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Abstract

Driven by the increase of greenhouse gas emissions, climate change is causing signifi-

cant shifts in the Earth’s climatic patterns, profoundly affecting our oceans.

In recent years, our capacity to monitor and understand the state and variability of

the ocean has been significantly enhanced, thanks to improved observational capacity,

new data-driven approaches, and advanced computational capabilities. Contemporary

marine analyses typically integrate multiple data sources: numerical models, satellite

data, autonomous instruments, and ship-based measurements. Temperature, salinity,

and several other ocean essential variables, such as oxygen, chlorophyll, and nutri-

ents, are among the most frequently monitored variables. Each of these sources and

variables, while providing valuable insights, has distinct limitations in terms of uncer-

tainty, spatial and temporal coverage, and resolution.

The application of deep learning offers a promising avenue for addressing challenges

in data prediction, notably in data reconstruction and interpolation, thus enhancing

our ability to monitor and understand the ocean. This thesis proposes and evaluates

the performances of a variety of neural network architectures, examining the intricate

relationship between methods, ocean data sources, and challenges. A special focus is

given to the biogeochemistry of the Mediterranean Sea.

A primary objective is predicting low-sampled biogeochemical variables from high-

sampled ones. For this purpose, two distinct deep learning models have been devel-

oped, each specifically tailored to the dataset used for training. Addressing this chal-

lenge not only boosts our capability to predict biogeochemical variables in the highly

heterogeneous Mediterranean Sea region but also allows the increase in the useful-

ness of observational systems such as the BGC-Argo floats. Additionally, a method is

introduced to integrate BGC-Argo float observations with outputs from an existing de-

terministic marine ecosystem model, refining our ability to interpolate and reconstruct

biogeochemical variables in the Mediterranean Sea.

iv



As the development of novel neural network methods progresses rapidly, the task of

establishing benchmarks for data-driven ocean modeling is far from complete. This

work offers insights into various applications, highlighting their strengths and limita-

tions, besides highlighting the importance relationship between methods and datasets.



List of Publications

Thesis co-author Acknowledgments

All the contributions presented in this thesis have been published or have been ac-

cepted for an open discussion on EGUsphere. I would like to extend my deepest grat-

itude to all the co-authors –listed above– who helped me produce the work for this

thesis.

In particular: Chapter 4 is based on [1], coauthored by Luca Manzoni from the Univer-

sity of Trieste and Cossarini Gianpiero from National Institute of Oceanography and

Experimental Geophysics (OGS). Moreover, Chapter 4 is partially based on [2], a joint

work with Carolina Amadio, Anna Teruzzi, Luca Manzoni, Gianluca Coidessa, and Gi-

anpiero Cossarini, all from OGS. The complete version of the latter article can be found

in Appendix A. Chapter 5 is based on [3], a joint work with Luca Manzoni and Gian-

piero Cossarini. Chapter 6 is based on [4], coauthored by Luca Manzoni and Gianpiero

Cossarini.

General co-author Acknowledgments

Throughout my three years of doctoral studies, I have contributed to several publica-

tions. While not all are included in this thesis, those marked with ⋆ form the founda-

tional basis of this dissertation. Publications not incorporated were excluded primarily

because their focus diverged from the central theme of this thesis. Nonetheless, each

of these works aligns with my educational journey, rooted deeply in computer science

and algorithms.

vi



Peer-Reviewed Journal Publications

• [5] Castelli, M., Manzoni, L., Mariot, L., Menara, G., Pietropolli, G. (2022). The

Effect of Multi-Generational Selection in Geometric Semantic Genetic Program-

ming. Applied Sciences.

• [6] Leporati, A., Manzoni, L., Mauri, G., Pietropolli, G., Zandron, C. (2023). In-

ferring P systems from their computing steps: An evolutionary approach. Swarm

and Evolutionary Computation.

• ⋆ [1] Pietropolli, G., Manzoni, L., Cossarini, G. (2023). Multivariate Relationship

in Big Data Collection of Ocean Observing System. Applied Sciences.

• ⋆ [3] Pietropolli, G., Manzoni, L., Cossarini, G. (2023). PPCon 1.0: Biogeochemi-

cal Argo Profile Prediction with 1D Convolutional Networks. EGUsphere.

• [7] Nadizar, G., Pietropolli, G. (2023). A grammatical evolution approach to the

automatic inference of P systems. Journal of Membrane Computing.

• ⋆ [2] Amadio, C., Teruzzi, A., Pietropolli, G., Manzoni, L., Coidessa, G., Cos-

sarini, G. (2023). Combining Neural Networks and Data Assimilation to enhance

the spatial impact of Argo floats in the Copernicus Mediterranean biogeochemi-

cal model. EGUsphere.

• [8] Pietropolli, G., Menara, G., Castelli, M. (2023). A Genetic Programming Based

Heuristic to Simplify Rugged Landscapes Exploration. Emerging Science Journal.

Peer-Reviewed Conference Publications

• [9] Pietropolli, G., Manzoni, L., Paoletti, A., Castelli, M. (2022, April). Combin-

ing geometric semantic gp with gradient-descent optimization. Genetic Programming:

25th European Conference, Held as Part of EvoStar 2022 (EuroGP 2022).

• ⋆ [4] Pietropolli, G., Cossarini, G., Manzoni, L. (2022, September). GANs for In-

tegration of Deterministic Model and Observations in Marine Ecosystem. In Progress

in Artificial Intelligence: 21st EPIA Conference on Artificial Intelligence (EPIA

2022).

• [10] Ferreira, J., Castelli, M., Manzoni, L., Pietropolli, G. (2023, March). A Self-

Adaptive Approach to Exploit Topological Properties of Different GAs’ Crossover Opera-

tors. In Genetic Programming: 26th European Conference, Held as Part of EvoStar

2023 (EuroGP 2023).
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Chapter 1

Introduction

Climate change, often termed global warming, represents a persistent alteration in

Earth’s climatic patterns, primarily driven by a surge in greenhouse gas emissions

([13]). Human activities are the predominant contributors to this escalation, as em-

phasized in various studies ([14, 15]).

Oceans play a crucial role in mitigating climate change by absorbing approximately

93% of the excess heat generated by human activities. This function positions them

as a primary buffer against global warming. However, they are vulnerable to human-

induced perturbations, yielding complex repercussions ([16–18].

Firstly, rising global temperatures, influenced by anthropogenic factors, result in oceanic

warming ([19, 20]). These changes in ocean temperatures and chemistry exert a pro-

found impact on marine ecosystems, leading to shifts in species distributions, altered

migration patterns, and, in some cases, the bleaching and mortality of coral reefs ([21]).

These disruptions can have cascading effects throughout the entire marine food web.

The effects of increasing temperatures extend to the melting of polar ice sheets and

glaciers. This melting is a significant contributor to sea-level rise, endangering coastal

habitats, and ecosystems, and intensifying the risk of coastal inundation ([22, 23]).

Additionally, greenhouse gas emissions increase atmospheric CO2 levels. The oceans

absorb this excess CO2, leading to a decrease in pH levels, resulting in ocean acidifi-

cation ([24, 25]). This phenomenon poses severe threats to marine life, especially to

species like corals and shellfish that depend on calcium carbonate to form their shells

and skeletons ([26]).

Lastly, climate change can exacerbate extreme weather events, such as hurricanes and

typhoons, with devastating consequences for coastal areas and the ocean environment

([27]).
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Analyzing the complex interplay between human activities, oceanic processes, and ma-

rine ecosystems provides essential knowledge for defining strategies that ensure sus-

tainable ocean health.

The Essential Ocean Variables (EOVs) present a structured approach to observing and

monitoring global oceans. Defined by the Global Ocean Observing System (GOOS,

[28]), these variables capture critical metrics for interpreting the ocean’s dynamic na-

ture and its reactions to external shifts, notably the consequences of climate change

([29, 30]). Key EOVs include sea surface temperature, which plays a pivotal role in un-

derstanding the ocean’s climatic influence, and sea surface salinity, a key indicator of

ocean circulation and freshwater input. Additionally, the pH of seawater, ocean oxygen

levels, and nutrient concentrations are vital for tracking ocean acidification, ecosystem

health, and nutrient cycling. These EOVs, along with others such as chlorophyll con-

centration, ocean color, and biological diversity, are essential as part of a global effort

to comprehensively observe and comprehend the ocean’s pivotal role in our changing

world.

Given the essential nature of these variables, marine analysis makes use of a diverse

spectrum of data sources to measure them, each with its unique advantages and dis-

advantages. These sources vary considerably in terms of coverage and the quality of

predictions they provide. Ship-based observations, with their origins dating back to

the 18th century, offer invaluable historical data ([31]). However, they come with lim-

itations, particularly in terms of their sparse coverage, especially in the deeper layers

of the ocean. In comparison, autonomous instruments, introduced after the year 2000,

provide real-time data collection across a wider expanse compared to ship-based mea-

surements ([32–35]). Nonetheless, they may exhibit less precision. Satellite observa-

tions give a panoramic view of the surface of oceans, enabling estimations of param-

eters like sea surface temperature and chlorophyll ([36, 37]). However, as said before,

their scope is restricted to surface-level data. Numerical models, in the form of ocean

physical-biogeochemical models (OBMs), utilize mathematical equations to simulate

intricate ocean processes ([38–40]). These models can be used to better understand the

oceans, provide forecasting, and are able to reconstruct entire domains. Nevertheless,

they are susceptible to errors stemming from lack and simplifications in their mathe-

matical formulations. In essence, the integration of these diverse data sources presents

both opportunities to better understand the oceans and challenges stemming from the

nature of the data and our knowledge of the oceans’ processes.

With the increase in the volume of new data, studying the ocean started to require

the capabilities of Artificial Intelligence (AI), a domain that has witnessed rapid ad-

vancements in recent decades. Within AI, neural networks (NN) are one of the most
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prominent tools and Deep Learning (DL), particularly stands out for its success and the

wide range of possible applications ([41–43]).

DL techniques are known for their ability to learn from (almost) raw data without the

need for complex feature construction steps. Over recent years, DL has received signif-

icant attention – even from the general public – for its ability to be applied to large and

complex datasets obtaining human-level results on multiple tasks. This makes them

useful for tasks where manual extraction of patterns would be too labor-intensive or

too complex ([44–46]).

Given the complexity and multi-dimensionality of oceanographic data, DL techniques

emerge as apt tools, offering valuable modeling capabilities and the ability to handle

vast, intricate datasets effectively ([47–49]). Compared to conventional statistical meth-

ods, DL excels in processing data characterized by many dimensions, complex inter-

variable relationships, and occasional missing values. Thus, integrating these tech-

niques into oceanography promises to augment current methodologies in a significant

way.

1.1 Modeling the Mediterranean Sea Biogeochemistry

Our research centers on the Mediterranean Sea basin, often referred to as a miniature

ocean. ([50]). Despite its relatively small size, the Mediterranean contains oceano-

graphic processes emblematic of larger oceans, making it a natural laboratory for oceano-

graphic studies.

One defining feature of the Mediterranean is its semi-enclosed nature, mostly sur-

rounded by land, with limited connections to the Atlantic Ocean through the Strait

of Gibraltar. This aspect gives rise to several unique oceanographic features.

As stated above, one key characteristic is its limited connection to the Atlantic Ocean,

which translates to a diminished water exchange ([51]). This factor is instrumental in

the creation of distinct deep water masses, including the Mediterranean Deep Water.

Moreover, the Mediterranean is characterized by elevated salinity levels ([52]), sur-

passing the average salinity found in oceans. This heightened salinity, attributed to the

imbalance between high evaporation rates and freshwater influx, makes the Mediter-

ranean an ideal subject for exploring saltwater dynamics and their influence on circu-

lation patterns. In fact, the Mediterranean exhibits complex circulation patterns ([53])

driven by wind, temperature, and density differences. Additionally, owing to its geo-

graphical confinement and diverse coastal landscapes, the Mediterranean exhibits sig-

nificant biogeochemical variations ([54]). Scientists often use it to investigate the effects
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of nutrients, pollution, and climate change on marine ecosystems in enclosed seas. Fur-

thermore, the Mediterranean’s pronounced sensitivity to climatic indicators renders it

a crucial zone for the study of climate variability and its long-term shifts ([55]): analyz-

ing historical climate records through sediment cores and proxies provides information

about past climate variations.

Transitioning from the general oceanographic attributes of the Mediterranean, our re-

search is about its biogeochemistry, a field that intertwines biological, geological, and

chemical processes to understand the composition, causes, and consequences of chem-

ical substances found in the marine environment ([56]). Biogeochemistry focuses on

how living organisms, including microorganisms, plants, and animals, influence and

are influenced by the Earth’s chemical environment ([57]). This interplay determines

the distribution and abundance of marine life and affects the ocean’s elemental cycles,

including carbon, nitrogen, and phosphorus ([58]).

Key variables in biogeochemical studies encompass nutrients (e.g., nitrate, phosphate),

trace metals, organic matter, dissolved gases (e.g., oxygen, carbon dioxide), and vari-

ous isotopic tracers ([59]). Each of these components provides information about the

different biogeochemical processes, from primary production to organic matter decom-

position, and offers clues regarding the health and functioning of marine ecosystems.

In this context, our research concentrates on the use of machine learning (ML) tech-

niques to understand the biogeochemical processes of the Mediterranean and to pro-

vide information about the variables integral to its biogeochemistry.

1.2 Approach

Oceanography spans a large variety of data types, each characterized by distinct spatial

coverage of the marine domain, presenting both opportunities to increase our under-

standing of the oceans and challenges due to the different ways data are collected.

Numerical models simulate various marine variables across the entire domain, yield-

ing three-dimensional (3D) datasets that simulate oceanic processes. In contrast, satel-

lite data provides two-dimensional (2D) surface-level snapshots, capturing metrics like

sea surface temperature and chlorophyll. However, satellite data can only capture

surface measurements and depend on cloud cover and atmospheric conditions. Au-

tonomous instruments, which measure at fixed locations while varying depth, produce

one-dimensional (1D) vertical profiles. Ship-based measurements, with their inher-

ent data sparsity, capture zero-dimensional (0D) data points. These isolated points,
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while crucial, necessitate tailored techniques for effective integration into comprehen-

sive oceanographic studies.

Due to the large variety of the kind of data available, it is important to design different

neural network architectures that can exploit the strengths and mitigate the inherent

biases of each data type—be it measurement inaccuracies, sampling biases, or data

collection disparities, and, most important, the spatial dimensionality of the data.

This research aims to create a framework that can address oceanographic questions

across different data dimensions. This extends beyond DL model creation; it encom-

passes the rationale behind choosing specific DL architectures tailored to distinct re-

search challenges.

This study initiates with an analysis of the 0D scenario, targeting the prediction of low-

sampled biogeochemical variables from high-sampled ones using a training dataset

derived from cruise ship measurements. To work with this data format we employ a

straightforward architecture: a multilayer perceptron model that works with point-like

input-output pairs.

Transitioning to the 1D domain, the focus shifts to vertical profiles sourced from au-

tonomous instruments. A 1D convolutional neural network is proposed to process

these profiles, accepting vectorial inputs and producing vectorial outputs.

Both applications aim to estimate low-sampled marine variables leveraging high-sampled

ones. Yet, the distinct datasets underpinning the DL models —specifically the 0D sam-

ples in the former and the 1D samples in the latter — dictate a shift in the architecture

used.

As the last step, the research broadens to cover the full 3D Mediterranean domain.

The proposed DL model forecasts this domain through 2D horizontal maps at varied

depths and is based on 2D convolutional neural networks. Training data combines

inputs from numerical simulations, satellite observations, and autonomous instrument

observations. The aim is to craft a DL model able to predict biogeochemical variables,

synthesizing the missing data from these diverse data sources.

For every application, the choice of network architecture is guided by its ability to

model the specific features and biases inherent in the data. Detailed explanations for

these architectural choices are provided in dedicated chapters.

In essence, this study focuses on DL techniques tailored to handle different data charac-

teristics and dimensions in oceanography. Moving from 0D to 1D, and then employing

2D input representations to model a 3D domain, the aim is to understand the strengths

and weaknesses of various neural network architectures. Through this approach, it is
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possible to find the advantages and limitations of these architectures in their applica-

tion to the oceanographic domain.

1.3 Contributions

This section provides an overview of the different tasks tackled in this thesis, high-

lighting the three primary investigations undertaken. A detailed discussion of each of

them will be presented in the subsequent chapters. Specifically: MLP for the Prediction

of Biogeochemical Variables will be the topic of Chapter 4; PPCon: 1D CNN for Predicting

Nutrient Profiles will be the topic of Chapter 5; and GANs for Integrating Deterministic

Model and Observations. will be the topic of Chapter 6.

1.3.1 MLP for the Prediction of Biogeochemical Variables.

This research addresses the 0D problem, characterized by both input and output fea-

tures in a scalar form. The goal is the development of DL techniques for predicting rela-

tionships among biogeochemical variables, emphasizing the prediction of low-sampled

variables from high-sampled ones. The dataset comprises bottle measurements from

scientific cruises, offering high-precision data due to laboratory-based analyses. How-

ever, the limited (and highly sparse) number of samples limits the ability to find pat-

terns or relationships among data ([60, 61]). Given the absence of vertical or horizontal

relations in this dataset, a straightforward DL architecture suffices for predictions.

Consequently, a Multilayer Perceptron is employed ([62]) to predict marine variables,

such as nutrient concentrations and carbonate system variables, based on temporal

and locational data, and high-frequency parameters like temperature, salinity, and oxy-

gen levels. To improve upon existing models, we employ a larger dataset for training

(EMODnet, [63]) and make appropriate adjustments to the network structure. This ap-

proach introduces two innovations with respect to the state-of-the-art in oceanography:

first, we derive confidence intervals for predictions by combining multiple NNs. Sec-

ond, we implement a two-step evaluation process to assess the quality of the dataset

and eliminate spurious data before training. The resultant model demonstrates better

prediction accuracy compared to existing models.

In order to provide an example of how this research can be useful in the oceanographic

field, this chapter also proposed a practical application of the proposed model for the

data assimilation task.
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1.3.2 PPCon: 1D CNN for Predicting Nutrient Profiles.

This research extends the previously introduced task of inferring low-sampled vari-

ables from high-sampled ones.

Instead of ship measurements, this study uses samples from autonomous Argo floats

([64]). While obtaining dense oceanic measurements across temporal and spatial scales

remains intricate, Biogeochemical (BCG) Argo profiling floats have revolutionized sub-

surface oceanic data acquisition.

