential.

It translates the Vivado XSA (Xilinx Support Archive) file that contains all the information
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needed to build a platform for a user’s target device into a device tree overlay. This script makes

it possible to update the OS with the new FBs in the FPGA in a transparent way without major

user intervention. Furthermore, it automatically instantiates ComBlock devices that interface

the FPGA with the CPU for use with custom kernel drivers. The advantages of relying on the

ComBlock are discussed in detail in [170] but they can be summarized in the abstraction of

the SoC-FPGA bus resulting in portability and the separation of the programming of CPUs

and FPGA, since these two subsystems only need to agree on the logical utilization of the

ComBlock. Additionally, the usage of a kernel driver protects the memory and allows users to

build drivers using only common file operations (read, write, and seek).

4.1.4 Management

The first layer of interaction of the user is through the management services of the platform.

This contains authentication, authorization, and accounting services. To simplify the develop-

ment of the platform, we decided to rely on JupyterHub. Given that all nodes already run a

custom Linux-based OS on ARM cores, the implementation was trivial.

JupyterHub provides several authentication methods and its open-source nature simplifies

customization. Currently, the system is deployed on a local network without external access

using the native Linux authenticator. Users can request to be registered, and the administrator

can enable the account without storing sensitive information from the user.

Whenever a user accesses the URL of the JupyterHub server from any browser, the user is

greeted with a login page, shown in Figure 4.4. On this screen, the user can login using the

selected username and password or request an account. When a new user account is requested,

the intervention of an administrator is required. A dashboard provides the administrator with

all the tools to create the new account and assign the desired privileges.

As the name suggests, JupyterHub is based on a centralized management server that greatly

simplifies the support hardware required for the cluster by constraining all management effort to

this server without polluting the nodes. JupyterHub relies on spawners to enable user interaction

with the system through JupyterLab sessions. By modifying the behavior of the spawner, it is

possible to run different configurations to customize the user interaction within the system.
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Figure 4.4: JupyterHub greeting screen, here users can log into their account or request the

creation of a new account.
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Figure 4.5: User interaction block diagram with JupyterHub centralized management and re-

mote clusters instantiated using HyperFPGA nodes; spawner initiates local JupyterLab session

on the hub where notebooks can be created, modified, and executed.

Figure 4.5 shows the diagram corresponding to the cluster implementation. It shows the hub

as the only gateway for interaction with the cluster but also as a centralized file system for the

user’s configuration files, experiment results, and applications. Management tasks are mainly

limited to this part of the system and consist of enabling user accounts, upgrading system-wide

libraries, securing data storage, and assigning nodes to users which is done manually at the
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moment. For this implementation, the spawner starts a JupyterLab session on the hub server,

and communication is forwarded to a given cluster of nodes through Ethernet.

The administrator assigns nodes to a given user via a JSON (JavaScript Object Notation)

conveniently named nodes.json. The JSON format is an open standard for data interchange in

human-readable text that is widely supported, making it easy to understand and modify when

necessary. This file provides all relevant information about the hardware of the nodes for the

correct development and implementation of an application.

Listing 4.1 shows the structure of the nodes.json file. It defines an array of nodes by

describing their parameters, such as hostname, ip, and position in the 2D grid. The most

relevant part of the node is the fpga entry, which indicates the FPGA model present at the node,

its state, and the firmware used to configure it. These last two parameters are dynamically

updated whenever the user configures the FPGA with a bitstream that matches the model.

Finally, the comblock entry provides insight into the available ComBlock resources by listing

the device files.

Listing 4.1: JSON cluster description example

1 {

2 "nodes":[{

3 "hostname":"hyperfpga -4ge21-1-1",

4 "ip":"192.168.0.7",

5 "x":1,

6 "y":1,

7 "fpga":{

8 "model":"4ge21",

9 "state":"unknown",

10 "firmware":""

11 },

12 "comblock":{

13 "devs":[]

14 }

15 }
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Furthermore, JupyterHub flexibility has proven to be beneficial for user interaction on in-

dividual boards. By implementing the SSHSpawner [171], users are further restricted to a

specific node of the cluster; this can be useful for teaching activities [172]. The SSHSpawner

takes advantage of the network by initiating a remote JupyterLab session on a node and then

forwarding it to the hub server as shown in Figure 4.6. In both cases, the gateway to the hard-

ware is a common server that can easily implement all safety measures that require minimal

programming skills.

User 0

Internet

JupyterHub

HyperFPGA

User N

... ...