Argo’s distinction from bottle samples lies in its vertical resolution. Unlike bottle sam-

ples, which capture data every tens or hundreds of meters, floats measure at intervals

spanning mere meters, yielding dense profile data such as temperature, chlorophyll,

and oxygen profiles. Each profile—a curve plotting variable values against depth—can

be represented as a vector.

Given this data format, a DL architecture that actually makes use of the vertical pro-

file data format can enhance the prediction quality. Multilayer Perceptrons, while effi-

cient, have difficulties capturing the innate shapes of biogeochemical variable profiles.

Hence, their predictions often manifested irregularities, like abrupt transitions between

two values at very similar depths.

To actually use the unique structure of vertical profiles, a one-dimensional Convolu-

tional Neural Network model is the one introduced for nutrient profile forecasting

([65]). We present the PPCon (Predict Profiles Convolutional) model—trained on BCG

Argo float data—to predict nitrate, chlorophyll, and backscattering (bbp700) values us-

ing data parameters like date, location, and associated profiles of temperature, salinity,

and oxygen. The quality of the results is validated both quantitatively and visually, em-

phasizing its advantage in generating smoother, more accurate profiles with reduced

errors over its MLP counterpart.

1.3.3 GANs for Integrating Deterministic Model and Observations.

The main objective of this study is to define and implement a DL model that can re-

produce the biogeochemical variables within the Mediterranean Sea’s 3D domain. To

achieve this we employ 2D horizontal maps, each one representing the marine domain

at various depth levels. These maps serve as a bridge between in-situ and satellite

observations and the outputs from an existing deterministic marine ecosystem model.

Monitoring marine ecosystems traditionally makes use of two methods: direct observa-

tions (either in-situ or satellite-derived) and deterministic models. Observations, while
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potentially precise, may not offer complete spatial or temporal coverage. In contrast,

deterministic models provide a comprehensive view of marine ecosystems but may

contain inaccuracies.

This research introduces a DL technique that combines information from both the de-

terministic models and in-situ and satellite observations. The inputs and outputs of

this DL model are 2D sections of the Mediterranean and can be visualized as instanta-

neous pictures of specific variables at varying depths within the sea. Such a structure

lends itself to a 2D convolutional-based architecture, which can make use of the spatial

structure inherent in these sections.

Specifically, this study makes use of an inpainting DL model built on Generative Ad-

versarial Networks. Two DL models using this inpainting approach are proposed:

EmuMed which acts as a surrogate for the deterministic model by mirroring its out-

puts; and InpMed which is an evolved version of EmuMed that augments the model

by assimilating data from in-situ and satellite observations.

Empirical evaluations reveal EmuMed’s ability to replicate the deterministic model’s

results. In the subsequent phase of training, the use of observation refines the entire

model. This results in marine fields more closely aligned with the picture presented by

actual observations.

1.4 Thesis Outline

Following this introductory chapter (Chapter 1), this thesis is structured as follows:

• Chapter 2 (Neural Network) introduces the main principles and mechanics of NNs.

The chapter elaborates on essential topics, such as NN training dynamics and

backpropagation. It also provides an overview of significant machine learning

paradigms and delves into specific NN architectures used in this research, i.e.

Multilayer Perceptrons, Convolutional Neural Networks, and Generative Adver-

sarial Networks. The chapter concludes by explaining the concept of Relational

Inductive Biases, a critical construct for understanding the inherent capabilities

of artificial NN in finding complex relationships, especially within data-intensive

domains like environmental, oceanographic, and geophysical datasets.

• Chapter 3 (Machine Learning for Ocean Biogeochemistry) discusses the intersection

of machine learning methodologies and oceanographic applications. The chapter

delineates primary oceanographic data sources and shows the inherent complexi-

ties of working with these datasets. It then provides a structured review of recent
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progress in the use of machine learning techniques for various oceanographic

data and tasks.

• Chapter 4 (MLP for the Prediction of Nutrients and Carbonate System Variables) intro-

duces the MLP developed for forecasting nutrient concentrations and carbonate

system variables in a 0D context.

• Chapter 5 (PPCon: 1D CNN for Predicting Nutrient Profiles) presents the CNN ar-

chitecture that takes advantage of the characteristic 1D shape of vertical profiles

to improve the predictions of biogeochemical variables.

• Chapter 6 (GANs for Integrating Deterministic Models and Observations) outlines

the inpainting architecture utilized to fuse observations into deterministic model

output, resulting in an improved ability to reconstruct the 3D field of the Mediter-

ranean basin.



10



Chapter 2

Neural Network

Artificial Intelligence (AI) is a subfield of computer science with a strong interdisci-

plinary component that aims to create intelligent agents capable of mimicking human-

like cognitive functions, such as learning, reasoning, problem-solving, perception, and

decision-making. In the general and long-term goals of AI research, we can find the

ability to build machines and algorithms that can analyze complex data, adapt to differ-

ent scenarios, and perform tasks that typically require human intelligence ([41]). Within

the broader domain of AI, two prominent branches have emerged: Machine Learning

and its sub-field of Deep Learning.

Machine Learning (ML) is a subfield of AI that focuses on the development of algo-

rithms and statistical models that allow computers to learn patterns and insights from

data without being explicitly programmed for a specific task ([66]). In contrast to tra-

ditional rule-based programming or symbolic approaches, ML algorithms use data to

iteratively adjust their parameters and improve their performance (measured accord-

ing to some predefine metrics). The key characteristic of ML is that the resulting models

can be able to generalize from the data they have been trained on to make predictions

on new, unseen data. Common types of ML algorithms include decision trees ([67]),

support vector machines ([68]), k-nearest neighbors ([69]), and most notably, artificial

neural networks ([70]).

Deep Learning (DL) is a specialized subfield of ML that focuses on using Artificial Neu-

ral Networks (ANN) to find patterns in data ([42]). In their general form, ANNs consist

of interconnected units called neurons, arranged in layers: there’s an input layer to

receive data, several hidden layers that process the data, and an output layer for pre-

dictions. The term deep in DL refers to the depth of the NN, indicating the presence of

multiple hidden layers.

11
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FIGURE 2.1: Overview of the ML Categories

This is in contrast with “classical” (or “shallow”) ANN, where only a few hidden layers

were used.

Unlike traditional ML algorithms, which often require handcrafted feature engineer-

ing, DL algorithms can automatically learn relevant features from raw data, making

them highly effective in tasks where feature extraction would be challenging or time-

consuming. In fact, these deep architectures enable the system to learn progressively

abstract and more complex representations of the data, thus performing this feature

engineering step by themselves.

In recent years, DL has obtained significant attention - even from the general public

- due to its ability to handle large-scale, unstructured data with exceptional accuracy.

These algorithms have been successfully applied to a wide range of applications, such

as image recognition ([44]), natural language processing ([45]), recommendation sys-

tems ([46]), and many others. It has led to significant advancements in areas such as

self-driving cars ([71]), medical diagnosis ([72]), and language translation ([73]).

ML (and so DL) is organized into different categories based on the way the learning

process works and on the presence of labeled data during the training phase. De-

pending on the category, there can be distinct learning methods and architectures that

are specific to the task being tackled. The main categories of DL include supervised

learning, unsupervised learning, semi-supervised learning, and reinforcement learn-

ing ([74]). An intuitive representation of the principal categories that constitute ML is

reported in Figure 2.1.

Supervised learning is the most common category of DL, where the algorithm learns

from labeled examples provided in the training data ([75]). The labeled data consists of

input-output pairs, with the model learning to map inputs to the corresponding correct
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outputs. In supervised learning, the deep NN is trained to minimize the difference

between its predicted outputs and the true labels through the use of a loss function.

Unsupervised Learning, in contrast to supervised learning, involves training the model

on unlabeled data without explicit output labels ([76]). The objective of unsupervised

learning is to discover patterns or relationships within the data or different represen-

tations. Unsupervised learning plays a vital role in tasks like generating realistic syn-

thetic data.

Semi-supervised learning combines elements of both supervised and unsupervised

learning ([77]). In this approach, the algorithm is provided with a limited amount of la-

beled data and a more extensive set of unlabeled data. The model uses the labeled data

to guide its learning process, while also taking advantage of the additional unlabeled

data.

Lastly, reinforcement learning is a different paradigm, where the algorithm learns to

interact with an environment and receive feedback (rewards or penalties) based on its

actions ([78]). Examples include agents mastering complex games like Go and vari-

ous Atari videogames without prior game knowledge ([79], [80]), robotic control for

tasks like walking and manipulation ([81]), and optimizing recommendation systems

in digital platforms ([82]).

This thesis will focus on utilizing supervised and unsupervised learning methods for

modeling biogeochemical variables. Consequently, these methods will be the only ones

that will be detailed in this Chapter. Specifically, Section 2.1 will provide a more de-

tailed description of the basic notion of the Artificial NN, including a mathematical

explanation of its learning process. Within Section 2.2, we present an explanation of

the supervised learning techniques and architectures used in this thesis, namely, the

Multilayer Perceptron and the Convolutional Neural Network (CNN). On the other

hand, Section 2.3 will describe the unsupervised learning method employed in this re-

search, i.e. Generative Adversarial Nets (GANs). In conclusion, Section 2.4 will explain

the concept of relational inductive biases.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) ([83]), often referred to as Neural Networks (NN), repre-

sent a class of computational models inspired by the functioning of biological neurons
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FIGURE 2.2: Working principle of ANNs: on the left is represented a schematic draw-
ing of biological neurons, on the right a schematic drawing of an artificial neuron.

in the human brain. We can place the birth of ANN with the advent of artificial neu-

rons proposed by McCulloch and Pitts [84] in 1943. This concept evolved with Rosen-

blatt’s introduction of the perceptron, an early algorithm designed for pattern recog-

nition using a two-layer network ([85]). The initial excitement was tempered when

Minsky and Papert [86] highlighted the perceptron’s limitations, especially its inability

to solve problems non-linear problems like XOR, leading to a period of stagnation in

the NNs domain. The 1980s witnessed a renaissance in the field, driven by the intro-

duction of the backpropagation algorithm, which made training multi-layer networks

feasible ([87]). The real acceleration, however, came in the 21st century. The combina-

tion of larger datasets, like ImageNet, and increased computational power, particularly

by making use of GPUs, set the stage for deep NN to outperform other methods in

various tasks ([88]).

As said before, central to ANN is the concept of the artificial neuron, inspired by bio-

logical neurons in the human brain. An intuitive visualization of the similarity between

a biological neuron and an artificial neuron is represented in Figure 2.2. Artificial neu-

rons, also known as nodes or units, take in input data and process it using trainable

weights, denoted as θi, where i ranges across all input connections (plus a constant in-

put or bias). Once the inputs are multiplied by their corresponding weights, the result-

ing weighted sum is passed through a (non-linear) activation function ϕ, introducing

non-linearity to the network.
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Formally, each neuron operates by aggregating the weighted inputs as:

z =
n

∑
i=1

ϕi · xi + b (2.1)

Here, z denotes the weighted sum and b is the bias term. The inputs xi of the neuron

can be either the actual inputs of the entire networks or the outputs of other neurons.

Following this summation, the value z goes through a non-linear activation function

f (·), yielding the neuron’s output:

y = f (z) (2.2)

By applying non-linear activation functions, feedforward NNs can represent non-linear

functions, which are needed to approximate any non-trivial real-world dataset.

By deciding how the artificial neurons are connected, i.e, the architecture of the net-

work, we can tailor the NN to specific tasks, leading to various types of NNs. One of

the most common families of architectures is the feed-forward NN, where data flows

in one direction, from the input layer through hidden layers to the output layer. Inside

this family we can find, for example, CNN, specifically designed to process spatially

structured data, such as images and videos. In this case the connections will be only

local, taking advantage of the spatial correlation of the data.

2.1.1 Training a Neural Network

In this section, we present a brief overview of the methods employed to train a neural

network.

Essential to the training of any ML method is the dataset. In the supervised paradigms,

datasets consist of pairs, each containing an input x, the features, and an associated

output y, the intended prediction. A NN is then a function f mapping each input x to

an output which we expect to be (near to) y. Since the output depends on the set of

parameters ϕ of the NN, we denote the function computer by an NN by f (x; ϕ).

In order to be able to test correctly the generalization ability (i.e., the prediction ability

on unseen data) of the model, datasets are partitioned into:

• Training Set: Used for training the model

• Validation Set: Post initial training, this subset aids in model refinement, hyper-

parameter adjustments, and mitigates overfitting risks. It provides the possibility
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to perform some checks without making use of the test data, which should remain

unseen until

• Test Set: Following training and validation, this subset is used for assessing the

model on unobserved data, in order to understand if it has learned how to gener-

alize well.

The training phase aims to refine the network’s weights θi minimizing the difference

between its predictions, f (x; θ), and actual outputs, y. Successful training converges

f (x; θ) to y not only on the training set but also on the test set.

This convergence is evaluated using the loss function L, which measures the difference

between predicted and true outputs, guiding parameter optimization ([89]). One com-

mon loss function in regression problems is the Root Mean Squared Error Lrmse(θ), which

is:

min
θ

Lrmse(θ) = ∑
(x,y)

( f (x; θ)− y)2 (2.3)

Such minimization of the loss function cannot be performed analytically due to the

depth and the complex architectures of NNs. Instead, backpropagation and stochastic

gradient descent are used, as detailed in the next section.

Notice that this assumes a fixed network structure, but the NN’s architecture and the

actual selection of optimization algorithms and regularization measures critically in-

fluence the network’s adaptability to learn and to adapt to novel data ([90]).

2.1.2 Stochastic Gradient Descent and Backpropagation

Gradient descent (GD) consists of an iterative algorithm optimized to find a function’s

local minimum ([90]). For NNs, the target for minimization is the defined loss function,

L. GD refines the network’s weights in alignment with the negative gradient direction,

as follows:

θk+1 = θk − γk∇L(θk) (2.4)

In this equation, θk denotes current model parameters, γk represents the learning rate,

dictating the optimization step magnitude, and ∇L(θk) the gradient of the loss function

computed with respect to the parameter θk.

Despite its utility, gradient descent in DL exhibits certain limitations, including is-

sues with vanishing/exploding gradients, susceptibility to local minima, sensitivity
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FIGURE 2.3: Illustration of the different gradient-based methods.

to learning rate and initialization, and extensive training time requirements due to the

fact that the computation of the loss function requires the iteration across the entire

training set.

A refined version, Stochastic Gradient Descent (SGD), offers a stochastic gradient approx-

imation ([91]). For a loss function defined as L(θ) = 1
n ∑n

i Li(θ), with each Li , weights

can be updated per:

θk+1 = θk − γk∇Li(θk) (2.5)

Conceptually, SGD adds noise to GD, implying that:

E[∇Li(θk)] = ∇L(θk) (2.6)

Thus, expected SGD updates align with gradient steps:

E[θk+1] = θk − γk∇L(θk) (2.7)

SGD brings several advantages, including computational efficiency due to its reduced

cost and the potential for avoiding convergence to suboptimal local minima through

the introduction of noise (or annealing) ([92]). However, while SGD and its variants can

aid in optimization, care must be taken to avoid a common problem that emerges when

training NNs: overfitting. Overfitting arises when a model while trying to minimize
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the loss on the training data, captures not just the underlying patterns but also the

noise or random fluctuations present in the data. As a result, while the model might

demonstrate excellent performance on the training data, it fails to generalize well to

new, unseen data. Regularization techniques, such as dropout or L2 regularization,

are often employed to combat overfitting, ensuring that the model remains robust and

performs consistently on new unseen data ([93]).

A balanced approach is to employ mini-batches instead of individual instances ([94]).

Here, data subsets drive efficient and stochastic parameter updates:

θk+1 = θk − γk
1
|Bi| ∑

j∈Bi

∇Lj(θk) (2.8)

A visual representation distinguishing the convergence behaviors of these gradient

methods can be found in Figure 2.3.

The standard technique for computing gradients in NNs, enabling systematic updates

of model parameters and facilitating successful training of deep architectures, is based

on backpropagation ([95]). This algorithm recursively applies the chain rule for deriva-

tives, moving backward post a forward network pass. Each training iteration updates

NN parameters in proportion to the cost function’s partial derivative concerning the

current parameter. The gradient for the l-th layer concerning weight θij is:

∂L
∂θ

(l)
ij

=
∂L

∂ f (l)i

·
∂ f (l)i

∂ f (l−1)
j

·
∂ f (l−1)

j

∂θ
(l)
ij

(2.9)

Backpropagation allows to determine the gradient of neurons that are not directly con-

nected to the outputs, allowing to train the hidden layers of a NN ([96]).

The versatility of gradient-based optimization doesn’t end with the use of mini-batches.

Several enhancements and adaptations to GD and SGD have been proposed to improve

their convergence properties and address some of their intrinsic limitations.

For instance, variants like Momentum and Adaptive Gradient Algorithms (e.g., Adagrad,

RMSprop, and Adam) incorporate past gradients to adjust the current one or adap-

tively tune the learning rate during training, respectively. Such strategies aim to expe-

dite convergence and avoid local minima ([97]).

Furthermore, the choice of initialization for the NN’s weights, such as Xavier or He

initialization, plays an essential role in ensuring the efficacy of the gradient descent
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process. Improper weight initialization can either slow down the training considerably

or push the model into undesirable regions of the weight space ([98]).

Regularization techniques, such as dropout, weight decay, and early stopping, have

also been used to enhance generalization, particularly in deeper architectures. These

mechanisms primarily serve to mitigate overfitting, ensuring the model remains robust

and can generalize beyond its training data ([93]).

2.2 Supervised Learning

In this Thesis two supervised architectures will be used: the Multilayer Perceptron

(MLP) and Convolutional Neural Networks (CNN). For a more detailed overview of

supervised learning paradigms is available in [99].

2.2.1 Multilayer Perceptron

Multilayer Perceptrons (MLPs) are one of the oldest architectures used for NNs ([62]).

The architecture of an MLP consists of multiple layers: an input layer, several hidden

layers, and an output layer. Data is initially given in input through the (aptly named)

input layer, processed in subsequent layers (the hidden layers), and then transformed

into predictions in the output layer. Each hidden layer is composed to Mi neurons (the

width of the layer) having as inputs all the outputs of the

Hence, when we consider of the function computed by the ℓ-th layer as

yℓ = f (ϕℓ · xℓ−1 + bℓ) (2.10)

Here, yℓ represents the output vector of layer ℓ. ϕℓ denotes the weight matrix connect-

ing nodes from layer ℓ− 1 to layer ℓ, while bℓ is the bias vector for layer ℓ.

As we can see, in MLP, like un any feed-forward network, the data traverses each layer

successively until it reaches the output layer.

It is important to remember that the choice of activation function can significantly af-

fect the MLP’s performance. While traditional activation functions like the sigmoid or

hyperbolic tangent were widely used, modern DL architectures often prefer the Recti-

fied Linear Unit (ReLU) due to its ability to mitigate the vanishing gradient problem,

ensuring more effective training in deeper networks ([98]).
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FIGURE 2.4: A CNN sequence to classify images.

2.2.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) have seen widespread use in DL, taking their

name from the mathematical convolution operation between matrices ([100]). Anal-

ogous to MLPs, CNNs too comprise neurons whose weights are changed during the

learning phase, and where the information flows in only one direction ([101]). CNNs

are designated to work with patterns that typically appear in data with a strong spa-

tial correlation, like visual data. Hence, CNNs can use fewer parameters than fully

connected layers. ([102]).

CNNs have been used for tasks such as image classification to accurately categorize

visual content ([103]), medical image analysis to aid in precise diagnostics ([104]), au-

tonomous driving systems, enabling vehicles to perceive their environment ([105]), and

many more.

In CNNs, the organization of neurons is dictated by the spatial characteristics of input

data. The three integral spatial dimensions are: (i) height (M) which captures the ver-

tical features; (ii) width (N) which identifies horizontal patterns; (iii) depth (channels),

which is used for multi-channel data, such as color channels in images.

Mathematically, a convolution for a 2-D spatial domain is defined as:

y(m, n) =
M

∑
i=1

N

∑
j=1

x(m + i, n + j)w(i, j) (2.11)

Here, y(m, n) is the output pixel’s convolution from the input pixel x(m, n) and a filter

w(i, j), considering dimensions M (height) and N (width) ([106]).

The architecture of Convolutional Neural Networks (CNNs) usually contains three

types of layers, each with specific functions:
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• Convolutional Layer: These layers are adept at recognizing local patterns in data.

With small spatial but full-depth kernels, convolutional layers operate through

scalar products between their weights and the input region. By convolving these

filters across the input, 2D activation maps are generated. Key hyperparameters

for tuning include:

– Depth: This determines the number of neurons within the layer, with each

neuron connecting to a specific region of the input.

– Stride: The stride parameter dictates the number of units by which the filter

or kernel shifts.

– Zero-padding: Involves adding zeros around the border of an input image.

• Pooling Layer: The primary role of pooling layers is downsampling along the

spatial dimensions of the input. This downsampling helps in reducing the num-

ber of parameters within the activation maps, making the network computation-

ally efficient.

• Fully-Connected Layers: Similar to standard ANNs, fully connected layers aim

to produce class scores based on the network’s activations. These scores are cru-

cial for classification tasks. It’s worth noting that Rectified Linear Units (ReLU)

activation functions are often applied between fully-connected layers, which can

enhance the network’s overall performance.

For further details about CNN structure and functioning the reader can refer to [101].

A representative illustration of a typical CNN architecture for image classification task

is reported in Figure 2.4.

Through these transformations, CNNs sequentially process the input data using con-

volution and downsampling techniques, ultimately generating class scores for classifi-

cation and regression tasks.

In the case of data where there is only one spatial or temporal dimension, 1D CNNs can

be used. Unlike 2D CNNs, which process two-dimensional spatial input, 1D CNNs fo-

cus on sequential or time-series data. This distinction manifests in the kernels they use:

while 2D CNNs employ two-dimensional kernels, 1D variants utilize one-dimensional

kernels, scanning and processing input data linearly. 1-D CNNs are employed in the

areas of biomedical data categorization, infrastructure health analysis, and power elec-

tronics anomaly detection. Their architecture’s simplicity offers allow for real-time pro-

cessing and cost-efficient hardware integrations ([65]).
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FIGURE 2.5: Diagram of a Generative Adversarial Network.

2.3 Unsupervised Learning

In unsupervised learning, the dataset consists of unlabeled examples (xi)
N
i=1, where

each xi represents a set of features. Unsupervised learning is a less clearly defined

branch of ML, with various algorithms used for quite different tasks. The main idea

behind unsupervised learning is to find useful patterns in a dataset that lacks labeled

information ([107]). Common examples of unsupervised learning include clustering

([108]) and dimensionality reduction ([109]). Another approach is generative modeling

([110]). In generative modeling, we work with training examples x drawn from an un-

known distribution pdata(x). The goal is to learn a model, pmodel(x), that comes as close

as possible to approximating pdata(x). One popular method for generative modeling is

Generative Adversarial Networks ([111]), which we’ll also employ in our study.

2.3.1 Generative Adversarial Nets

Generative adversarial networks (GANs) can be used to learn the distribution of the

training dataset. Once this distribution is accurately modeled, GANs can extrapolate

and generate new, unseen samples that align with the learned data distribution ([107]).

GANs have demonstrated remarkable versatility and impact, finding applications across

a wide spectrum of fields. Notably, GANs have been used for diverse tasks such as

image processing to enhance visual quality ([112]), medical diagnostics to aid in ac-

curate disease detection ([113]), and even face detection for improved biometric se-

curity ([114]). In addition, GANs have also been applied to different domains like text

transformation for language manipulation ([115]), data augmentation to enrich training

datasets ([116]), anomaly detection for identifying unusual patterns ([117]), and super-

resolution techniques for generating high-quality images from low-resolution inputs

([118]).
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Algorithm 1 Generic Generative Adversarial Network (GAN) Algorithm
Hyperparameters:

1: Batch size b
2: Number of epochs ntot
3: Number of epochs nD for D
4: Learning rate (λG , λD) for (G,D)

Training loop:
1: for n = 1 . . . ntot do
2: for all nd = 1 . . . nD do
3: Sample a MB of {xi}b

i=1 from X, and {zi}b
i=1 from Pz

4: Compute D loss LD as

1
b

b

∑
i=1

log(D(xi)) + log(1 − D(G(zi)))

5: Perform a GD step on θD to minimize LD with lr λD
6: end for
7: Sample a MB of {zi}b

i=1 from Pz
8: Compute the G loss LG as

1
b

b

∑
i=1

log(1 − D(G(zi)))

9: Perform a GD step on θG to maximize LG with lr λG
10: end for

A GAN’s architecture is composed of two neural networks: the Generator and the Dis-

criminator. Their symbiotic relationship is governed by adversarial learning principles,

where each model continually refines its strategies in response to the other.

Considering the widespread popularity and extensive use of GANs since they were

first introduced, various different versions have been developed over the years to serve

specific purposes ([119]).

Some of these versions include:

• Vanilla GAN which is a basic type of GAN using simple MLP networks for the

Discriminator and Generator.

• Fully-Connected GAN (FCGAN), which uses Fully Connected NNs for both the

Discriminator and Generator.

• Laplacian Pyramid GAN (LAPGAN), an adaptation optimized for tasks in unsu-

pervised learning scenarios ([120]).

• Generative Recurrent Adversarial Networks (GRAN), which introduces a method

where generation happens step by step in a recurring manner ([121]).
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• Conditional GAN (CGAN), where both the Discriminator and Generator are influ-

enced by extra information ([122]).

2.3.1.1 GANs: a Game Between Two ML Models

The concept of GANs is based on a game between two ML models, the Generator and

the Discriminator, usually implemented using NNs. While the Generator produces

samples aiming for authenticity, the Discriminator evaluates these samples, distin-

guishing between genuine and generated data.

Algorithm 1 summarizes the step in the training procedure and Figure 2.5 shows the

standard diagram for a GAN architecture.

The Generator G implicitly defines pmodel(x) by generating samples from the distribu-

tion. It relies on a prior distribution p(z) for an input vector z, which serves as a source

of randomness within the system. Its primary role is to learn a function G(z) that trans-

forms this random noise z into realistic samples.

The Discriminator D assesses samples x and provides an estimate D(x) of whether the

sample is real (drawn from the training distribution) or fake (created by running the

generator).

Each player incurs a cost:

ObjG(θG , θD) (2.12)

for the Generator and

ObjD(θG , θD) (2.13)

for the Discriminator. Then, each player attempts to minimize its own cost. The Dis-

criminator’s cost encourages the Discriminator to correctly classify data as real or fake,

while the Generator’s cost encourages the Generator to produce samples that the dis-

criminator incorrectly identifies as real. In order to win the game, the two participants

need to continuously optimize themselves to improve the generation ability and the

discrimination ability, respectively. This interplay between the Generator and Discrim-

inator drives the GAN training process.

2.3.1.2 Training GANs

The adversarial optimization process improves the performance of G and D gradually

([123]).
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We train D to maximize the probability of assigning the correct label to real and gener-

ated samples, and simultaneously, we train G to minimize:

log(1 −D(G(z))) (2.14)

Mathematically speaking, D and G play the following two-player min-max game with

value function:

min
θG

max
θD

V(θG , θD) (2.15)

where the loss function V(θG , θD) is formulated as:

V(θG , θD) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 −D(G(z)))] (2.16)

Here, x is sampled from the real data distribution pdata(x), z is sampled from the prior

distribution pz(z), and E(·) represents the expectation.

In practice, the training phase is implemented following an iterative process so that:

when the Discriminator’s weights are updated, the Generator’s weights are held con-

stant; and when the Generator’s weights are updated, the Discriminator’s weights are

held constant.

Since the introduction of GANs in [111], numerous improvements in the GANs ar-

chitecture have been developed. These variations encompass enhancements in model

structures, theoretical extensions, and novel applications. For a more in-depth and

comprehensive analysis, readers can refer to [123].

2.3.2 Inpainting

Image inpainting, or image completion, is a common task in computer vision, aiming

to restore missing or corrupted pixels in images. This task appears in diverse scenar-

ios spanning photo editing, computational photography, and image-based rendering,

among others ([124–126]).

The main difficulty of image inpainting lies in synthesizing pixels that are both visually

consistent and contextually congruent with the existing image content, ensuring the

completed image appears authentic and meaningful ([127]).

Inpainting techniques are specific to the task that inpainting should solve. For im-

age restoration, the objective might be to rectify scratches or overlaying text. In photo
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FIGURE 2.6: Visual intuition of how the Generator reconstructs input images with a
hole in the inpainting technique.

editing contexts, object removal is often the primary aim. In cases concerning image

coding or transmission, the focus shifts to recovering lost data segments. Moreover, in

the niche of virtual painting restoration, emphasis is laid on eradicating imperfections

like scratches ([128]).

Historically, diffusion-based synthesis emerged as a prevalent technique for image in-

painting. This method capitalizes on propagating proximate image features into the

affected zones for completion ([129]). While adequate for addressing minor imperfec-

tions, its efficacy diminishes with larger or more complex image gaps.

Alternatively, patch-based methods can address more sophisticated inpainting chal-

lenges, filling even considerable voids in images ([130, 131]). Yet, these techniques

often fall short when confronted with intricate structures or when tasked with creating

entirely novel image elements. Their reliance on textures extracted exclusively from

the source image can sometimes limit their creative scope.

With the advent of DL, CNNs have been used for image completion tasks ([132]), and

recent advancements in GANs have increased the applicability of neural models for the

task of inpainting ([133–135]).

The widespread use of GANs in image inpainting arises from their ability to under-

stand and reconstruct missing or corrupted segments of an image, ensuring the filled

regions seamlessly integrate both visually and semantically with the original content

([136]).

In the context of inpainting, the Generator typically adopts an encoder-decoder struc-

ture. The encoder captures the high-level features of the intact portions of the image,

while the decoder leverages this encoded information to recreate the missing or cor-

rupted parts ([137]).
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Component Entities Relations Rel. inductive bias Invariance
Fully connected Units All-to-all Weak
Convolutional Grid elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation
Graph network Nodes Edges Arbitrary Node, edge permutations

TABLE 2.1: Relational inductive biases in standard DL building blocks ([12]).

FIGURE 2.7: Visual representation of information sharing in the most common DL
building blocks.

Qualitatively, GANs offer a certain amount of contextual understanding, ensuring in-

painted regions are semantically integrated with the surrounding content. Their in-

herent adaptability allows them to manage various missing data patterns, from minor

imperfections to substantial voids. Outputs are often of a quality that allows them to

be used for professional and high-resolution applications ([138]).

2.4 Relational Inductive Biases

The final subject to be introduced in this thesis revolves around the concept of relational

inductive biases ([12]). This concept is crucial for understanding how specific architec-

tures are chosen based on the task at hand and the structure of the available data. In this

section, will be described the relational inductive biases related to the building blocks

discussed in the previous chapters. We will also briefly touch upon biases related to

the other two fundamental components in the field of DL, to provide a clearer under-

standing of this concept. In essence, being able to select the right relational inductive

biases when designing a DL architecture can greatly simplify the learning process for

entities, relationships, and how they come together.
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To paint a clearer picture of relational inductive biases, let’s start by exploring another

important idea in DL: combinatorial generalization. The main point here is breaking

down complex systems into smaller parts (entities) and understanding how they work

together ([139, 140]). These parts are organized like a tower, helping us ignore small

differences and focus on common ways things appear and behave ([141]). This way,

we can solve new problems by putting together things we already understand. This

notion of fitting combinatorial generalization into AI models has been around since the

very beginning of AI itself ([142]).

One of the key ways to incorporate relational reasoning into AI algorithms is by using

a relational inductive bias. This bias sets specific constraints on how entities interact

and form relationships during the learning process. The presence of this inductive bias

enables a learning algorithm to prioritize one solution over another, regardless of the

data it observes. It can be integrated into a DL process in various ways. For instance,

it can take the form of a regularization term, which is added to prevent overfitting. In

a Bayesian model ([143]), the bias could be embedded in the selection and setup of the

prior distribution. Alternatively, it might be part of the algorithm itself.

As mentioned previously, recent years have witnessed the emergence of diverse ML

architectures. These architectures adhere to a design blueprint that involves assembling

fundamental building blocks to construct intricate, deep computational structures. The

manner in which a relational inductive bias can be embedded via architectural choices

follows a twofold trajectory: firstly, within the selection of the constituent building

blocks themselves, and secondly, in the orchestration of their arrangement into layers.

To offer an intuition into the relational inductive biases inherent in diverse DL methods,

it becomes essential to delineate certain components within the building blocks under

scrutiny. These ingredients encompass the entities, the relationships, and the principles

governing the amalgamation of said entities and relationships.

2.4.1 Relational Inductive Biases in standard Deep Learning Building Blocks

To make the idea of relational inductive biases and their integration through differ-

ent DL building blocks clearer, we’ll list the main building blocks and the biases they

introduce during learning. These concepts are also schematized in Table 2.1.

2.4.1.1 Fully Connected Layer

The most commonly encountered building block is the fully connected layer ([85]).

As we have outlined earlier, a fully connected layer can be conceived as a non-linear
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function with vector outputs. The output vector is generated through a combination

of a weight vector and an added bias term, followed by a non-linear function. In this

context, the entities correspond to the units within the network, relationships involve

an all-to-all connection (each unit in layer i is linked to every unit in layer j), and the

governing principles are defined by the weights and biases. The guiding principle for

the rule is the complete input signal, with no reusing of information or isolation. The

natural consequence is that the implicit relational inductive bias in a fully connected

layer is thus very weak. All input units hold the capacity to influence the value of any

output unit, with no constraints across outputs. Figure 2.7 offers a visual representation

of how in the fully connected layer all weights are independent, and there is no sharing.

2.4.1.2 Convolutional layers

The next frequently encountered building block is the convolutional layer ([144, 145]).

In this case, the elements making up a grid (like pixels) serve as the entities, and the

relationships formed are more selective. The contrast between a fully connected layer

and a convolutional layer brings about essential relational inductive biases: locality and

translation invariance. Locality underscores that the inputs to the relational rule consist

of entities situated closely to one another in the input signal’s coordinate space, distinct

from distant entities. Translation invariance, on the other hand, denotes the reuse of

the same rule across different spots in the input. These biases play a significant role

in handling natural image data. This is due to the fact that there’s a strong correlation

within local neighborhoods, which tends to decrease as we move farther away, and

the statistical patterns remain mostly consistent across an image. Figure 2.7 offers a

visual representation of how in the convolutional layer a local kernel function is reused

multiple times across the input (Shared weights are indicated by arrows with the same

color).

2.4.1.3 Recurrent Layers

A third commonly encountered foundation is the recurrent layer ([146]), commonly

found in Recurrent NNs (RNN) ([147]). While we haven’t delved into this in the pre-

ceding sections of this thesis, since as we are not going to use them in our research,

we will outline their inherent biases to offer a clearer grasp of the concept. For more

specific details about NNs, refer to [148]. A recurrent building block operates across a

sequence of stages. Within this context, the inputs and hidden states at each step serve

as the entities, while the relationships emerge from the dependency of the current step’s

hidden state on the preceding hidden state and the ongoing input. The rule governing
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the union of these entities employs the inputs and the hidden state of each step as pa-

rameters, with the objective of updating the hidden state. This rule remains consistent

across all steps. In essence, the relational inductive bias here lies in temporal invari-

ance—a concept analogous to a CNN’s translational invariance in spatial dimensions.

Figure 2.7 offers a visual representation of how the same function is reused across dif-

ferent processing steps in the recurrent layer (again, shared weights are indicated by

arrows with the same color).

2.4.1.4 Graph Neural Networks

Graph Neural Networks (GNNs) constitute a class of DL models designed for oper-

ating on graphs ([149]). These networks structure their computations based on the

graph’s underlying architecture. While these networks won’t be directly employed

within the scope of this thesis, their mention serves the purpose of enhancing our un-

derstanding of biases. For detailed insights, readers can refer to [12]. Fundamentally,

the GNN framework possesses several pronounced relational inductive biases. Graphs

can capture diverse relationships among entities. Consequently, it’s the GNN’s input

that influences how these representations interact and are demarcated, as opposed to

predetermined architectural constraints. Furthermore, graphs depict entities and their

relationships as sets, a quality that remains consistent irrespective of permutations.

This imparts invariance to the sequence of these elements.



Chapter 3

Machine Learning for Ocean

Biogeochemistry

Continuous monitoring of the ocean is crucial for a comprehensive understanding of its

vast and intricate ecosystem. Over time, scientists have conducted extensive research

at local and global scales to explore the ocean environment ([150]).

The ocean’s significance extends beyond its vastness, playing a critical role in global

environmental dynamics. As technology has evolved, so too has our ability to monitor

these waters. Innovations in satellites, autonomous sensors, and buoy systems have

paved the way for the collection of data at an unprecedented scale.