Node N

JupyterLab

Node 0

JupyterLab

Figure 4.6: Block diagram of the infrastructure configured for user interaction with individual

nodes through SSHSpawner. Users are authenticated in the hub and the spawner initiates a

remote session that is forwarded to the hub for user interaction.

4.1.5 Programming

Computing in general is a two-part task. In most problems, the configuration may be just the

beginning, with the real challenge being the programming of the newly created cluster. At

this point, the architecture of the cluster may be very different for each problem, but a flexible

framework adapts accordingly to allow users to implement their applications without having to

make major modifications to the underlying layers.

Figure 4.7 shows the user workflow and tools required to develop and implement an appli-

cation on the cluster. For starters, HDL code can be developed in any language or tool that

outputs VHDL or Verilog, which are the only two languages supported for hardware synthesis

in the case of Vivado [26]. The methodology of SoC-FPGA implementation follows the princi-
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Figure 4.7: HyperFPGA application development workflow.

ples described in [173], where the communication block (ComBlock) [174] is used as a bridge

between user reconfigurable logic and the CPU, abstracting all details of the interconnect. By

abstracting the interface details, the ComBlock provides a compatibility layer consisting of

registers, FIFOs, and a dual-port RAM allowing to facilitate design portability.

The HyperFPGA platform configuration is provided in a BSP format, compatible with

Vivado. Once the user design has been integrated and synthesized with the hardware platform,

it can be exported to be processed by the XSA2Bit Python script. The XSA2Bit helps to compile

the bitstream and generate the device tree overlay for compatible devices. With the project

files compiled, users can take advantage of a Jupyter environment, which includes JupyterHub

[175] for management and JupyterLab for application development.

Once users are logged into the system in the cluster scheme, a JupyterHub greeting page

shows a number of options. Users can interact through a shell terminal or JupyterLab notebooks.
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Any modification made to the system is limited to the user account.

Within the user home folder, the nodes.json file contains the information of the cluster

nodes available to the user. This will be used to implement and interact with the CPU clusters

to configure and monitor the computations in the FPGAs. In addition, two folders are created

within the user account.

The first folder is named bitstreams. It contains the bitstreams and device tree overlays

that target the specified FPGAs on the available nodes. During configuration, the bitstream

and device tree overlays are checked to match the targeted FPGA model. If valid, the CPUs

implement the bitstream in the FPGA and apply the overlay updating the Linux device tree.

The second folder, named comblock_drivers, contains the Linux kernel drivers that the

user requires to interact with the FPGA of the ARM A53 quad-core CPU via the ComBlock.

Two different variants of the drivers are available, one for normal usage and one for debugging,

which allows inspection of the interaction between the kernel and the ComBlock. The drivers

are capable of handling multiple ComBlocks with different configurations. After a device tree

overlay is successfully applied to the OS, the kernel driver creates the device files for normal

usage, effectively exposing the ComBlocks in the FPGA to the user space.

This application framework is based on IPython Parallel [176]. It provides functions that

facilitate the instantiation and management of CPU clusters. With the description file of the

nodes available to the user, it is possible to create such clusters. The interaction with the cluster

is carried out using the methods provided with the IPython environment or MPI4PY [177].

Both tools provide useful functions for sharing Python objects and performing computations,

such as broadcast, barrier, and map. These functions combined with the ComBlock drivers

allow for a heterogeneous computing flow where the CPUs and FPGAs can cooperate.

4.2 FPGA dedicated network

To enable the real potential of FPGAs massive parallelism, they must be provided with a

dedicated network with low-latency and high performance. In the HyperFPGA this is achieved

by interfacing the I/Os directly. As mentioned in the previous chapter, the combination of

GTHs, HPs, and HDs allows for a 380 Gbps link between boards.

Given that the HyperFPGA is intended as an experimental playground, the methods of
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communication between FPGAs are highly dependent on the user application. However, the

same modular approach can be implemented at this level. By leveraging already existing

modules, users can implement portable implementations. As described in the experiments

carried out with Novo [110] and Novo G# [111], depending on the targeted optimizations,

area, performance, or latency, one could prefer a network strategy over others.

In terms of modularity, the HPs and HDs are the most simple to deal with. Given that these

are common I/Os, the user only has to define the electrical standard and a direct connection can

be established. These were tested using a FIFO on both sides and routing the FIFO control

and data signals directly to the I/Os. A performance of 600 Mbps per differential lane was

achieved when working with HP I/Os using the HyperFPGA and Trenz SoM.