With such vast amounts of data available, AI (and, in particular, ML) offers a powerful

tool for uncovering patterns, making predictions about the ocean’s state, understand-

ing its evolutionary trajectory, and deciphering the complex relationships between var-

ious oceanic variables.

Complementing these AI advancements, deterministic models enhance our understand-

ing of ocean processes.

The use of ML in oceanography has not only introduced new tools but also expanded

our knowledge on phenomena like mesoscale eddies, internal waves, sea ice, and ma-

rine algae. These factors are critical in determining Earth’s climate, marine cycles, and

ocean health ([151]).

Studies have confirmed the potential of ML in oceanography ([152–154]). However, de-

spite this progress, the field of oceanography remains largely unexplored, particularly

in restricted areas such as the Mediterranean Sea. Most of these studies are global in

nature and focus on the ocean as a whole.

31
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Oceanographic data, with its inherent non-linearity and high dimensionality, is well-

suited for ML analysis. One notable advantage of ML over traditional statistics is its

ability to handle complex, high-dimensional data with non-linear relationships and

missing values ([155–157]). By incorporating ML, we can enhance traditional methods,

leading to more significant discoveries ([158]).

The study of the ocean presents a unique set of challenges that ML can help address.

Oceanographic observation datasets contain vast and intricate information that are

sparse in spatial coverage, often limited to surface measurements (e.g. the measure-

ments collected by the satellite devices), and have only a few time series spanning a

handful of decades. Moreover, oceanographic phenomena operate on timescales rang-

ing from seconds to millennia and encompass intricate physical-biological interactions

across various scales. By harnessing the power of ML, it becomes possible to effec-

tively handle these large and complex datasets, extract valuable insights from such

limited time series, and understand the intricate interactions occurring across various

temporal scales

Despite the inherent challenges, the integration of ML in oceanography holds the po-

tential to revolutionize foundational theories ([47]). This integration enables better sci-

entific understanding, larger and more detailed analyses of patterns ([48]), and im-

provements in environmental management, policy-making, and public engagement

([49]).

In this section, we focus on how ML techniques help us to handle the complexities of

big data in biogeochemical oceanography. Firstly, in Section 3.1 we provide a clear defi-

nition of what we intend with the term big data, give an overview of the most common

datasets in oceanography, and discuss the main challenges that arise when developing

ML models trained on this data. Subsequently, Section 3.2 examines the principal ap-

plication of ML within the domain of oceanography, dividing the discussion based on

the different datasets used for the training. Finally, in Section 3.3 a class of MLP-based

models is described in deeper detail, as these methods are the starting point of the first

two research chapters which constitute this thesis.

3.1 Data Available in Oceanography

Historically, the study of aquatic ecosystems primarily centered on gathering informa-

tion about water characteristics, encompassing both physical and chemical conditions.

Later, this focus expanded to include biota and habitat assessments, taking into account

environmental flows and riparian conditions as well ([159]).
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In earlier approaches, data gathering involved measuring at specific sites and then com-

bining the data for larger-scale assessments of ecosystems ([160]). The landscape of

ocean observation underwent a significant transformation with the emergence of ad-

vanced data technologies. Satellite imagery and autonomous sensors, in particular,

have revolutionized data acquisition. Those data, often labeled as big data, are char-

acterized by high volume and complexity, often proving challenging for traditional

analytical methods to handle ([161]).

These datasets are a result of progress in marine monitoring and offer an important op-

portunity to investigate environmental phenomena over larger areas and time-frames

([162]). But to fully exploit this potential, there is the need to understand the strengths

and limitations of the available data sources.

This Section aims to do so, specifically: Section 3.1.1 provides an overview of the pri-

mary data sources available in oceanography; and Section 3.1.2 describes the challenges

that comport modeling those oceanographic data.

3.1.1 An Overview of the Principal Data Sources

This section delves into the primary data sources commonly found in oceanography.

The goal is to provide an overview of the data sources available for DL model develop-

ment, emphasizing their essential characteristics.

Understanding the characteristics of these data is extremely useful, as it leads to the

selection of appropriate DL architectures, i.e. an architecture that can efficiently ex-

tract maximal information from the data while minimizing computational costs during

training.

As mentioned earlier, the data can be categorized into two groups: observations (fur-

ther divided into in-situ observations and satellite observations) and data generated

through model simulations.

Model simulations employ computer-based techniques to emulate real-world processes

or systems, leveraging mathematical models. The model captures the key behaviors

and characteristics of the chosen process or system, while the simulation illustrates

how the model evolves under various conditions over time. Oceanographic numerical

models use mathematical equations to describe the movement of fluids (water and air)

across the planet’s surface, biogeochemical processes, and sea ice phenomena ([163–

165]).
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FIGURE 3.1: Argo Float’s Standard 10-Day Cycle
After approximately 9 to 10 days of autonomous drift at a prescribed parking depth

near 1000m, the float descends to 2000m and ascends back to the surface while
conducting profiling measurements of pressure, temperature, salinity and

biogeochemical variables such as nitrate, chlorophyll, oxygen and backscattering.
Utilizing satellite connectivity, the float transmits collected data to a designated center

for real-time processing. The processed data is swiftly made accessible online,
typically within 24 hours. Image source: [166]; image author: Thomas Haessig

In-situ observations can be further divided into two sub-classes: data collected through

ship campaigns and data collected through autonomous instruments. Ship campaigns

involve collecting samples from the ocean and analyzing them using analytical meth-

ods. Autonomous instruments, such as the Argo Float and satellite, do not require

human intervention during their sampling. These instruments are equipped with sen-

sors that can measure various oceanographic parameters, such as temperature, salinity,

and currents, and transmit this data to shore via satellite. In-situ observations yield

high-quality data fundamental to gain insights into the ocean’s physical, chemical, and

biological properties.

Recent years have witnessed an important increase in the use of autonomous instru-

ments for in-situ data collection. This is due to advances in technology that have made

these instruments more reliable and cost-effective.

3.1.1.1 In-situ data

The dawn of the era of systematic ocean measurements can be traced back to the

late 18th century CE. During this period, ships were primarily employed to measure

physical variables, most notably temperature and salinity. Despite the emergence of
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FIGURE 3.2: Location of operational floats and national contributions in July 2023.
Image source: [166, 170]

theoretical tools for comprehending ocean currents in the early 19th century, oceano-

graphic discoveries remained anchored to observations. Similarly, marine biogeochem-

ical observations were also conducted primarily from ships, specifically water samples

were collected for later laboratory analysis. These methodologies remain indispensable

nowadays for their typically high accuracy.

The data gathered through these measurements have been compiled into global databases

(such as the Global Ocean Data Analysis Project version 2, GLODAPv2; [167, 168]).

However, these traditional methods also exhibit certain limitations, even today: data

coverage remains sparse in numerous regions, observations are scarce for the deeper

layers of the ocean, the temporal resolution is low with far fewer records available for

the 1970s and 1980s compared to the present time, and observations tend to be skewed

towards the summer months in both hemispheres (roughly four times as many profiles

in GLODAPv2 during the three summer months compared to the three winter months;

[169]).

In response to the limitations inherent to traditional oceanographic methods, the last

two decades have seen the emergence of advanced oceanographic instruments, notably

the Argo floats, as part of the Global Ocean Observing System (GOOS). These robotic

devices collect marine variable data by autonomously diving in the ocean and adjusting

their depth through buoyancy changes ([32]), an example of an Argo float’s standard

10-day cycle can be found in Figure 3.1.
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The Argo Program, which is responsible for the management and coordination of such

instruments all around the globe, holds a significant role within both the Global Ocean

Observing System (GOOS, [28]) and the Global Climate Observing System (GCOS,

[171]). It provides real-time data for ocean and atmospheric services, along with high-

quality data for climate investigation. Initiated in 1999, the Argo Program has ensured

comprehensive coverage of the upper 2000 meters of oceans globally since 2006 ([32]).

The Biogeochemical (BGC)-Argo initiative started with the installation of optical ([33–

35]) and oxygen ([172, 173]) sensors on profiling floats between 2000 and 2003. Each

float is equipped with sensors to measure six fundamental ocean variables: chloro-

phyll fluorescence (Chla), particle backscatter (bbp700), oxygen (O2), nitrate, pH, and

irradiance [174]. These variables are essential to comprehend crucial ocean phenom-

ena: (i) air-sea carbon exchanges, (ii) ocean deoxygenation, oxygen minimum zones,

and associated denitrification flows, (iii) ocean acidification, (iv) The biological carbon

pump, (v) phytoplankton communities.

Examples regarding how the measurements provided by these instruments have been

important in the oceanographic world include the characterization of ocean nitrate sup-

ply ([175]), observation of subsurface bloom dynamics ([176]), exploration of processes

within oxygen minimum zones ([177]), investigation of ocean ventilation ([172]), air-sea

exchange of O2 ([178]), and CO2 ([179]).

While Argo floats have revolutionized the way oceanographic data is gathered, their

use is not without challenges. One of the primary issues is instrumental drift. Over ex-

tended periods, the sensors on Argo floats can exhibit drift, which can introduce minor

inaccuracies in the data they collect ([180]). Additionally, despite the impressive global

coverage of the Argo network, there are regions where data acquisition is sparse. Also,

interruptions in satellite connectivity or equipment malfunctions can lead to occasional

data loss or latency in real-time data access ([181]). In terms of durability, an average

Argo float has a lifespan of about 4-5 years, after which either its battery may deplete

or the device might face mechanical issues. There’s the potential risk of floats becom-

ing marine debris, or of floats inadvertently interacting with marine life or grounding

in ecologically sensitive habitats, which necessitates careful planning and deployment

strategies ([182]).

3.1.1.2 Satellite Data

The age of satellites for oceanographic observations began with the launch of Sputnik

in 1957. This inaugural artificial satellite opened the door to observing the oceans from

above the atmosphere.
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In the field of oceanography, remote sensing plays an essential role. It involves estimat-

ing sea surface temperature, chlorophyll, suspended sediment, the density of colored

substances, wave characteristics, and the identification of potential fishing zones (PFZ)

([36]). These sensing tools can be broadly divided into two main categories: passive

and active sensors. While passive sensors solely rely on detecting energy naturally

emitted or reflected from the Earth’s surface, active sensors take a proactive approach

by emitting their own energy source to illuminate and subsequently record reflections

from the observed objects ([183]).

The ability of satellites to monitor vast oceanic expanses enables researchers to obtain

comprehensive and global-scale perspectives ([184]). One of the principal benefits is

the continuous temporal coverage, allowing for near-real-time monitoring and the con-

struction of extended time-series datasets ([185]). Such extensive temporal coverage

can track seasonality, interannual variability, and even decadal trends ([186]). Satel-

lites, with their multispectral and hyperspectral sensors, can simultaneously capture

information across a broad range of wavelengths ([187]). This allows for diverse appli-

cations, from mapping chlorophyll-a distributions, indicative of phytoplankton blooms

([188]), to delineating sea surface temperature patterns, which play a pivotal role in

weather and climate forecasting ([189]). Furthermore, with advancements in satellite

technology, the spatial resolution has improved significantly, enabling fine-scale ob-

servations crucial for coastal studies, tracking oil spills, or identifying harmful algal

blooms ([190]). Lastly, in regions inaccessible or perilous for in-situ measurements,

such as the polar zones or conflict zones, satellites become indispensable tools for un-

interrupted data collection ([191]).

However, satellite-based oceanographic observations are not without limitations. A

primary concern is that satellites primarily observe the surface or the near-surface of

the ocean, providing limited insight into sub-surface processes ([192]). This surface-

biased view can miss out on oceanographic phenomena like thermocline dynamics or

deep-water currents ([193]). Additionally, atmospheric interference, be it clouds, rain,

or aerosols, can distort or obscure satellite measurements ([194]), especially in optical

and infrared bands. While certain bands, like microwaves, can penetrate cloud cover,

they too face challenges in heavy rainfall conditions ([195]). Calibration and validation

of satellite data remain persistent challenges, necessitating periodic ground-truthing

with in-situ measurements ([196]). Lastly, satellite missions are costly, both in terms

of launch and maintenance, and while the data is invaluable, it requires substantial

investments ([197]).
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3.1.1.3 Numerical Model Data

Ocean biogeochemical models (OBMs) are complex models designed to illustrate the

ocean’s dynamics, covering both physical properties and biogeochemical traits. Such

models utilize a series of interconnected mathematical formulations to describe various

oceanic elements like temperature, salinity, and currents influenced by external forces

such as wind and internal processes like eddies and convection ([39]). Furthermore,

OBMs cover the transformation mechanisms of seawater’s chemical components, such

as nutrients, different plankton categories, dissolved gases, non-living organic materi-

als, and elements related to the carbon system’s inorganic properties.

Through the numerical solutions to these equations, we can understand the ocean’s

evolution across diverse scales and resolutions. These models serve multiple purposes:

they reconstruct past ocean conditions, provide insights into its current state, and pre-

dict possible future scenarios.

The heart of an OBM is the interaction between biogeochemical elements, which is

mathematically represented by interconnected equations. These equations capture the

rate of changes in variables that stand for nutrient concentrations, the biomass of vari-

ous plankton groups, and more. The standard format of these equations is:

∂C
∂t

= −ν · ∇|C|+∇H(KH∇HC) +
∂

∂z
(KV

∂C
∂z

) + wsink
∂C
∂z

+ Rbio(T, light, ρ, C) (3.1)

In this equation, ∂C
∂t represents the rate of change of a particular biogeochemical prop-

erty (denoted as C) over time (t). The combined impact of ν and ∇|C| delineates the

advection, which factors in the influence of ocean currents and the inherent gradients

in C. The term ∇H(KH∇HC) gives an account of horizontal diffusion, where KH stands

as the symbol for horizontal diffusivity. Vertical diffusion is represented by ∂
∂z (KV

∂C
∂z ),

with KV defining the vertical diffusivity. The component wsink
∂C
∂z pertains to the move-

ment of particles within the water column. Finally, the term Rbio(T, light, ρ, C) encom-

passes the localized biological reactions impacting C, with influences stemming from

variables like temperature, lighting conditions, density, and the concentration of C.

While the physical dynamics of the ocean can be frequently modeled using established

equations, like the Navier-Stokes, the biogeochemical component, notably Rbio, relies

on empirically derived relationships. These are based on laboratory findings, biologi-

cal theories, and prevalent ecological patterns. Many marine OBMs utilize the NPZD

framework as a touchstone, which encapsulates the interplay between nutrients, phy-

toplankton, zooplankton, and detritus ([198]).
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Numerical models have considerably advanced our understanding of marine systems

and processes ([199]). They offer a robust tool to study scenarios that might be inac-

cessible or too costly to observe directly, such as deep oceanic currents or long-term

climatic changes. By permitting researchers to simulate different conditions, numerical

models aid in predicting potential future states of the ocean, assisting in the crafting of

mitigation and adaptation strategies. These models also offer a platform to assimilate

diverse observational data. As a more cost-effective alternative compared to extensive

field observations, numerical models facilitate studies over large spatial domains, from

regional to global extents, and temporal scales ranging from mere hours to millennia

([199]).

However, the effectiveness of numerical models comes with certain constraints. A pri-

mary challenge is their dependency on the accuracy and completeness of input data. In-

accurate or partial data can result in misguided predictions and interpretations ([200]).

Models, being a representation of reality, inevitably carry assumptions; they might

leave out or inadequately portray some processes, leading to potential discrepancies

between model outputs and real-world observations. The resolution of a model, both

in spatial and temporal terms, can limit its capability to accurately encapsulate small-

scale or swift processes. Moreover, enhancing the intricacy of a model, though allow-

ing for a more detailed depiction of the system, also increases computational demands

([200]).

3.1.2 Challenges of Oceanographic Data

The vast realm of oceanography relies on an extensive variety of data types, each pre-

senting its unique set of characteristics and challenges.

This data originates either from numerical models or direct observations of the ocean.

Numerical models are valuable as they offer detailed spatial and temporal insights

across the entire three-dimensional domain of oceans. Observational data, while lim-

ited in spatial and temporal dimensions, plays a pivotal role, providing a ground-truth

perspective indispensable for validating the predictions and assumptions of numerical

models.

Observations also exhibit different characteristics. Data collected by Argo float yield

vertical profiles, offering variable values at different depths. Satellite measurements,

while complementary, capture only the ocean’s surface (which may be obscured by

cloud cover). Ship-based measurements, which are considered the most reliable among
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the class of observational data, are the most difficult and expensive to collect, thus pro-

viding a more scarce picture of the marine framework, struggling to provide a compre-

hensive description of vast oceanic regions.

These structural disparities in data require the implementation of different NN archi-

tectures to fully exploit their potential.

For instance, data from ship campaigns are really sparse and scarce in both the hori-

zontal and vertical dimensions. Thus, each sample can be handled as a point in a 3D

space, which stores information related to different physical and biogeochemical vari-

ables, and an MLP results in a good choice to model them, taking scalar inputs, and

generating scalar outputs. Conversely, consider satellite data portraying the Mediter-

ranean Sea’s surface. Here, a CNN proves more fitting, as it retains local relationships

between neighboring measurements. This CNN structure harnesses spatial bias to im-

prove prediction quality compared to a standard MLP.

To offer a comprehensive understanding of the data at hand and be able to select an

optimal DL architecture, it is crucial to outline the primary challenges posed by big

data in the realm of oceanography. While acknowledging the remarkable potential of

big data as a tool to train robust ML architectures, it’s equally crucial to recognize their

limitations.

A primary challenge (which is not limited to the oceanographic field, but is a typical

problem when dealing with big data) revolves around data management problems,

such as collecting, storing, analyzing, and preserving large volumes of diverse data

types ([47, 201, 202]).

While big data management challenges are prevalent across domains, oceanography

introduces its own specific challenges.

Some of these have been mentioned in previous discussions. However, for the sake of

completeness, a full list of oceanographic data limitations is provided below:

• Data variety: oceanography involves dealing with diverse data types, including

information derived from various measurement methods (instrument-specific,

continuous, discrete, qualitative). Different instruments or methods might pro-

duce data with varying levels of quality, precision, and accuracy. This can make

it challenging to combine or compare datasets from different sources ([203]).

• Data Integration: often, oceanographic data is collected by different organizations,

countries, or research teams, each with their own data standards and formats.
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Integrating these diverse datasets can be challenging but is essential for compre-

hensive studies.

• Scales and resolutions: different tools or methods might collect data at different

spatial resolutions. For instance, while satellites can provide vast coverage, they

might not offer the same level of detail or resolution as in-situ measurements

([204]).