The case for the GTHs is quite different, given that they require a more complex configu-

ration, which tends to be vendor and family specific. This overhead is acceptable considering

the potential throughput on the order of Gbps. Despite the complexity and restrictiveness in

its use for portable applications, they are essential to any high performance system. For this

reason, efforts are present in developing a universal GTH controller such as Kyokko [167].

Regarding GPIOs, some experiments were performed to test the feasibility of physical-level

interfaces based on time-division multiplexing (TDM) [178]. These types of interface offer

the advantage of fixed-length frames in which the channel is owned by different entities for

predetermined periods of time, making the link deterministic at the cost of agility.

In addition to this, a proposed protocol was presented in [179]. It consists of a distributed

memory approach in which all nodes are assigned a memory range in a global memory space.

This effectively transforms all ports in FBs or CEs to memory locations which can be written

and read from. Inside each node, local resource agents manage communication with other

nodes by means of packets. These packets are formed of various layers, depending on the type

of packet. Three types of packets are considered: command, raw data, and universal direct

memory access (UDMA).

The command packet provides a way of communicating short urgent messages with codes

whose meaning is predefined for start, stop, restart, abort, etc. Data are transported using

the raw data packet type, which provides packet sequencing, checksum, and addressing, among

others. Finally, the UDMA packet provides the means to explicitly declare data movements in

remote nodes to remote nodes. This gives the flexibility to move data across the cluster in an
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arbitrary way.

4.3 Summary

The usability of any system depends not only on the potential qualities of the system but also on

the capacity of users to interact with it. In the previous chapter 3 the hardware qualities of the

HyperFPGA were described. To make use of these, tools were developed that provide facilities

for management, monitoring, and development. These tools allow users to take advantage of

the two major networks that connect CPUs and FPGAs.

The HyperFPGA software stack is designed to be flexible and modular, so that users can

develop applications that meet their specific needs. It includes the hardware definition, boot,

management platform, and programming environment. The importance of proper configuration

and the boot sequence is emphasized, highlighting the use of micro-SD cards for flexibility and

robustness. The rest of the software ecosystem relies on JupyterHub for user management

and interaction. The software environment allows users to interact with the system nodes

individually and collectively, accommodating different programming paradigms and use cases.

By providing drivers for the redefinition of the hardware present in the FPGA and for their

interaction from the user space, developers can modify the platform to accommodate their

application intervening in different layers while maintaining compatibility with the system.

Following an open-source approach, the Petalinux project, kernel drivers, ComBlock, and

XSA2Bit sources are provided in the following links for free use:

https://gitlab.com/ictp-mlab/core-comblock

https://gitlab.com/ictp-mlab/hyperfpga-linux
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Chapter 5

Application: N-Queens problem

In the previous chapters, the characteristics of the HyperFPGA were described in detail. As

stated in the design proposal in Section 2.4, the main purpose of the system is to provide an

ecosystem for heterogeneous experimental HPC architectures. From the hardware description

in chapter 3 the heterogeneity of the cluster is shown in the form of the SoM that houses diverse

systems in a single SoC. Later, in Chapter 4, the way to utilize these resources is presented.

Being a distributed system, strong emphasis is placed on communication and synchronization.

And being an experimental platform, special care was taken for management and safety.

The natural next step, once the platform and software ecosystem is ready and running, is to

develop an application to test the HyperFPGA cluster. There are some requirements that any

application must meet before it can be considered fit for an HPC platform. The application

must:

• Exceed the resources available in a single CE.

• Be scalable.

• Be parallelizable and distributable.

Following these requirements, it was decided that the N-Queens problem was a good choice

to validate the HyperFPGA due to the combinatorial nature of the problem according to the

dwarf classification introduced in Table 1.1. The N-Queens problems has been traditionally

used in the testing of HPC systems [180]. This problem is ideal for showing the capabilities

of the hardware and software that build up the HyperFPGA given that no formula exists for
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the computation of the number of solutions for the placements of N non-attacking queens, and

exhaustive search must be used to go over the whole solution space.

5.1 N-Queens problem

The Queens problem was first introduced in 1848 by Max Bezzel [181], a German chess com-

poser. In its first iteration, the problem consisted of placing eight queens on a traditional eight

by eight chessboard. The queens have to be positioned in such a way that they were not be

able to attack each other.

It took some time before a generalization was proposed, as expected from mathematicians.

The N-Queens problem in its general form has been extensively studied [182, 180, 183]. As the

size of the chessboard (N) increases, the number of total solutions increases approximately with

the factorial of N. Currently, there are three main variations of this problem.

• Find a single solution.

• Find the first solution in lexicographic order (most beautiful [184]).

• Find all possible solutions.

There are many ways of solving this problem, one of the most popular was proposed by

Dijkstra [185] as an example of structured programming using back tracking. Naturally, several

improvements have been made to the algorithm to reduce the complexity of the problem by

taking advantage of the symmetries of some solutions. Until now, the total number of solutions

has been confirmed for N = 27.

5.1.1 Implementation

This particular problem tests the scalability of a platform and has been solved in numerous

ways. First, given that there is no mathematical equation or model, an exhaustive search is the

best way forward. It is a brute-force approach that systematically lists all possible solutions to

a problem and checks each for valid solutions that require huge computational power. Second,

all possible solutions are independent, allowing massive parallelization. Furthermore, pruning

techniques allow discarding solutions without completely checking them. Thus, the problem can

be deconstructed into a series of sub-problems that branches out from valid partial solutions.
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Figure 5.1: Example of the exhaustive search process using the backtracking algorithm in a

4-queens problem. Queen’s placements are shown with circles and attacking lines in different

color depending of the column.

A backtracking algorithm was used to optimize the implementation and reduce the com-

putational time required to find all the solutions. Figure 5.1 shows how the problem branches

whenever a queen is placed on the board. An advantage of applying backtracking is that it

follows a depth-first search that allows parallelization by distributing branches to the cluster

nodes. Furthermore, the space to explore is greatly reduced by pruning whenever a non-valid

solution is found for a given partial solution, as discussed in [186].
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5.1.1.1 Hardware

To solve the N-queens problem, it was decided that part of the solutions could be calculated

on the JupyterHub. This consists of finding the valid positions for the first columns of the

chessboard in the CPU, since this is the less computationally intensive part of the problem.

Then, the partial solutions are distributed to the nodes to maximize efficiency. Inside the nodes,

the backtracking algorithm was implemented using parameterized VHDL templates in modules

called solvers.

Figure 5.2 shows the FPGA block diagram inside each node. By reading and writing to the

ComBlock resources, the entire logic can be controlled. The ComBlock FIFO is used to store

all partial solutions assigned to each node. A distributor reads from the ComBlock FIFO and

copies the partial solutions to each solver in a round-robin manner. The number of solvers is

restricted by the physical resources of the system and the number of partial solutions to be

processed.

SoC

ARM A53 FPGA

Linux

IPy Engine

ComBlock
Driver

ComBlock

FIFO

Registers

Distributor Concentrator

Solver N
Solver N

Solver N
Solver N

Solver N
Solver N

Solver N
Solver N

Solver N
Solver N

Solver N
Solver N

Solver N

Figure 5.2: N-Queens problem block diagram showing the solvers, partial solutions distributor,

partial results concentrator, and ComBlock.

The control logic inside each solver performs the search for valid positions in its column. If

no valid position is found, the partial solution is discarded and the next is processed, as shown

in Algorithm 1.

The block diagram of an individual solver can be seen in Figure 5.3. Inside each solver,

the backtracking algorithm is implemented by unrolling the columns of the chessboard into N

logic control blocks with its own input FIFO to minimize dead times. Each logic control block

takes a partial solution from the preceding block and checks for valid solutions in its designated
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Algorithm 1 K column solver control logic for an N by N chessboard.
Require: Previous placements ̸= NULL

for Proposed position ← 0 to N − 1 do

for i← 0 to K − 1 do

Counter ← 0

if Proposed position not in Previous placements(i) horizontal AND diagonals then

Counter ← Counter + 1

end if

end for

if Counter = K then

Proposed position valid

else

Proposed position invalid

end if

end for

column. Any valid solution is concatenated to the partial solution and fed to the next block.

When the last block finds a valid solution, the solver increments its solution counter. Once

no more partial solutions are available for processing and the solver has completed its assigned

computations, a done flag is raised. Finally, when the concentrator detects that all solvers

have raised the done flag, it accumulates the values of all counters and updates the ComBlock

registers.

    

FIFO 1

Done

Counter

Control logic
block 1

Solver

FIFO N

Control logic
block N

FIFO 2

Control logic
block 2 ...