• Increasing data dimensions: data are continually growing in multiple dimensions,

encompassing spatial (horizontal and vertical) and temporal aspects, with vary-

ing resolutions across these dimensions, thus requiring significant computational

effort in order to handle them.

• Incomplete or Sparse Data: in some regions or for some parameters, data might be

sparse or entirely lacking. This can make it challenging to draw comprehensive

conclusions about those areas or parameters.

3.2 Machine Learning in Oceanography

The previous chapter introduced the primary data sources utilized in oceanography.

This chapter provides a review of the latest developments in applying ML to oceano-

graphic studies. Given the varying precision and coverage of marine basin data, the

architectures and methods employed to handle these datasets vary. Consequently, the

information extracted is influenced by the specific class of data under consideration.

Therefore, this literature review is organized by data class. For each class, we present

the relevant ML methods proposed in literature through the years, aiming to illustrate

how ML and these datasets combine to improve our understanding of the marine en-

vironment.

3.2.1 ML and Ocean Observations

As highlighted earlier, oceanography primarily depends on two main types of obser-

vational data: satellite-acquired and in-situ measurements.

3.2.1.1 ML and in-situ Observations

The integration of ML with ocean in-situ observations has seen consistent growth.
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A 2014 study by Landschützer et al. [205] introduced a novel estimation of the global

oceanic carbon dioxide (CO2) sink through a feed-forward NN based mapping of sur-

face ocean CO2 readings.

In Giglio et al. [206], authors developed an Argo-based method that employs random

forest regression, a tree-based supervised ML approach, to estimate oxygen levels (O2)

using temperature, salinity, location, and time data.

In a study by Bushinsky et al. [207], a support vector machine (SVM) was utilized to

measure the carbon dioxide (CO2) flux in the Southern Ocean. This assessment in-

corporated precise CO2 measurements from ships, combined with data from floating

devices.

Watson et al. [208], used a gradient boosting machine (GBM), an ML model, to evalu-

ate the uncertainties associated with historical calculations of ocean-atmosphere CO2

fluxes.

In-situ data plays a crucial role in classification tasks. Current classification endeavors,

anchored in in-situ data, are in line with time-tested practices in physical oceanography.

Although conventional classification techniques are still pertinent, unsupervised ML

emerges as a potent tool for discerning patterns in oceanographic data.

In a study by Maze et al. [209], unsupervised Gaussian mixture modeling was em-

ployed to segment Argo sea surface temperature and height anomalies, delineating

them into specific dynamical categories.

A 2019 study by Jones et al. [210] utilized unsupervised classification with Gaussian

mixture modeling on Southern Ocean Argo float temperature profiles, uncovering dis-

tinct circumpolar groupings.

In 2020, Houghton and Wilson [211] delved into automated anomaly detection in cli-

mate patterns using DL autoencoder to harness the power of Argo measurements.

In a 2020 study by Rosso et al. [212], k-means clustering, an unsupervised learning

method, was applied to data from Argo floats, encompassing biogeochemical metrics,

to analyze spatial fluctuations in the physical and biogeochemical characteristics of

both intermediate and deep waters.

On another front, in-situ measurements are adept at leveraging ML methods for tasks

like dimensionality reduction and noise filtering. A classic illustration is the use of

Principal Component Analysis (PCA). Its pioneering application in oceanography can

be traced back to a study by Lorenz [213], wherein PCA was employed to forecast

oceanic pressure patterns.
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Another application of dimensionality reduction is highlighted in a study by Son-

newald et al. [214]. They employed an unsupervised NN, specifically a self-organizing

map (SOM), to identify global marine ecological provinces (termed ’eco-provinces’) us-

ing data on plankton community configurations and nutrient fluxes.

One of the standout applications of ML in this study is the work introduced by Sauzède

et al. [215], which introduces the CANYON model, based on an MLP architecture. This

foundational approach has subsequently undergone re-adaptation and enhancement

in two distinct studies ([169, 216]) where substantial refinements were introduced.

These CANYON models form the base for the initial two research chapters of this the-

sis, providing key benchmarks for comparative analysis. Section 4.4 will offer a deeper

exploration of this methodology. Before diving into these details, the next part will con-

tinue analyzing and explaining the ML methods used for other types of oceanographic

data.

3.2.1.2 ML and Satellite

The advent of satellite observational technology inaugurated an epoch characterized by

the proliferation of global-scale data. This exponential data augmentation necessitated

advanced methodologies within the research domain to efficiently harness and analyze

such a vast amount of information.

The application of ML to enhance the accuracy of satellite-derived products traces back

to 1993 ([217]). These initial advancements were primarily motivated by the increased

availability of data.

The applications of ML to satellite data are diverse. This review will highlight a few

notable examples to shed light on the nature of research at the intersection of ML and

satellite observations.

Mustapha et al. [218] proposed an NN-based clustering approach for automatically

classifying anomalies in water leaving radiance spectra captured by ocean color remote

sensing.

Later, Chapman and Charantonis [219] introduced a methodology using self-organizing

maps (SOM), a type of unsupervised NN, to infer deep oceanic currents from surface

satellite readings.

Denvil-Sommer et al. [220] presented a feed-forward NN approach, trained on satellite

data, to estimate global oceanic partial pressures.
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Martinez et al. [221], on the other hand, turned to Support Vector Regression (SVR),

to reconstruct global chlorophyll patterns based on select oceanic and atmospheric pa-

rameters.

For processing satellite data, ML has proven to be a valuable tool for extracting geo-

physical information from remotely sensed data.

In an example from Castellani [222], researchers developed an artificial NN algorithm

to automatically detect Mediterranean water eddies from sea surface temperature maps

of the Atlantic Ocean.

In another study by Duncan et al. [223], the distinctiveness of raindrop size distribu-

tions over global oceans was investigated, examining its impact on retrievals concern-

ing prior constraints and radiative transfer modeling.

These applications predominantly rely on instantaneous or short-term relationships

and do not directly tackle the challenge of harnessing these products to enhance our

understanding and prediction of the oceanic system.

Addressing missing data through satellite-based training features is another avenue

explored within various ML techniques.

The Kriging method developed by Le Traon et al. [224], involves considering obser-

vations from multiple satellites with differing spatiotemporal sampling to fill gaps and

estimate values for unobserved locations through linear combinations of available data.

Another successful approach is the DINEOF (Data Interpolating Empirical Orthogonal

Functions) algorithm ([225]), which leverages a truncated basis of empirical orthogonal

functions to reconstruct missing data while reducing noise and errors in geophysical

datasets.

Recent advancement in this realm is offered by DINCAE (Data INterpolating Convolu-

tional Auto-Encoder), proposed by Barth et al. [226]. This technique employs a CNN

auto-encoder designed specifically for reconstructing missing data based on available,

cloud-free pixels in satellite images.

3.2.2 ML and Numerical Modeling

The incorporation of ML has brought about significant changes in how ocean theory

is represented within modeling. Even with more data available, numerical models are

essential to bridge data gaps.
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In building numerical models, different ML techniques can be used to tackle various

challenges. These techniques can refine model detail and even replicate existing mod-

els, often with less computing power.

Among these methods, our focus lies on those that connect numerical models with

available observations. The key point is that observations and theory hold more signif-

icance when combined.

These methods offer complementary strengths and weaknesses: observations have lim-

itations due to sampling rates, whereas ocean models are constrained by finite resolu-

tion and physical coefficients. When a model covers a broad spectrum of simulations

in time and space, observations can shed light on local phenomena beyond the model’s

reach. Despite their precision, observations alone can’t cover the entire marine basin;

thus, a numerical and theoretical model baseline is needed. Thus, methods are essential

to extract, extrapolate, or upscale data, accounting for unresolved processes.

In Bolton and Zanna [227], ML predicts unresolved turbulent processes and subsurface

flow fields by leveraging observations and model data. Specifically, CNNs are trained

on degraded data from a high-resolution quasi-geostrophic ocean model.

In Zanna and Bolton [228], Relevance Vector Machines and CNNs are employed to

create computationally efficient parameterizations for ocean mesoscale eddies.

By grasping the discrepancies between observational data and model states, ML could

revolutionize data assimilation efficiency, ensuring model alignment with real-world

data as proposed by [229].

ML tools can also represent the ocean with fewer degrees of freedom than full numeri-

cal models.

As an example, Agarwal et al. [230] presents a comprehensive inter-comparison of lin-

ear regression, stochastic, and deep-learning approaches for reduced-order statistical

emulation of ocean circulation.

Additionally, ML is explored for emulating computationally costly aspects of ocean

models.

An example relies on Nowack et al. [231], where authors suggest a novel approach

using linear ML regression to predict ozone distributions based solely on atmospheric

temperature fields.

Another significant aspect of ML ocean modeling deserves attention. In an ideal sce-

nario with perfect data and adequate computational power, it’s theoretically possible
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to learn ocean dynamics without knowledge of the equations of motion. Similar suc-

cesses have been achieved in other fields, such as atmospheric applications ([232, 233]),

and even with an idealized ocean model ([234]). In the latter case, the authors de-

veloped a simple regression model to understand if data-driven models can grasp the

intricate underlying dynamics of the system. However, representing the ocean through

DL is more intricate compared to the atmosphere. This is due to the scarcity of reliable

three-dimensional ocean training data and the ocean’s longer time scales, coupled with

shorter time scales that collectively constitute its state ([158]).

3.2.3 Physical informed ML

Models are indispensable tools in oceanography, much like observations. This natu-

rally leads us to explore how to effectively combine models with observations; con-

straining simulations using observations involves a process known as Data Assimila-

tion (DA).

DA refines a theoretical representation of a system, often employing a numerical or

statistical model, through a collection of observations. This process generally corrects

initial conditions, boundary conditions, and model parameters to minimize discrepan-

cies between model predictions and actual data ([214]).

Initial oceanographic DA experiments were localized ([235]), focusing on areas like the

Gulf Stream meander and ring region.

However, large-scale initiatives, such as the World Ocean Circulation Experiment (WOCE,

[236]) and the Global Ocean Data Assimilation Experiment (GODAE, [237]), under-

scored the potential of global ocean forecasting.

Before the advent of ML, DA methodologies predominantly utilized optimal interpola-

tion techniques ([238]). However, in recent years, several studies have underscored the

connection between DA and ML.

In Abarbanel et al. [239], authors establish an equivalence between ML and statistical

DA, relating layer numbers in NNs to time in DA.

In Bocquet et al. [240], a model’s dynamics are learned from observations, and an or-

dinary differential equation representation is inferred through recursive nonlinear re-

gression.

In Geer [241], the equivalence between DA and ML is explored within a Bayesian net-

work framework, examining how earth system models could be learned directly from

observation.
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A data-driven model can emulate a numerical model partially or entirely to provide

forecasts. The objective then is to correct model errors or reduce computational costs.

For instance, Lguensat et al. [242] presents a framework reconstructing system dynam-

ics fully in a data-driven manner, assuming a catalog of system trajectories is available.

Furthermore, DA can extend parameterization learning to improve models directly

from observations.

In Bonavita and Laloyaux [243], ANN models are used within a weak-constraint frame-

work to enhance model error correction.

In Brajard et al. [229], ML-based parameterization is trained using direct data in a real-

istic scenario with noisy and sparse observations.

ML can also replace traditional methods in strongly coupled DA, which corrects cou-

pled systems (e.g., ocean-atmosphere) comprehensively, though it’s challenging due to

various temporal and spatial scales ([244]).

Examples of this approach include the work of Amendola et al. [245], where a CNN is

combined with an Optimal Interpolated Kalman Filter for Latent Assimilation.

Another example is the research carried out by Fablet et al. [246], where authors use

automatic differentiation within a DL framework, enabling them to jointly train two

key components: representing dynamic processes and solving DA challenges. By com-

bining supervised and unsupervised strategies, this approach highlights the power of

using DL to refine the understanding of complex systems in data assimilation.

In another direction, Mack et al. [247] propose a ”Bi-Reduced Space” concept for ad-

dressing the complexities of 3D Variational Data Assimilation, by means of Convolu-

tional Autoencoders. However, these approaches haven’t yet been applied to realistic

ocean DA scenarios.

3.3 ML for the Prediction of Low Sampled Biogeochemical Vari-

ables

Among all the applications of ML to oceanography, a specific class needs to be further

investigated in this review, as it consists of the starting point for the studies developed

in this thesis.

Notably, while many DL applications in oceanography focus on modeling physical

variables, there’s a pressing need to address the scarcity of observations related to bio-

geochemistry.
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NO−
3 PO3−

4 Si(OH)4) AT CT pH

CANYON
MAE 1.37 0.076 2.28 21.53 13.64 0.0181
RMSE 1.81 0.107 2.98 32.74 19.88 0.0254

CANYON-b
MAE 0.95 0.049 0.97 11.18 12.34 0.0140
RMSE 1.34 0.075 1.30 20.07 17.85 0.0204

CANYON-MED
MAE 0.47 0.026 0.43 6.51 6.98 1.0102
RMSE 0.74 0.045 0.66 11.09 10.03 0.0158

TABLE 3.1: Canyon comparison of performances.
Performance indicators on the validation dataset of CANYON ([215]), CANYON-B
([169]), CANYON-MED ([216]). Results are taken from [216].

Among the various physical and biogeochemical variables collected, an important di-

vision emerges, specifically marine variable can be broadly divided into low-sampled

and high-sampled variables. Although it is not a specific definition, in the following we

will try to provide an intuition and a categorization of marine biogeochemical variables

that we will use in this Thesis into these two groups.

3.3.1 High-frequency vs. Low-sampled Variables

In the realm of oceanographic data collection, a distinction emerges between the vari-

ables based on their sampling frequency.

Specifically, high-frequency variables refer to those that are sampled with greater reg-

ularity. These often encompass parameters that are relatively easier to measure or are

of immediate significance, such as the date and geographical location of the sample.

Moreover, certain physical variables like temperature, salinity, and oxygen also fall un-

der this category due to their ubiquity and the ease of instrumentation designed to

measure them. Their frequent sampling provides a dense matrix of information, offer-

ing a comprehensive spatial and temporal view of the marine environment.

Conversely, low-sampled variables denote those subjected to infrequent sampling. This

category predominantly includes biogeochemical variables such as nitrate, silicate, al-

kalinity, chlorophyll, and ammonium. The infrequency often stems from the complex-

ity of the measurements, the specialized equipment required, or the specific conditions

needed for accurate sampling. Despite their sporadic sampling, these variables hold

immense significance. They offer insights into the intricate biogeochemical processes

of the ocean, which are paramount for understanding marine ecosystems, nutrient cy-

cles, and the overall health of the oceans.

The challenge, therefore, lies in accurately predicting or estimating these low-sampled

variables using the more readily available high-frequency ones, a task that the method-

ologies in this thesis aim to address.
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3.3.2 The CANYON Method

The distinction between high-frequency and low-sampled variables is essential in or-

der to understand the rationale behind the choice of input and output features in NN

architectures.

In datasets originating from cruise measurements, such as the one used for the train-

ing of the architectures described in this chapter, a significant portion of the samples

predominantly encompasses information on high-frequency variables. This frequency

disparity isn’t confined to ship-based observations. It’s also evident in other observa-

tional systems, like the Argo float, a subject delved into in Chapter 5.

This observation underscores the importance of developing architectures that predict

low-sampled variables using high-frequency ones.

In order to perform this task, the CANYON method was conceived and iteratively

refined. At its core, this method leverages a feedforward NN to predict low-sampled

variables starting from high-sampled ones.

3.3.2.1 CANYON

The work by Sauzède et al. [215] introduced the CArbonate system and Nutrients con-

centration from hYdrological properties and Oxygen using a Neural-network (CANYON)

method, which estimates water-column variables, such as nitrate (NO−
3 ), phosphate

(PO3−
4 ), silicate (Si(OH)4), total alkalinity (AT), dissolved inorganic carbon (CT), pH,

and partial pressure of CO2 (pCO2) in the Global Ocean. This estimation is based

on concurrent in situ measurements of temperature, salinity, hydrostatic pressure, and

oxygen (O2), along with sampling latitude, longitude, and date. The CANYON method

presents a promising approach to leverage forthcoming accurate O2 measurements

from profiling floats, enabling the derivation of properties that are challenging or costly

to acquire. It offers an efficient way to fill spatial and temporal gaps in the fields of

these biogeochemical variables by taking advantage of the simultaneous release of the

GLODAPv2 database ([168]) and the planning of the BGC-Argo program ([248]).

3.3.2.2 CANYON-B

The subsequent work by [169] further advanced the CANYON model by introducing

CANYON-B. This improved version, still based on the global GLODAPv2 dataset, em-

ploys more robust NNs, known as Bayesian NNs ([249, 250]). Unlike conventional
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NNs, Bayesian NNs incorporate probability distributions for weights, regularization

parameters, input, and output variables. Although this enhances model capability, it

does come at a higher computational cost. In contrast to traditional data interpola-

tion methods based on temporal or spatial interpolation (e.g., for climatologies, [251]),

CANYON-B takes a variable interrelation view, establishing mappings between easily

measured and accurate variables, like temperature, salinity, oxygen, pressure, location,

and time, to the biogeochemical variables of interest. Furthermore, CANYON-B’s per-

formance was enhanced through modifications in the training procedure, including

input feature preprocessing, network topology, and training approach. CANYON-B

was rigorously validated against independent datasets, including bottle data from a

GLODAPv2 subset and recent GO-SHIP cruises, as well as Argo profiles of sensor data

for pCO2 and pH. The results demonstrated the superiority of CANYON-B in terms of

various metrics used to assess the validity of the study.

3.3.2.3 CANYON-MED

Extending the regionalization concept, [216] developed CANYON-MED, a continua-

tion of CANYON-B with a focus on the Mediterranean Sea. Recognizing the unique

properties and events in this marine area (already discussed in Section 1.1), the au-

thors limited the training of the model to the Mediterranean region. This approach

is grounded on the understanding that ML methods yield better results when trained

on datasets representative of the specific case study. To create CANYON-MED, a new

quality-controlled dataset of in situ measurements was assembled specifically for the

Mediterranean Sea, and NN ensembles were trained. The regional downscaling of

the CANYON method resulted in improved NN performance, as anticipated. The

Mediterranean Sea, characterized by its complex hydrography and dynamic biogeo-

chemical processes, poses unique challenges for accurate modeling. CANYON-MED

represents a significant advancement in regional biogeochemical modeling, providing

tailored estimations that account for the Mediterranean Sea’s distinct characteristics.

This regionalization approach not only enhances model accuracy but also enriches our

understanding of biogeochemical processes specific to this marine area.

To quantify and compare the performances of the described methods, the mean ab-

solute error (MAE) and root mean squared error (RMSE) are presented in Table 3.1.

This comparison highlights the advancements made in each iteration of the CANYON

model, culminating in superior accuracy and applicability for specific oceanic regions.



Chapter 4

MLP for the Prediction of

Biogeochemical Variables

Ocean observations play a crucial role in understanding the marine ecosystem and its

sustainable resource utilization. However, these observations have some limitations.

They are sparse, limited in time and space coverage, and collected unevenly across

different variables ([60]).

Traditionally, marine variable measurements were conducted through specific cruises,

where water samples were gathered and analyzed in laboratories. Although this method

remains the most accurate and reliable, it is costly and suffers from temporal and spa-

tial under-sampling issues ([61]). Consequently, our ability to quantitatively describe

key processes in oceanic cycles and ecosystem changes is hindered.

Research Question

The research presented in this Chapter aims to address the following key questions:

• Can NN enable high-quality predictions of low-frequency marine biogeochemical

variables based on data sampled at high frequencies?

• How can these predictions contribute to marine analysis, particularly in the con-

text of Data Assimilation (DA) applications?

To effectively address these questions, our study will evaluate the performance of a

proposed DL model by focusing on the following aspects:

51
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• The quality of the predicted variables, is assessed using various metrics such as

Root Mean Squared Error (RMSE).

• The influence of sample locations within the marine area on the model’s error

rates.

• The enhancement of the DA framework through the incorporation of low-frequency

variables generated by our method.

The concepts of high and low-frequency sampled variables have already been intro-

duced in Chapter 3.3.

We will develop an MLP model that predicts nitrate, phosphate, silicate, alkalinity,

chlorophyll, and ammonium, using as input the sampling time, geolocation, tempera-

ture, salinity, and oxygen.

We train the model using a large in-situ data collection from cruise campaigns.

Choosing the MLP architecture was a natural decision, given that our data involves

punctual input-output pairs. As such, there was no need to employ a more complex

NN capable of capturing more complex structures among the input features. The sim-

plicity and effectiveness of the MLP were well-suited to handle the specific nature of

the data.

Related Works

Previous research has explored approximating nutrient concentration and the carbon-

ate system using NNs (first in the work by Sauzède et al. [215], then in Bittig et al.

[169]), but an application restricted to the Mediterranean basin was investigated only

by Fourrier et al. [216]. The reader can find a more detailed description of these previ-

ous techniques in Section 3.3.

Previous results confirmed that restricting the geographical area of application leads to

an improvement in predictive performance. Even if the amount of data for the training

decreases, it allows for a better representation of variable relationships that character-

ize the peculiar biogeochemical and physical features of confined areas, such as the

Mediterranean Sea. Again, the reader can refer to Section 1.1 where we discussed more

in detail this concept.

Our approach differs from previous studies in several ways. Firstly, we use a regional

dataset for training, unlike other studies ([215] and [169]). Additionally, we adopt a

deterministic architecture instead of a Bayesian approach (unlike [169] and [216]), as it
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demonstrated better performance and computational efficiency during our preliminary

investigation.

Contribution

We used and test novel elements such as the use of a larger in-situ dataset (EMODnet)

for training and validation ([63]). This dataset is richer with respect to the datasets

exploited in previous applications both in terms of quantity of samples and contained

variables. To enhance the quality of the dataset, we introduce a novel two-step training

procedure, utilizing a DL framework to remove potential incorrect data automatically.

This approach semi-automates the quality check process, which is typically performed

manually by oceanographic experts. Given that the EMODnet dataset comprises multi-

ple datasets from different providers, inconsistencies can arise due to various measure-

ment techniques and standards, transcriptions, and communication. Even if Quality

Check procedures for data collection exist [63], the process of merging multiple sources

is not free from generating inconsistencies among data.

The DL model developed, together with the two-step quality check routine introduced,

lead to a reduction of both the fitness measures used to test the validity of the model.

Finally, we introduce a confidence interval for predictions using the concept of deep

ensembles of NNs ([252]). This quantification of uncertainty is crucial when dealing

with values collected over large and heterogeneous areas. Our objective is to not only

provide a more accurate prediction tool for low-sampled variables but also compre-

hensively analyze the model’s performance, including confidence intervals, prediction

quality at different geolocations and depths, etc.

This chapter also proposed a practical application of the proposed model for a Data

Assimilation (DA) task, to provide an example of how this reconstruction can be useful

in the oceanographic field.

The Argo program is a clear example of successful international collaboration as it

demonstrates the collective capacity of countries and human resources to provide global

data coverage ([253]). An application of this data is the fusion of in-situ observa-

tions and numerical models within the BGC-Argo framework, which holds significant

promise ([254, 255]). DA has been instrumental in advancing ocean prediction over

several decades ([241]). DA consists of incorporating a wide range of observational

datasets and their associated uncertainties into prediction models, addressing chal-

lenges related to the uneven distribution and scarcity of observations ([256]). The vari-

ational assimilation scheme, 3DVarBio ([257]), implemented by the Copernicus Marine
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FIGURE 4.1: Alkalinity samples in the EMODnet dataset.
Solely samples in the surface are displayed, specifically the ones collected in a range

between 0m and 20m.

Service for the Mediterranean Sea (MedBFM), has evolved over time to encompass a

more extensive array of observation types and variables. This evolution began with its

initial release ([257]) and has progressively integrated coastal ocean color (OC) obser-

vations ([258]), as well as chlorophyll and nitrate profiles from BGC-Argo ([254, 255]).

With the increasing availability of oxygen (O2) data from BGC-Argo, we have under-

taken an additional upgrade of the MedBFM, exploring the integration of NN recon-

structed profiles into the assimilation scheme.

Structure of the Chapter

The chapter is structured as follows: Section 4.1 provides details about the dataset used

for training and testing the model. Section 4.2 describes the DL architecture and its im-

plementation details are listed in Section 6.2. In Section 4.2.2, we introduce the two-step

quality check routine to identify and remove cruises with anomalous data. Section 4.2.3

discusses the method for estimating prediction uncertainty. We present experimental

results and their analysis in Section 4.3, also investigating the quality of the model pre-

diction over argo nitrate profiles. Section 4.4 analyzes the result obtained by inserting

nitrate profiles reconstructed using the proposed MLP into the assimilation scheme.

Finally, in Section 4.5, we draw conclusions from the study.
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4.1 The EMODnet Dataset

The EMODnet (European Marine Observation and Data Network) is a comprehensive

marine data initiative initiated by DG MARE in 2009 ([259]). Its primary objective is

to provide easy access to marine data, ensure interoperability, and remove restrictions

on data usage. The EMODnet Chemistry portal specifically focuses on marine data

up to the year 2018, gathered from research cruises and monitoring activities in Euro-

pean marine waters and global oceans. Each cruise or monitoring activity represents a

subset of marine measurements obtained from specific locations or temporal periods,

often with distinct sampling and analytical methodologies. Standard Quality Check

procedures are applied to harmonize and validate the dataset, ensuring its reliability.

The selected Mediterranean Sea EMODnet dataset comprises a substantial collection of

101, 526 samples contributed by 74 data providers across 18 countries. It offers broad

geographical coverage of the entire Mediterranean region, with longitude ranging from

−5.92W to 36.19E and latitude from 31.19N to 45.77N. This extensive coverage ensures

the inclusion of diverse marine environments within the Mediterranean Sea.

The spatial distribution of profile data presents a good data coverage in the Mediter-

ranean basin. More specifically, in northern Mediterranean there are coastal areas such

as Italy, Spain, France and Turkey where observations are more concentrated. Unlike

southern Mediterranean where some areas are characterized by few and sparse data,

like the coastal areas of Tunisia and Libya.

Each sampling entry in the dataset contains crucial information, including the date of

data collection, geolocation (longitude and latitude), as well as measurements of fun-

damental parameters such as temperature, salinity, and oxygen. Furthermore, when

available, the dataset may contain valuable information on macronutrients such as Ni-

trates (NO3−), Phosphates (PO43−), and Silicates (Si(OH)4), essential for understand-

ing nutrient dynamics in the marine ecosystem. Additionally, the a part of the samples

of the dataset includes other biogeochemical variables such as Total Alkalinity (AT) and

Chlorophyll-a, a key indicator of phytoplankton biomass.

4.2 The Deep Learning architecture

The selected model architecture for this study is an MLP–the general characteristics of

this class of NN are discussed in Section 2.2.1.

Specifically, we consider a two-hidden layer MLP with tanh(x) as the chosen nonlinear

activation function. We opted for an MLP with just two hidden layers, as our initial
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Topology 1 2 3 4 5 6 7 8 9 10
# neurons in hidden layer 1 31 50 40 15 27 25 19 41 33 22
# neurons in hidden layer 2 23 30 20 8 23 25 11 9 29 15

TABLE 4.1: MLP topologies selected.

investigation into optimizing the architecture’s hyperparameters indicated that adding

more than two layers did not yield any performance improvement. Additionally, we

introduce a Scaled Exponential Linear Unit function (SELU) after the output layer. The

SELU function is defined as follows:

SELU(x) = λ

x x > 0

αex − α x ≤ 0
(4.1)

where α and γ are two fixed constants. The introduction of the SELU non-linear func-

tion significantly improved the model’s performance. Its automatic regularization of

network parameters and normalizing properties contribute to robust learning ([260]).

For training, we employ the backpropagation algorithm, which updates the weights

and biases of the model during each epoch ([261]). To ensure a comprehensive evalua-

tion of the model’s predictive capabilities, we introduce ten different MLP topologies.

Each topology maintains the same number of neurons in the input and output layers

but varies the number of neurons in the two hidden layers. The selection of these pa-

rameters was guided by an initial phase of hyperparameter tuning, during which we

evaluated various topologies and chose those that demonstrated the best performance.

The specific topology configurations are listed in Table 4.1.

In addition to producing accurate predictions, we also aim to provide a confidence in-

terval for each prediction. To achieve this, we exploit the properties of deep ensemble

networks ([252]). By training multiple topologies, we obtain ten different results, and

the final output of the model consists of the average of these predictions. The uncer-

tainty associated with each prediction is calculated based on the differences among

these results.

This comprehensive approach enables us to not only improve the predictive perfor-

mance of the MLP but also to quantify the uncertainty in our predictions, making our

model more reliable and informative for the given oceanographic dataset.

4.2.1 Experimental Setting

As stated above, to train and validate the model, measurements from the EMODnet

dataset are used. The inputs chosen are:
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• date (year, month, day)

• geolocation (latitude, longitude, depth)

• temperature

• salinity

• oxygen

The outputs we aim to predict consist of:

• nitrate (NO−
3 )

• phosphate (PO3−
4 )

• silicate (Si(OH)4)

• total alkalinity (AT)

• chlorophyll-a

• ammonium (NH4+).

The primary objective of our experimental campaign is to evaluate whether our model

can effectively predict variables with low sampling frequency using variables that are

sampled more frequently. To this end, we will measure the accuracy of our neural

network in reproducing these low-sampled variables. The effectiveness of our model

will be gauged through quantitative metrics like the RMSE, as well as by visually com-

paring the actual values with those predicted by our model. Additionally, to gain a

comprehensive understanding of our model’s performance and how it is influenced

by input features such as geolocation or the timing of the sample, we will conduct an

in-depth analysis of the results obtained.

Before training, the data is randomly shuffled, and subsequently, the dataset is divided

into two sets: the training set, utilized for optimizing the model’s weights, and the

test set, employed to assess the performance of the proposed model. This partition is

achieved by allocating 80% of the data to the training set and 20% to the test set.

To enhance the network’s performance, a data preprocessing phase is undertaken, in-

corporating the most effective operations introduced by [216], [169], and [215].

Initially, the latitude input is normalized by dividing it by 90. This transformation

ensures that latitude values, which typically range from −90 to 90, are scaled within

the range of [−1, 1].
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Regarding the longitude input (denoted as lon), adjustments are made to account for

its periodic nature. The following expressions are utilized:

• |1 − mod(lon − 110.360)/180|

• |1 − mod(lon − 20.360)/180|

Furthermore, the depth input is transformed to address the network’s complexities

in deep waters. The transformation involves a combination of linear and non-linear

functions, as depicted in Equation 4.2:

Dnew =
D

20000
+

1
(1 + exp(− D

300 ))
3

(4.2)

Where D denotes the original depth, and Dnew represents the new preprocessed input

depth.

The input and output data undergo a normalization process, which serves two main

purposes: expediting the training process and reducing the likelihood of converging

to local optima. This normalization is achieved by subtracting the mean x̄ from the

original variable x and then dividing the result by the standard deviation σ, as shown

in Equation 4.3:

xn =
γ(x − x̄)

σ
(4.3)

In this equation, both x̄ and σ are computed based on the data within the training

set. The constant γ is introduced to expand the number of data points that fall within

the range of [−1, 1] after normalization. This normalization process is beneficial as it

helps the training process converge more efficiently and ensures that the model is not

heavily influenced by the scale of the input and output data, making it more robust and

effective in capturing patterns and generalizing to unseen data.

The hyperparameters controlling the Adam algorithm ([97]), which serves as the gradient-

based optimizer for minimizing the loss function, have been individually tuned for

each variable. Through a preliminary study, various combinations of hyperparame-

ter values were tested, and the optimal settings were determined. The chosen optimal

values are documented in Table 4.2.
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NO−
3 PO3−

4 Si(OH)4 AT Chl-a NH4+
Epochs 50.000 50.000 50.000 50.000 25.000 50.000

lr 0.005 0.005 0.005 0.001 0.005 0.005

TABLE 4.2: Epoch and Learning Rate used for the training phase.

The performance evaluation of the models employs two metrics: the Mean Absolute Er-

ror (MAE) and the Root Mean Square Error (RMSE). These metrics are defined as follows:

MAE =
1
n

n

∑
i=1

∥YPi − YSi∥ =
1
n

n

∑
i=1

∥ei∥

and the Root Mean Square Error (RMSE), defined as:

RMSE =

√
1
n

n

∑
i=1

(YPi − YSi)
2 =

√
1
n

n

∑
i=1

e2
i

where n is the dimension of the dataset; YSi is the set of in situ values of the consid-

ered output, and YPi the corresponding set of predictions. Both MAE and RMSE are

widely used performance metrics in regression tasks. MAE represents the average ab-

solute difference between the predicted and actual values, while RMSE calculates the

square root of the average squared difference between the predicted and actual values.

These metrics provide valuable insights into the accuracy and precision of the model’s

predictions for the given dataset.

4.2.2 The Two-Steps Quality Check Routine

EMODnet, being the product of an extensive data collection effort, poses the possibility

of containing incorrect, noisy, or unreliable samples. Indeed, when applying our model

to the original dataset, some outlier outputs occur, leading to significant deficiencies

in our predictions. While the number of these anomalous values is relatively small,

accounting for approximately 4.6% of the data, their impact on the overall error within

the test set was notable. This raised concerns about potential biases introduced by these

outliers on the model’s predictive capabilities. The presence of such anomalous data in

the EMODnet dataset may have led the model to learn from erroneous measurements,

thus adversely affecting the relationships inferred from valid measurements.

To address this potential issue, we propose a two-step quality check routine aimed

at identifying and removing incorrect data from the dataset. This process is summa-

rized through a flowchart, as depicted in Figure 4.2. In the first step, the model is ini-

tially trained using the complete dataset, including both good-quality measurements
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FIGURE 4.2: Two-step quality check routine flow chart.

and outliers. Subsequently, we proceed to identify subsets within the data that con-

tain anomalous samples, which contribute to the highest 0.1% of error predictions.

These subsets are scrutinized to ascertain whether they correspond to specific and

well-defined categories, such as originating from the same sampling cruise, date, or

provider. If so, they are removed from both the training and testing sets. Additionally,

the criterion for subset removal is only applied if at least 25% of the samples within the

subset are classified as outliers, ensuring a robust and meaningful removal process.

Having executed the initial cleaning, we retrain the model using the updated, cleaned

dataset. This process of identifying and eliminating outliers is then iterated, with the

model trained anew in each iteration until no further predictions are classified as un-

reliable. This iterative approach helps ensure a thorough and gradual improvement in

data quality.

By implementing this rigorous quality check routine, we aim to mitigate the impact of

anomalous data on our model’s performance and enhance its predictive capabilities.

This iterative process allows us to gradually fine-tune the training data, thereby pro-

ducing more accurate and reliable predictions. The final dimensions of the training

datasets, post-cleaning, are presented in Table 4.3.

This rigorous data quality assurance approach not only helps enhance the reliability

of our model but also contributes to the credibility and accuracy of our findings in the

context of oceanographic data analysis and prediction.
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NO−
3 PO3−

4 Si(OH)4 AT Chl-a NH4+
20.686 25.335 16.187 1.292 6.040 9.900

TABLE 4.3: Dimension of the training set for each variable, after the removal of noisy
and unreliable data.

4.2.3 Prediction Confidence Interval

In addition to generating predictions, it is crucial to quantify the corresponding uncer-

tainty, particularly when dealing with values collected over large and heterogeneous

areas. To accomplish this task, we employ the concept of a confidence interval ([262]), a

widely used statistical measure that quantifies prediction uncertainty.

For estimating predictive uncertainty, we utilize NN ensembles, commonly referred

to as deep ensembles. This approach has proven to be highly effective in improving

predictive performance and, importantly, provides a practical and scalable method for

uncertainty estimation [263]. For a more comprehensive understanding of the topic,

we refer readers to [264].

To calculate the uncertainty of our model’s prediction, we obtain ten outputs for a given

input by introducing changes in the network topologies, such as varying the number

of neurons in each layer. This ensemble of ten NNs will be trained, ensuring a balanced

trade-off between the number of outputs and computational resources. The confidence

interval, representing the uncertainty, is then computed as the difference between the

third quartile and the first quartile of the set comprising the ten different predictions.

The range between these two quartiles has been demonstrated to serve as a robust in-

dicator of the reliability of ensemble DL predictions [264]. By providing a confidence

interval for our predictions, we offer valuable insights into the uncertainty associated

with our model’s forecasts. This information is especially relevant when working with

oceanographic data collected over diverse and extensive regions, allowing stakehold-

ers to make well-informed decisions based on the level of confidence in the model’s

predictions.