Figure 5.3: N-Queens solver internal block diagram showing N control logic blocks with their

input FIFOs. The last control logic increments the solutions counter and generates the Done

flag.
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The FPGA part is completely developed in Vivado due to the proprietary restriction of the

AMD MPSoC Ultrascale+. However, once a definition of the hardware is obtained, it is possible

to escape vendor entrapment, as shown in Figure 4.7. To do so, the XSA2Bit custom Python

script reads the hardware description and translates it into a device tree overlay to interface the

custom logic with Linux through the ComBlock and its custom driver. The overlay is populated

with the parameters of the instantiated ComBlock to pass the driver information, such as the

availability of a memory resource, depth, and width. The ComBlock entry in the device overlay

is shown in Listing 5.1.

1 queens_0_comblock_0: comblock@80020000 {

2 clock -names = "fifo_clk_i", "axil_aclk";

3 clocks = <&zynqmp_clk 71>, <&zynqmp_clk 71>;

4 compatible = "xlnx ,comblock -2.0";

5 reg = <0x0 0x80020000 0x0 0x10000 >;

6 REGS_IN_ENA = <1>;

7 REGS_IN_DWIDTH = <32>;

8 REGS_IN_DEPTH = <3>;

9 REGS_OUT_ENA = <1>;

10 REGS_OUT_DWIDTH = <32>;

11 REGS_OUT_DEPTH = <1>;

12 DRAM_IO_ENA = <0>;

13 DRAM_IO_DWIDTH = <16>;

14 DRAM_IO_DEPTH = <0>;

15 FIFO_IN_ENA = <0>;

16 FIFO_IN_DWIDTH = <16>;

17 FIFO_IN_DEPTH = <1024>;

18 FIFO_OUT_ENA = <1>;

19 FIFO_OUT_DWIDTH = <32>;

20 FIFO_OUT_DEPTH = <256>;

21 };

Listing 5.1: ComBlock device tree overlay entry.

This entry is part of a larger device tree overlay that is then compiled. With this last part,

a user can proceed to the Jupyter environment to build the distributed application.
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5.1.1.2 Software

The applications relies on the IPython Parallel framework [176] which provides communication

methods for cluster management. This framework provides valuable tools that abstract the

details of distributed computing communication. The first step is to create a Python object

to describe the cluster. This cluster must first be defined by the system administrator in the

node.json file.

By reading the JSON and cluster profile files, a user can access all the information required

to instantiate a cluster, which is done with simple function calls within JupyterLab, see Listing

5.2. With the cluster object, users can interact in a DirectView or LoadBalancedView, both

provided by the IPython Parallel framework. These views change the way communication with

the nodes of the cluster is carried out. In the DirectView, each node can be addressed specif-

ically, giving more control. On the other hand, LoadBalancedView relies on a process that

automatically distributes a set of tasks or data to nodes, with the aim of making their overall

processing more efficient. For the implementation of the N-Queens problem, DirectView is

preferred, given that it allows fine-grained control of the cluster while maintaining parallelism.

1 import ipyparallel as ipp

2 import json

3

4 with open(’nodes.json’) as nodes_file:

5 nodes = json.load(nodes_file)[’nodes’]

6

7 engines = 1

8 cluster = ipp.Cluster(profile = "ssh", n = engines)

9 rc = cluster.start_and_connect_sync ()

Listing 5.2: Creation of a cluster in JupyterHub.

Before operation, the cluster is programmed with the bitstream and the OS is updated with

the corresponding device tree overlay. Once the overlay is applied successfully, the status of

the nodes is updated with the firmware name and the ComBlock device files. At this stage, the

system is ready for computing.

Calculating partial solutions greatly boosts parallelism in the case of the Queens problem;

to do so, the hub performs the simple task of generating all partial solutions for a given number

of columns that are stored in presols_o. These partial solutions are randomly shuffled and
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distributed to the cluster using the map_async function which is a higher-order function that

takes another function and data, see Listing 5.3. The map_async implementation in IPython

Parallel distributes a given function and the element of a list to the nodes of the defined cluster

in parallel to then return the results of each node.

1 from random import shuffle

2

3 rc.block = False

4

5 chunk_size = len(presols_o)// engines + 1

6 shuffle(presols_o)

7 ar = dview.map_async(calculate_solutions_fpga , presols_o)

Listing 5.3: Execution of the N-Queens.