Incorporating this measure of uncertainty enhances the credibility and usability of our

predictive models, ensuring they are better suited to address real-world challenges in

the field of oceanography and data science.
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NO−
3 PO3−

4 Si(OH)4 AT Chl-a NH4+

MAE
canyon-med 0.47 0.026 0.40 6.5
our model 0.26 0.019 0.31 5.6 0.09 0.13

RMSE
canyon-med 0.73 0.045 0.70 11.1
our model 0.50 0.031 0.58 8.2 0.017 0.21

TABLE 4.4: MLP fitness values (MAE and RMSE).
A comparison between the current state of the art, Canyon-Med ([216]), and our

method is also reported. The best results are highlighted in bold.

(a) (b) (c)

(d) (e) (f)

FIGURE 4.3: Comparison of in situ samples and MLP outputs.
(a) Nitrate (NO−

3 ), (b) Phosphate (PO3−
4 ), (c) Silicate (Si(OH)4), (d) Alkalinity (AT), (e)

Chlorophyll-a, (f) Ammonium (NH4+). The color denotes the depth of the samples,
from green (shallow) to blue (deep).

4.3 Results

For each of the six variables, individual training and testing fitness, measured by both

MAE and RMSE, are computed. However, in Table 4.4, we only present the testing fit-

ness results, along with a comparison to the findings achieved by [216], which currently

represents the state-of-the-art for the Mediterranean Sea application. The results reveal

a general decrease in both fitness metrics compared to the current state-of-the-art. The

most substantial decreases in skill metrics, ranging from 30% to 45%, are observed for

NO−
3 , PO3−

4 , and Si(OH)4. On the other hand, Alkalinity exhibited the least improve-

ment, with a decrease in skill of around 15%.

Figure 4.3 presents a scatter plot that offers a visual comparison between the real values

of the in situ measurements (on the x-axis) and the corresponding predictions made
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.4: Comparison between the prediction’s RMSE and the corresponding in-
terquartile range

(a) Nitrate (NO−
3 ), (b) Phosphate (PO3−

4 ), (c) Silicate (Si(OH)4), (d) Alkalinity (AT), (e)
Chlorophyll-a, (f) Ammonium (NH4+). The color denotes the depth of the samples,

from green (shallow) to blue (deep).

by our model (on the y-axis). In the scatter plot, points that lie close to the diago-

nal indicate accurate predictions, implying that the model performed well in those in-

stances. Upon examining the plots, we observe that for NO−
3 , PO3−

4 , and Si(OH)4, the

points are well-distributed along the diagonal, indicating a good agreement between

the model’s predictions and the actual measurements for these variables. However, for

Chlorophyll-a and NH+
4 , the points appear more scattered, suggesting that the model’s

performance is comparatively less precise for these variables. The spread of points

away from the diagonal may indicate greater variability and complexity in predicting

these particular variables accurately. Furthermore, it is essential to consider that the

number of data points for AT is lower than for the other variables. This limitation in

the data availability for AT could potentially impact the robustness of the results for

this variable.

Figure 4.4 displays scatter plots that illustrate the relationship between the error ob-

tained by our model (on the x-axis) and the range between the third quantile and first

quantile (on the y-axis), which represents the confidence interval. These scatter plots

effectively demonstrate that a small difference in quantile values corresponds to small

errors in the model’s prediction, validating the reliability of this metric for comput-

ing the confidence interval. When the quantile difference is small, it indicates that the

ensemble predictions exhibit low dispersion and are more consistent, reinforcing the
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FIGURE 4.5: Test value distribution for the trained MLP model.
Variable represented are, from top to down: NO−

3 , PO3−
4 , Si(OH)4, AT, Chlorophyll-a,

and NH4+. Histograms in the first, second, and third columns represent the
distribution of the results according to, respectively, their latitude, their longitude, and

their depth. both 25% (25% HE) and 10% (10% HE) of the predictions leading to a
higher error are highlighted in different colors.
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robustness of the confidence interval as a measure of predictive uncertainty. Moreover,

the plots also reveal an interesting pattern. As the errors in the predictions decrease,

the dispersion of the ensemble predictions also tends to decrease, suggesting that the

model’s performance is less sensitive to the specific topology of the network when

making more accurate predictions. This observation highlights the effectiveness of the

ensemble approach in enhancing the model’s stability and generalization capabilities.

However, it is worth noting that a few points lie on the bottom-right of the plot, rep-

resenting cases where there is low dispersion in the ensemble predictions despite poor

model performance. This phenomenon may indicate the presence of outliers that were

not identified by our two-step analysis for data cleaning. These outliers might have a

significant impact on the model’s predictions, leading to poor performance for certain

variables.

Among the variables, NO−
3 , PO3−

4 , and Si(OH)4 are those with a larger number of poor

predictions with low dispersion.

Figure 4.5 presents a series of histograms depicting the distribution of test data as a

function of latitude, longitude, and depth. For each distribution bin, the number of pre-

dictions with the highest 25% and 10% errors (25%HE and 10%HE, respectively) is indi-

cated in darker colors. This visualization facilitates an investigation into potential inho-

mogeneity between the data distribution and the error distribution. The histograms for

NO−
3 , PO3−

4 , Si(OH)4, and Chlorophyll-a show good and fairly homogeneous coverage

in terms of latitude. However, the distribution of latitude is biased due to the presence

of the three major basins in the Mediterranean Sea (western, Adriatic, and Levantine

basins). On the other hand, Alkalinity exhibits a biased distribution, with the largest

number of observations concentrated in the Northern Adriatic Sea. Similarly, NH+
4

displays a biased coverage, with observations primarily sampled in the Adriatic Sea.

Examining the distribution of 10%HE predictions along the horizontal dimension (both

latitude and longitude) reveals uniform patterns for all variables, except for PO3−
4 and

Si(OH)4. These two variables demonstrate a higher frequency of 10%HE predictions

for latitudes ranging between 41◦ − 42◦N, with 30% and 20% of predictions falling into

the 10%HE category for PO3−
4 and Si(OH)4, respectively. Regarding the depth dimen-

sion (third column of the plots), the distribution of 10%HE predictions shows that the

model tends to be more accurate on the surface for all variables. However, the percent-

age of samples characterized by 10%HE increases with depth. Specifically, the ratio

between 10%HE samples and total samples available exceeds 20% for depths beyond

100 meters. These plots offer additional indicators for assessing the reliability of model

predictions. For instance, if the model is applied to samples belonging to geographi-

cal areas that have been predicted with higher precision in the past, the corresponding
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results can be labeled as reliable with higher confidence. Conversely, geographical ar-

eas exhibiting higher occurrences of 25%HE or 10%HE predictions should be subject

to more careful investigation, as they may indicate peculiarities that deviate from the

mean model performance.

The diagnostic metrics presented in Figures 4.3 to 4.5 collectively provide an overall as-

sessment of the goodness of the reconstruction for each of the six variables. Regarding

Nitrate (Figure 4.3(a)), the model demonstrates satisfactory performance, accurately

approximating the observations. A similar behavior is observed for Phosphate (Fig-

ure 4.3(b)), where the model skillfully predicts values across both the lower and higher

ranges. For Silicate (Figure 4.3(c)), the results are particularly satisfactory, as the model

achieves accurate predictions across various value ranges. Alkalinity (Figure 4.3(d))

also shows positive results, although the bias distribution of observations (Figure 4.5)

in certain zones may impact our ability to draw definitive conclusions about error dis-

tribution in those regions. In the case of Chlorophyll-a (Figure 4.3(e)), a clear distinction

emerges in the quality of predictions for different value ranges. Lower values are pre-

dicted more accurately than higher ones. This discrepancy is attributed to the difference

in the quantity of high and low-value samples available in the training set. The scarcity

of high-value samples might have affected the model’s ability to accurately predict such

values. Regarding Ammonium (Figure 4.3(f)), this marine variable exhibits the least ac-

curate predictions among the six variables. The complexity of ammonium distribution,

which depends on numerous interacting biological and chemical processes, is a plau-

sible reason for the model’s limitations in reconstructing this variable. The explicative

variables used in our models may not have been sufficient to capture the complexities

involved in ammonium variability in the Mediterranean Sea. Additionally, the biased

spatial distribution of observations, with a concentration of data in the Adriatic Sea

(latitude 43◦ − 46◦N, longitude 13◦ − 18◦W), might have hindered the model’s ability

to generalize and map ammonium variations accurately. The accumulation of poor pre-

dictions in this marginal sea further highlights the challenges in predicting ammonium

accurately.

4.4 MLP for Data Assimilation

In this section, is reported the impact of incorporating the proposed MLP model into

the framework of DA. Specifically, we will evaluate the effect of the integration of

BGC-Argo and MLP reconstructed profiles into the biogeochemical simulations of the

Mediterranean Sea conducted by the Operational System for Short-Term Forecasting
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FIGURE 4.6: BGC-profiles of chlorophyll-a (red), Nitrate in-situ (orange), and recon-
structed Nitrate (grey) assimilated in the Mediterranean Sea (2017-2018).

of the Biogeochemistry of the Mediterranean (MedBFM) [38]. We will prove that inte-

grating reconstructed profiles can lead to enhanced modeling outcomes and improved

performance. The whole theoretical framework and the investigation of different as-

pects of the combination of NN and DA is reported in Appendix A, while here solely

the principal results which highlight the potential of the proposed MLP model are sum-

marized.

To perform this task are evaluated the model’s outputs and compared with the results

obtained through the addition of the DA routine. By analyzing these outputs and con-

ducting a comparative analysis, we aim to determine which approach yields more pre-

cise results: the plain model, the model integrated with solely BCG-Argo profiles or

the model integrated with both BCG-Argo profiles and reconstructed profiles. To as-

sess precision, we will compare this variation of the model against observational data

sources, such as float measurements and satellite data.

4.4.1 The Assimilation Scheme

Test Case Chl O2 NO3 Updated Variables
HIND – – – –
DAfl 1773 1924 938 phyto biomass, NO3 , O2 and PO4

DAnn 1773 1924 2146 phyto biomass, NO3 , O2 and PO4

TABLE 4.5: Summary of the numerical experiments and assimilated BGC-profiles
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The assimilation scheme employed in this study is founded on the 3DVarBio method,

as described in previous works [254, 255, 257, 258]. To provide more detailed insight,

the assimilation scheme employed incorporates oxygen, chlorophyll, nitrate, all assim-

ilated variables, and various phytoplankton biomasses, including phosphate, in its up-

dates.

The assimilated observations comprise the QC BGC-Argo dataset detailed in Table 4.5.

Specifically, the assimilation process incorporates oxygen and nitrate profiles within

the 0 − 600m layer, while chlorophyll data are assimilated within the 0 − 200m layer.

The nitrate dataset utilized as input for assimilation comprises 938 BGC-Argo profiles

and an additional 2146 reconstructed nitrate profiles. The number of reconstructed ni-

trate profiles is more than double with respect to the amount of nitrate profiles collected

in-situ by the Argo float devices, confirming the utility of the developed MLP methods

in augmenting the information about a fundamental variable which allow the improv-

ing of the knowledge of the Mediterranean Sea. Notably, these reconstructed nitrate

profiles are distributed across the western (61%) and eastern (39%) Mediterranean Sea,

resulting in a more extensive and spatially consistent coverage. This distribution is

visually represented in Figures 4.6, highlighting the improved spatial representation

achieved through the inclusion of these reconstructed profiles.

To evaluate the effects of various assimilation configurations, we conducted three dis-

tinct numerical experiments. These experiments covered from January 1, 2017, to De-

cember 31, 2018. The setup of the MedBFM closely aligns with the standard configu-

ration utilized in the Mediterranean Analysis and Forecast biogeochemical system of

the Marine Copernicus Service. This setup encompasses several critical components,

including open boundary conditions in the Atlantic, the utilization of climatological

data for nutrients, carbon, and alkalinity from 39 rivers, as well as data from the Dar-

danelles Straits. Additionally, the initial conditions for the model were derived from

the EMODnet dataset, with further details provided [265]. This comprehensive setup

forms the basis for our numerical experiments, enabling us to assess the impact of dif-

ferent assimilation configurations effectively.

Figure 4.6 also illustrates the segmentation of the Mediterranean domain into sub-

basins, which will serve as the basis for validation in subsequent chapters. These sub-

basins adhere to a common division widely employed in oceanography to characterize

the Mediterranean Sea. To ensure the robustness and consistency of our validation

metrics, we may employ different combinations of these sub-basins or subsets based

on data availability. The following abbreviations represent these combinations:

• Levantine (lev) comprises lev1, lev2, lev3, and lev4.
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• Ionian (ion) consists of ion1, ion2, and ion3.

• Tyrrhenian (tyr) includes tyr1 and tyr2.

• Adriatic (adr) encompasses adr1 and adr2.

• South Western Mediterranean (swm) is constituted by swm1 and swm2.

• North Western Mediterranean (nwm).

To test the impact of the additional observations reconstructed with MLP the model

described in [2] has been run under three scenarios:

1. Control Run (HIND): This serves as the baseline simulation without any assimi-

lation.

2. Assimilation of BGC-Argo Chlorophyll, Nitrate, and Oxygen (DAfl): In this sim-

ulation, we incorporate data assimilation for BGC-Argo chlorophyll, nitrate, and

oxygen.

3. Enhanced Data Assimilation with Additional Reconstructed Nitrate Profiles (DAnn):

This simulation builds upon DAfl by including additional reconstructed nitrate

profiles, further enhancing the assimilative setup.

During the data assimilation process, profiles may be excluded if the model-observation

misfit exceeds predetermined thresholds. This highlight the fact that the MLP recon-

structions can be affected by local biases. This ensures that only high-quality data is

incorporated into the assimilation process, improving the overall accuracy of the sim-

ulations.

4.4.2 Results

The performance of the simulations outlined in Table 4.5 is assessed by comparing

model outputs with both satellite ocean color (OC) chlorophyll data and BGC-Argo

profiles. For the satellite comparison, have been consider daily averages generated by

the model. However, when evaluating metrics based on BGC-Argo profiles, have been

utilize the model’s first guess, representing its state before the assimilation process.

To test the model’s effectiveness in reproducing specific bloom and stratification con-

ditions, is employed the RMSE metric. This evaluation is conducted for two distinct

seasons: winter (from February to April, FMA) and summer (from June to August,

JJA). We assess the model’s performance across 16 Mediterranean Sea sub-basins or in
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FIGURE 4.7: Seasonal Nitrate, Chlorophyll and Oxygen RMSE (top, middle, bottom):
Bloom (left) and Stratification (right) seasons in the Mediterranean Sea aggregated

sub-basins for the HIND run (pale blue), DAfl run (orange) and DAnn (green).

aggregated combinations of these sub-basins, as indicated in Figure 4.6. This approach

provides insights into the model’s ability to capture the unique characteristics of each

season in these specific regions.

The validation of the model is demonstrated in [2], here we focused on the impact of

the MLP reconstructed data on simulation dynamics.

In terms of the Winter RMSE concerning OC chlorophyll levels in the HIND simulation

a reduction in RMSE (up to 10%) compared to HIND is achieved with the DAnn simu-

lation, demonstrating that expanding the nitrate float network contributes to improved
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representation of surface phytoplankton dynamics. In general, all Mediterranean sub-

basins show a reduction in RMSE, except for Alb, Swm, and Nwm. However, it’s im-

portant to note that during the summer stratification period, a slight deterioration in

the assimilated runs is observed. The RMSE values with respect to OC chlorophyll in-

crease in all sub-basins during this season, albeit fairly similarly in the two assimilation

runs: approximately 6% in DAfl and 7.5% in DAnn, respectively. It’s worth mention-

ing that the RMSE values in summer are notably lower than in winter, underscoring

the seasonal variability in chlorophyll levels in the Mediterranean Sea, which includes

very low chlorophyll values at the surface.

The assimilation of in-situ BGC-Argo data leads to a substantial enhancement in the

model’s representation of nitrate in to the HIND run (Figure 4.7). Winter RMSE reduc-

tion goes from 40% (DAfl) to approximately 46%, when also reconstructed profiles are

assimilated, while the reduction of summer RMSE increases from 59% in DAfl to 63%

in DAnn. The most significant RMSE reduction between DAnn and DAfl is observed

in the Nwm and Tyr sub-basins during winter and in the Ion sub-basins during sum-

mer. These findings underscore the effectiveness of assimilating both BGC-Argo and

reconstructed profiles in enhancing the model’s representation of nitrate levels.

The integration of the MLP and DA has led to multiple significant impacts. The Fig-

ures related to the effects of this integration are reported in Appendix A. Firstly, re-

garding the impact on biogeochemical vertical dynamics, the assimilation of nitrate

effectively rectifies a prevalent positive bias inherent in the model across all Mediter-

ranean regions, illustrated by the blue pattern in Figure A.7. The introduction of re-

constructed profiles amplifies these corrections, making them more robust and precise.

At the Mediterranean scale, there is an 8% reduction in nitrate concentration below the

nitracline in the DAfl run and an 11% reduction in the DAnn run. The nitracline depth

undergoes changes, characterized by deeper values following the DAfl assimilation,

with variations ranging from a few meters (e.g., Nwm) to tens of meters (e.g., Ion2).

This deepening phenomenon becomes more pronounced with the inclusion of recon-

structed profiles in DAnn. Remarkably similar patterns are observed in the Hovmöller

diagrams of phosphate (Figure A.9). These patterns can be attributed to the high pos-

itive values in the covariance matrix between nitrate and phosphate, as elaborated in

[255].
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4.5 Discussion and Final Considerations

The DL architecture proposed in this Chapter relies on the availability of high-frequency

sampled variables, including essential data such as temperature, salinity, and oxy-

gen, complemented by additional ancillary information like the temporal aspect and

geospatial coordinates of the sampling locations, in order to predict low-frequency

sampled variables, such as nitrate, phosphate, silicate, alkalinity, chlorophyll and am-

monium. The core objective is to bridge the gap between high-frequency and low-

frequency variables, allowing us to make informed predictions of the latter using the

former as inputs.

Building upon previous research ([169]-[215] and [216]), specific improvements are in-

troduced, tailored to the Mediterranean Sea context. A larger and higher-quality train-

ing dataset from [63] is used, accompanied by a new two-step quality check routine

to enhance dataset reliability. Additionally, a confidence interval estimation is incor-

porated, leveraging deep ensembles of NNs. Accurate validation demonstrated sig-

nificant improvements over existing methods, with enhanced prediction performance

for all variables and fitness metrics. These advances were attributed to the larger and

improved dataset, as well as the refined quality check process. The inclusion of two

additional variables, Chlorophyll-a and Ammonium (NH4+), further showcased the

model’s potential.

The proposed DL framework offers valuable applications that can contribute signifi-

cantly to oceanographic research and monitoring efforts.