The function that actually performs the computation by controlling the solvers on the FPGA

was conveniently named calculate_solutions_fpga. This function interacts with the solvers

through the ComBlock device files using simple read and write operations. The advantage

of using these operations is that since they are pervasive and standard, they are supported

natively in Python and, thus, are easy to integrate with any Python package. In particular,

one of the most useful tools are context managers that provide a safe environment to interact

with external sources. Furthermore, the IPython Parallel framework provides monitoring tools,

given that the FPGA does all the heavy lifting, the CPU can monitor without interfering with

any critical task by using the publish_data; see Listing 5.4.

1 def calculate_solutions_fpga(partial_solutions):

2 with ExitStack () as context_manager:

3 reg_o = context_manager.enter_context(open_dev_file(f"/dev/

ComBlock_0_regs_o", os.O_WRONLY , "bw"))

4 reg_i = context_manager.enter_context(open_dev_file(f"/dev/

ComBlock_0_regs_i", os.O_RDONLY , "br"))

5 fifo_o = context_manager.enter_context(open_dev_file(f"/dev/

ComBlock_0_fifo_o", os.O_WRONLY , "bw"))

6 reg_o.write ((1).to_bytes(4, ’little ’)) # write reg0 (reset

high)

7 fifo_o.seek(-1) # empty the fifo

8 last_sol = 0

9 for i, partial_solution in enumerate(partial_solutions):
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10 try:

11 fifo_o.write (( partial_solution).to_bytes(4, ’little ’))

12 last_sol += 1

13 except:

14 break

15 reg_o.seek (0)

16 reg_o.write ((0).to_bytes(4, ’little ’)) # write reg0 (reset

low)

17

18 i = 0

19 reg_i.seek (0)

20 done = int.from_bytes(reg_i.read (4), ’little ’)

21 while(not done): # read reg0 (done)

22 time.sleep (60)

23 i += 1

24 # read solution counter low and high words

25 sol_l = int.from_bytes(reg_i.read (4), ’little ’)

26 sol_h = int.from_bytes(reg_i.read (4), ’little ’)

27 sol = (sol_h << 32) + sol_l

28 reg_i.seek (0)

29 done = int.from_bytes(reg_i.read (4), ’little ’)

30 publish_data(dict(sol=sol , i=i)) # to monitoring task

31 while fifo_o.tell() < 1024 and last_sol < len(partial_solutions):

32 fifo_o.write (( partial_solutions[last_sol ]).to_bytes(4, ’little ’)

)

33 last_sol += 1

34 sol_l = int.from_bytes(reg_i.read (4), ’little ’) # read low word

35 sol_h = int.from_bytes(reg_i.read (4), ’little ’) # read high word

36 return (sol_h << 32) + sol_l , i

Listing 5.4: CPU function that interacts with the solvers on the FPGA to calculate the solutions.

When the application is running, each of the nodes will publish its progress in JupyterLab.

This is particularly useful for examining the computation and assessing the parallelization

strategy during execution. Figure 5.4 shows the progress of 4 nodes, called engines, in the

context of IPython Parallel. This corresponds to one of the iterations of the Queens problem.

All engines remain operational throughout execution, showing that there is a high level of

efficiency.

85



5.1. N-QUEENS PROBLEM

0 10 20 30 40 50 60 70
time (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

so
lu

tio
ns

1e10 Progress plot for 4 Engines
Engine 0
Engine 1
Engine 2
Engine 3
Total
Goal

Figure 5.4: 20-Queens problem monitoring chart showing the progress of the individual

counter of a 4-node cluster with the accumulated solutions and the expected total as the goal

(39,029,188,884).

5.1.2 Results

During the algorithm development phase, the entire system was tested for the first time on a

Zedboard [187]. The results obtained give us insight into how the problem grows. Figure 5.5

shows how execution time increases with the number of queens in a factorial way. This plot

was drawn using a single solver at 100 MHz.

It was expected that, when switching from Zedboard to the HyperFPGA cluster, as the

available resources for the problem increased, the execution time would decrease. In this case,

the size of the chessboard (N) was fixed to 20 and up to 4 nodes were used. Figure 5.6 shows

the platform gains when increasing the number of nodes. The execution time was measured

multiple times to obtain the mean value and standard deviation for each case. Given that the

computation time depends on the length of the search path for each partial solution, these were

randomly assigned in each test to minimize the total execution time. As expected, when partial

solutions are distributed to more nodes, the total time decreases, confirming that the platform

allows one to exploit the algorithm’s parallelization.
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Figure 5.5: N-Queens problem time growth with real values from Zedboard experiments using

a single solver at 100 MHz. The values were fitted with a factorial model confirming how the

problem grows with N.
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Figure 5.6: N-Queens problem speedup for a board size of N = 20 and different numbers of

nodes, from 1 to 4. A model was used allow predicting the speed up for further scaling.
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Another important factor is the number of solvers that fit into a determined FPGA. For

this particular test, using the Ultrascale+ MPSoC ZU4EG, 23 solvers at 300 MHz were placed

at each cluster node. By combining the information from both experiments, Figure 5.5 and

Figure 5.6, for N = 20 a speed up of 251x was obtained by implementing the algorithm on 4

nodes of the HyperFPGA (276 equivalent solvers) versus a single solver on a Zedboard.

5.2 Summary

This chapter discusses a test application developed on the HyperFPGA system. The N-Queens

problem was implemented since it is a complex combinatorial problem that grows in a facto-

rial way. The implementation involved a backtracking algorithm implemented in VHDL on

the HyperFPGA nodes, with the IPython Parallel framework used for cluster management.

The platform demonstrated its capability to solve complex problems in a distributed manner,

achieving a speed up of 251x when comparing the results obtained with a single Zedboard.

The implementation for the 20-Queens problem is available openly at the following link:

https://gitlab.com/ictp-mlab/n-queens
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Chapter 6

Conclusions

In this work, the HyperFPGA cluster is presented, which is a hardware and software platform

for experimental heterogeneous high-performance reconfigurable computing architectures. The

need for novel computing architectures has arisen from the current unsustainable trend of su-

percomputers that consume as much energy as small towns. This trend is impossible to support

and highlights major issues of the current approach based on CPUs and GPUs. Meanwhile,

FPGA-based heterogeneous platforms have shown significant improvements in performance and

energy consumption compared to their CPU or GPU counterparts by relying on hardware-level

optimizations, as already shown in this thesis and other studies [6, 7, 8, 188, 189].

In addition, modern SoC-FPGAs offer internal high-speed connections that allow CPUs,

GPUs, and FPGAs to interact on the same die, thus reducing communication latency and

power consumption. However, adoption has not yet occurred, primarily due to the complexity

of hardware design and the lack of standards for interconnection, structure, and program de-

scription. In this respect, the HyperFPGA hardware and software provide a common reference

by being modular, flexible, and open source, where different solutions can be implemented to

appropriately measure their capabilities.

A survey of the most relevant heterogeneous clusters was carried out to determine the

best design decisions for future implementations. As a result, the HyperFPGA was built, a

unique scalable SoC-FPGA cluster that provides power monitoring tools along with FPGAs

tightly coupled through diverse I/Os offering a high level of flexibility and introspection. Its

programmable framework allows experimenting with diverse computing paradigms.
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The platform was developed on the principles of openness, modularity, and scalability. Mod-

ularity was satisfied by developing an open-source hardware platform consisting of COTS SoMs

and high-speed high-density connectors for scalability. The software environment consists of

open-source custom tools that integrate existing applications for programming and manage-

ment. Furthermore, vendor interoperability can be possible with a fixed SoM form factor and

signal routing. A custom Linux OS was implemented to meet remote management requirements

using JupyterHub. Using JupyterHub, management is greatly simplified and centralized to a

single server. Additionally, parallel programming paradigms are implemented in the cluster us-

ing JupyterLab and the interconnection layers developed in-house consisting of the ComBlock,

custom kernel driver, and XSA2Bit script.

The HyperFPGA software and hardware were tested by implementing a backtracking algo-

rithm to solve the N-Queens problem. A speed-up of approximately 251 times with respect to

a single ZedBoard was obtained without performing any major optimization, which shows the

potential of the hardware and the efficiency of the development environment.

FPGA-based heterogeneous computing is a challenging field with enormous potential to

change the dominant computing paradigm. In recent years, great interest has contributed

to the development of tools and, more importantly, experimental platforms. With standard

platform descriptions and interfaces, an open collaborative development approach will allow

the creation of communities to accelerate adoption. New technologies such as SoC-FPGAs will

certainly be at the center of future cluster architectures, considering the advantages of having

CPUs, GPUs, and FPGAs on the same device.

6.1 Future works

Now that we have established that it is possible to program and interact with the HyperFPGA

efficiently, it is important to proceed with more complex problems. Some of which are already

in the works: a distributed multi-agent reinforced learning optimizer for quantum computing

algorithms [190], and the study of massive asynchronous cellular automata machines [191, 192].

An aspect that is not discussed in this thesis is the FPGA-specific network. FPGAs are

widely known for their low latency and high throughput, which in mixed networks may be

lost due to the overhead of the communication protocols for CPUs and GPUs [125]. This
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part of the system offers significant improvements that will come from taking advantage of

the seemingly scalable FPGA fabric that results from interconnecting the HyperFPGA nodes.

To achieve this, high-speed and low-latency communication protocols will be used to take

advantage of the high bandwidth and flexibility of the available I/Os. A generic distributed

memory approach such as the one described in [179] could be assigned to the cluster to begin

exploring direct communication between adjacent FPGAs and collaboration among all FPGAs

in the HyperFPGA.

The HyperFPGA offers a variety of direct interconnections between nodes, MGTs, HP

I/Os, and HD I/Os. MGTs provide the highest throughput at a low cost of link overhead,

which was addressed with custom protocols in [1, 167]. Other important details are portability

and openness of the interface, which is a special focus of Kyokko [167]. Although many multi-

FPGA systems rely on standard protocols, custom protocols are the third most used and the

first in terms of performance in the top500 supercomputers [193], in addition to the important

contribution of custom protocols to scientific computing.

The HyperFPGA inter-FPGA network will have to support the following:

• An open and easily portable interface.

• Flexible topology to meet the transmission rate and data throughput required by the

different problems and paradigms by using virtual channels as in VCSN [194] or fixed as

in [77].

• As shown in Table 2.1, custom protocols remain relevant, suggesting that no industry

standard fully satisfies the requirements of heterogeneous computing. A modular protocol

reduces the effort required to optimize the interfaces, routers, and switches.

In addition to the concrete developments regarding the HyperFPGA FPGA-dedicated net-

work, other open problems remain unaddressed. These can be taken from the SIRCA report

[161] which divides the tools into four phases of development: formulation, design, translation,

and execution.

The formulation phase consists of elaborating and optimizing algorithms for parallel com-

puting at the highest level of abstraction, mostly dealing with pseudocodes and verbal language

for reasoning. Formulation is the most critical step in which researchers can benefit the most
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from the knowledge of the chosen parallel paradigm. Tools that provide strategic exploration,

high-level prediction, and numerical analysis have a strong positive impact on the other phases.

The design phase provides languages used to translate an algorithm into a behavioral im-

plementation. This field has broadened with the creation of modern HDL and HLS languages,

such as Chisel [155, 195] based on Scala and Clash [154, 196] based on Haskell, and high-level

synthesis tools, such as BondManchine based on Go [197], and several HLS implementations

[47, 198, 199, 198, 156]. New developments have solved, to some degree, the issues of portability

and interoperability by raising abstraction. However, the method for scaling designs to hetero-

geneous clusters remains platform-specific, forcing users to take responsibility for porting and

partitioning the designs. Furthermore, users are tasked with specifying a concurrency model at

the system level. An in-depth study of design tools, frameworks, and strategies for design-space

exploration can be found in [200].

Once a PC-compatible description of the algorithm is available, the next phase maps it

onto the actual physical resources of the system. This phase is known as translation or place-

and-route (PAR). Several improvements have occurred in recent years [201, 202]. Most studies

focus on optimizing the performance of the process by implementing parallelism with good

results compared to vendor tools. However, these improvements are not easily integrated into

proprietary workflows and require a high level of expertise for effective usage. Likewise, existing

PARs targeting clusters are platform-specific and will likely stay that way until a standard

method of describing a heterogeneous system is adopted.

In the final phase, execution, developers must be able to verify and analyze the performance

of the implementation. Critical runtime services must be included, such as task management,

checkpoints, heartbeats, and debugging. The effective implementation of such services depends

on their consideration in the previous design phases. The works studied in detail in [203]

provided definitions of abstraction layers for user interaction and management, showing a great

improvement in the execution phase. Similarly, several FPGA operating systems have been

developed [204, 205, 206] implementing abstractions such as threads and processes.

These challenges can be highlighted in the following list:

• Abstract hardware model for different heterogeneous platforms and programming paradigms.

• Translation tools capable of targeting scalable heterogeneous platforms.
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• Flexible design tools to optimize implementations targeting heterogeneous clusters.

• High-level prediction tools for performance, energy consumption, and resource utilization.

• Universal debugging and verification tools for distributed reconfigurable computing.

Even if there are platform-specific solutions to some of the aforementioned challenges, the

real challenge is to develop standard and generic solutions suitable for any heterogeneous cluster

implementation in a community-driven development approach that would greatly accelerate

adoption and growth, as shown in [207, 208, 209].
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