Ship-based sampling is known to have its inherent limitations. These limitations of-

ten stem from practical constraints, such as the availability of ship time and human

resources, as well as environmental factors like adverse weather conditions that can

restrict sampling in specific regions or during certain periods, such as the winter sea-

son. These challenges have historically hindered the collection of comprehensive and

continuous oceanographic data. The introduction of the MLP model in this context of-

fers a promising solution. This model exhibits the capability to effectively fill gaps in

observations, making it possible to harness the full potential of datasets like EMODnet.

It becomes feasible to generate data where conventional sampling methods fall short.

Moreover, the proposed MLP extends its utility beyond data completion. It can be used

as a valuable tool for identifying periods and areas within the Mediterranean Sea where

data density remains insufficient, both spatially and temporally. Such limitations can

hinder our ability to comprehend complex oceanic processes and assess long-term vari-

ability accurately. As we demonstrated in this study, areas where the DL model exhibits
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less satisfactory results often coincide with deficiencies in the training database, which

may fail to adequately capture the full spectrum of spatial and temporal variability.

Additionally, this approach can also applied to the vast network of BGC-Argo profiling

floats, each equipped with advanced sensors capable of measuring the input oceano-

graphic variables (temperature, salinity and oxygen). This extension can significantly

enhance the flow of biogeochemical data, contributing to a more comprehensive under-

standing of the marine environment. Furthermore, the proposed MLP model, as part

of this approach, can play a crucial role in quality control. It can assist in refining pa-

rameters like NO3
− and pH obtained from these autonomous platforms, ensuring data

accuracy by correcting sensor drift during deployments and adjusting deep-sea values

as required.

As a demonstration of the potential of the described MLP model, the results of the ni-

trate reconstruction have been integrated in a big model-DA numerical experiments of

the Copernicus marine Biogeochemical system of the Mediterranean Sea. The assimi-

lation of nitrate data from BGC-Argo profiling floats effectively mitigates a prevailing

positive bias observed in the model across various Mediterranean regions. Moreover,

the inclusion of reconstructed profiles further enhances this corrective effect. Concur-

rently, the adjustment of phosphate concentrations based on error covariances con-

tributes to spatial and multivariate alterations that hold the potential to rectify pivotal

biogeochemical phenomena, such as the nitracline and deep chlorophyll maximum.

This application underscores the practicality and efficacy of developing predictive ma-

rine models. It is important to note that the utility of the model we have constructed

extends beyond this specific case, as it can be applied to a multitude of scenarios, ex-

emplifying its versatility and broader applicability.

The heterogeneity of the Mediterranean Sea, characterized by significant physical and

biogeochemical gradients, poses challenges for the model’s predictions, especially in

regions with uneven data coverage. Investigating the benefits of restricting the inves-

tigated areas for more precise results, while maintaining sufficient training data, war-

rants further exploration.

In conclusion, this DL framework significantly advances data-driven oceanography

and offers practical solutions for marine variable prediction and quality control.



Chapter 5

PPCon: 1D CNN for Predicting

Biogeochemical Variables

Access to reliable and extensive oceanic measurements remains restricted due to the

challenges of collecting comprehensive observations on multiple temporal and spa-

tial scales, as well as variability in the availability of observations across different bio-

geochemical variables ([17, 26, 60]). The introduction of autonomous oceanographic

instruments such as Biogeochemical (BGC) Argo floats have notably expanded our

ability to obtain subsurface and deep ocean measurements ([253]). BGC-Argo floats

are autonomous profiling platforms that incorporate physical and biogeochemical sen-

sors, allowing to collect time-series of vertical profiles across various sea conditions and

throughout the complete annual cycle ([266, 267]). Strong efforts have been devoted to-

ward the improvement of the long-term reliability and accuracy of autonomous mea-

surements in recent years ([215]).

However, the measurement of biogeochemical variables such as nutrient concentra-

tion and carbonate system variables (e.g., nitrate, chlorophyll, and pH) remains more

demanding and expensive compared to physical variables (e.g. temperature, salinity)

and oxygen. In fact, among the BCG sensors, oxygen is the most commonly measured

variable: there have been approximately 250, 000 oxygen profiles collected worldwide,

which is twice the number of profiles for chlorophyll, and more than four times the

number of profiles for nitrate and bbp700 (https://biogeochemical-argo.org).

By being able to predict low-sampled variable profiles from high-sampled ones, we can

unlock the full potential of the Argo observing system. This enhances our understand-

ing of the behavior of biogeochemical variables by augmenting the original dataset

with synthetic (yet reliable) profiles.
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5.0.1 Research Question

One of the primary messages this Thesis aims to provide is that different types of

oceanographic data require distinct architectures to effectively extract knowledge from

them. When the task involves predicting a punctual output, an MLP architecture is a

suitable choice. However, for predicting vertical profiles using a vertical profile dataset,

an architecture that directly infers the complete vertical profile proves to be beneficial.

This approach takes advantage of architectures like the CNN that operate on vector

inputs instead of individual points.

In this chapter, our investigation centers on a key question:

• Does employing a CNN architecture enhance the prediction accuracy for low-

frequency sampled variables derived from high-frequency data, when the train-

ing dataset comprises vertical profiles?

To address this question, we have developed a CNN-based architecture and concen-

trated on the following aspects:

• The accuracy of low-frequency variable predictions by a CNN model trained on

BCG-Argo float vertical profiles.

• The performance variability of the CNN across different geographic regions and

seasons.

• A comparative analysis of prediction quality between the new CNN model and

the previously used Multi-Layer Perceptron (MLP) model for variables that both

methods can predict.

• The extent to which our method increases the number of low-frequency sampled

vertical profiles in the BCG-Argo dataset.

Related Works

Existing ANN-based techniques to infer low-sampled variables starting from high-

sampled ones are based on MLP architecture ([1, 169, 215, 216]), as described in Sec-

tion 4.4. This kind of DL method is also the one investigated in Chapter 5, which is

trained used a dataset originating from cruise measurements. Despite their widespread

use, applications based on MLPs currently lack awareness of the typical shape of bio-

geochemical variable profiles they aim to infer. When these methods are employed to



76

forecast profiles from Argo float measurements (which is the objective of this Chap-

ter), they may generate jumps and irregularities, in the reconstruction. This originates

from the fact that MLPs are trained on individual data points and provide pointwise

outputs, which makes the generation of regular profiles challenging as the NN is not

aware of the vertical neighbors of predicted variables.

Contribution

In this study, we evaluate the effectiveness of a one-dimensional (1D) CNN model ([65])

for predicting nutrient vertical profiles from input data such as sampling time, geolo-

cation, and profiles of temperature, salinity, and oxygen, using Argo float measure-

ments as the training dataset. This approach, called PPCon (Predict Profile Convolu-

tional) is applied to generate synthetic profiles of nitrate, chlorophyll, and backscatter-

ing (bbp700). Thanks to the intrinsic spatial-aware nature of its CNN architecture, PP-

Con can leverage the typical shape of vertical profiles of a variable as a prior constraint

during training. PPCon predictions are characterized by lower error with respect to the

one obtained with MLP while showing also smoother predictions and the disappearing

of phenomena such as gaps and irregularities in the generation of vertical profiles.

Structure of the Chapter

This Chapter is organized as follows: Section 5.1 presents the dataset utilized for train-

ing the DL (DL) architecture, including its key characteristics. Subsequently, Section 5.2

provides a detailed overview of the PPCon approach, encompassing the architecture,

preprocessing techniques applied to input data, and the specialized loss function em-

ployed for network training. In Section 5.3, we outline the specific experimental set-

tings employed to enable complete reproducibility of the PPCon architecture. Sec-

tion 5.4 presents a summary of the key results obtained during the experimental cam-

paign we conducted to validate our proposed techniques, and Section 5.5 discusses

them. Finally, Section 5.6 presents the conclusions drawn from our work and direc-

tions for future research.

5.1 Dataset: the Argo GDACs

The data used to train and test the architecture discussed in this paper comes from

the Array for Real-time Geostrophic Oceanography (Argo) program [64], specifically
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the Argo float collecting also biogeochemical variables (BCG Argo float). This pro-

gram is an important part of the Global Ocean Observing System (GOOS) (https:

//www.goosocean.org/) and is dedicated to monitoring changes in the temperature

and salinity of the upper ocean. The Argo program was primarily designed to ob-

serve pressure, temperature, and salinity (conductivity) within the upper 2000 meters

of the ocean. However, due to advancements in float and sensor technologies, newly

developed sensors now enable profiling floats to accurately observe biogeochemical

properties. Over the past decade, there has been a consistent and substantial increase

in the number of biogeochemical profiles obtained through BGC-Argo float platforms.

For instance, by 2011, the global ocean had accumulated approximately 45, 000 BGC-

Argo profiles across all parameters, while, by 2017, this number had risen to almost

390, 000 profiles. Thus, the BGC-Argo floats network has become a crucial component

of the ocean observing system, enabling the monitoring, understanding, and prediction

of changes in the ocean ecosystem. As of now, the Argo program has amassed over 2

million data profiles, and analysis of this data has made significant contributions to

basic research as well as national and international climate studies [268].

Our investigation specifically centers on the dataset made available by the Argo Global

Data Assembly Centers (GDACs) (e.g., Coriolis, NOAA, among others), which dis-

seminate Delayed Mode (DM) data procured from 11 data centers situated across 9

countries. DM data undergoes a more exacting quality control process and is typically

released a few months later to their sampling [269]. GDACs also supply Real-Time

Mode (RT) data, however, given the lower quality of RT data, our analysis is based

only on available DM data.

Our model was trained using data from the Mediterranean basin collected between

2015 and 2020. To ensure the data’s reliability, we only selected profiles that were

marked with quality flags (QFs) of 1, 2, or 8 for variables such as temperature, salinity,

nitrate, and chlorophyll. Furthermore, we applied a preprocessing step on the bbp700

variable based on the study by [270], which introduced a new set of real-time quality-

control tests for this variable, as so far no procedures have been agreed upon to quality

control bbp700 data in real-time. Specifically, we applied three of the procedures intro-

duced in this work to bbp700 profiles: the missing-data test, which detects and flags

profiles that contain a substantial amount of missing data; the high-deep-value test,

which flags profiles with unusually high bbp700 values at depth; and the negative-BBP

test, which flags data points or profiles with negative bbp700 values.

https://www.goosocean.org/
https://www.goosocean.org/
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5.2 PPCOn: Profile Prediction Convolutional NN

CNNs have emerged as a prominent architecture ([102]). While the two-dimensional

(2D) CNN architecture is designed to extract spatial features from two-dimensional

data such as images ([101]), the 1D CNN is specifically designed to extract tempo-

ral features from one-dimensional sequential data such as signals or time series data

([271]). Due to their streamlined and efficient configuration that employs only 1D con-

volutions (scalar multiplications and additions), 1D CNNs offer advantages in terms of

real-time processing and cost-effectiveness for hardware implementation. ([65]).

This section introduces the PPCon architecture, which is primarily a 1D CNN with ad-

ditional MLPs employed to transform punctual data into a vectorial shape - necessary

for the training of the convolutional component. The input variables for PPCon in-

clude sampling data, geolocation, temperature, salinity, and oxygen, while the output

variables comprise vertical profiles for nitrate, chlorophyll, and BBP. Despite using the

same architecture, a separate model is trained for each output variable, and different

hyperparameters (number of epochs, weights of the loss function, and so on) are set

for each of them. This separate tuning is necessary due to some intrinsic differences

such as the numerosity of the training set and the variable ranges. The hyperparame-

ters are tuned manually by comparing performance on the test set composed of unseen

data, based on a fitness metric to be introduced later. A specific loss function is specifi-

cally designed to promote good performances, generalization capabilities, and smooth

predictions.

5.2.1 Input Preprocessing

TABLE 5.1: The MLP component of the PPCon model illustrated in diagram form.

All the 4 MLPs used in the PPCon architecture share the same architecture.
Layer Output Size Activation Function
Input [32, 1] -
Linear [32, 80] SELU
Linear [32, 140] SELU
Linear [32, 200] SELU
Output [32, 200] -

The data considered for feeding the DL architecture comprises a collection of measure-

ments, where each input-output pair consist of the information collected by a singular

float profile. The inputs consist of two distinct data categories, punctual and vectorial.

Punctual data encompasses temporal and geospatial parameters, such as the sampling

date (specifically year and day), geolocation, and geographic coordinates (latitude and
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FIGURE 5.1: Illustration of the PPCon architecture.

longitude), while vectorial data encapsulates profiles of temperature, salinity, and oxy-

gen, as recorded by the float instruments. Given that the 1D CNN architecture operates

only on vectorial input data, a coherent transformation of punctual features into vecto-

rial ones is required.

In this regard, we leverage an MLP architecture that accepts punctual input and trans-

forms it into vectorial form. MLPs are employed in order to enable the NN to automat-

ically learn how to weigh differently the importance of such punctual input features

in correspondence of different levels of depth. A separate MLP is trained for each of

the four pointwise inputs. The MLP architectures have the same number of layers and

neurons contained in these layers (Table 5.1), since there are no a priori reasons to make

them different.

During training, the weights of the MLP are optimized along with the weights of the 1D

CNN architecture. As the MLP operates as a non-linear function, this training approach

enables the creation of a mapping between punctual input and its vectorial equivalent.

This enables PPCon to effectively exploit punctual information and achieve optimal

learning outcomes. The output vectors generated by the MLP are concatenated with

the remaining vectorial input, yielding a seven-channel tensor that serves the input of

the PPCon architecture.

5.2.2 PPCon Architecture

The convolutional component of the PPCon architecture, summarized in Table 5.2, is a

DL model comprising multiple 1D convolutional and deconvolutional layers.
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TABLE 5.2: The convolutional component of the PPCon model illustrated in diagram
form.

The key attributes of the NN are outlined, encompassing parameters, output size
(represented as [batch size, number of channels, input length]), as well as any

additional layers. More specifically, ”BN” denotes the batch normalization layer,
”SELU” represents the non-linear selu() activation layer, and ”DP” indicates the

presence of a dropout layer (the dropout rate is the same for each layer and is 0.2). )
Layer Kernel Stride Padding Output Size Add. Details
Input - - - [32, 7, 200] -
Conv. 1D 2 1 2 [32, 64, 203] BN, SELU, DP
Conv. 1D 2 2 1 [32, 128, 102] BN, SELU, DP
Conv. 1D 4 1 1 [32, 128, 101] BN, SELU, DP
Conv. 1D 4 1 2 [32, 128, 102] BN, SELU, DP
Deconv. 1D 2 2 2 [32, 128, 200] BN, SELU, DP
Conv. 1D 3 1 1 [32, 128, 200] BN, SELU, DP
Deconv. 1D 2 2 1 [32, 64, 398] BN, SELU, DP
Conv. 1D 2 2 1 [32, 32, 200] BN, SELU, DP
Conv. 1D 3 1 1 [32, 1, 200] BN, SELU
Output - - - [32, 1, 200] -

The input to the PPCon architecture consists of four point-wise inputs — latitude, lon-

gitude, day, and year — which are transformed into a vectorial input using an MLP

architecture. In addition, the architecture uses for the training three 1x200 input vec-

tors representing the profiles of temperature, salinity, and oxygen.

The input tensor has a 1-dimensional shape, with a total number of channels equal to

7, one for each of the three variables to reconstruct.

The architecture includes a total of nine layers, each of which applies a set of filters to

the input tensor. These filters are designed to detect specific features or patterns, with

the number and size of the filter kernels specified by the parameters of each layer. To

enable effective feature extraction across different scales, various stride parameters are

employed to specify the step size at which the filters are applied to the input tensor.

To ensure that the output tensor has the same shape as the input tensor, padding pa-

rameters are incorporated, adding zero padding to the borders of the input tensor. The

output tensor is then normalized through a batch normalization ([272]) layer after each

convolutional layer. The normalization process ensures that the output tensor has a

mean of zero and a unit variance, thereby minimizing the effect of covariate shifts and

enhancing the stability of the training process. Following normalization, the output

tensor is passed through a scaled exponential linear unit (SELU) activation function
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([273]), which is defined as:

f (x) =

λx if x ≥ 0

λα(ex) if x < 0
(5.1)

where and λ ≈ 1.0507 and α ≈ 1.6732. SELU has been selected as an activation function

as it induces self-normalization properties. Dropout layers ([274]) are also incorporated

to prevent overfitting during training, promoting robust generalization and enhancing

the NN ability to learn diverse features from the input data. These layers randomly

drop out some of the network neurons, with the specific probability of dropout (dr)

specified for each layer in the architecture’s hyperparameters.

The final convolutional layer produces a 1-channel output tensor, which represents the

final prediction of the model.

5.2.3 Loss Function

The choice and design of a loss function is a crucial step in the development of DL

models, as it determines the objective to be optimized during training and can have a

significant impact on the model’s ability to generalize to new data. Besides the abil-

ity to reproduce skilfully output variable profiles, we want the PPCon architecture to

mitigate overfitting and produce a smooth prediction curve.

To fulfill these objectives, we define a loss function comprising three components: first,

the Root Mean Square Error (RMSE) between the target output and the PPCon architec-

ture’s prediction, to assess prediction quality. Second, to mitigate overfitting phenom-

ena, a regularization term known as λ-regularization is employed, which penalizes

complex curves in proportion to the square of the model’s weights ([275]). By promot-

ing smaller weight values, this technique encourages the generation of more general

predictions. The severity of this penalty is determined by a multiplicative factor λ,

which is a hyperparameter of the model. The final component of the loss function

is incorporated to promote the generation of a smoother output curve. This term, con-

trolled by a hyperparameter α, serves as a regularization technique that penalizes sharp

variations in the output. The final loss formula is as follows:

L(y, ŷ) =
n

∑
i=1

(yi − ŷi)
2 + λ

N

∑
i=1

|θi|+
n−1

∑
i=1

(ŷi+1 − ŷi)
2 (5.2)

where y represents the target value, ŷ the output of PPCon model, n the length of both

y and ŷ and N the total number of weights of the DL architecture.
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5.3 Experimental Study

This section presents the experimental settings for the PPCon architecture, which are

defined for each predicted variable under consideration. The complete code for the

reproducibility of the results presented in this paper is available at the following URL:

https://github.com/gpietrop/PPCon.

Our experimental campaign aims to evaluate our model’s ability to recreate the vertical

profiles of variables with low sampling frequency by feeding high-frequency sampled

data into the proposed architecture. We will examine the proficiency of our neural

network through two key approaches: first, by calculating the RMSE between the pre-

dicted and original profiles, and second, by providing a visual depiction of the gener-

ated profiles to observe how accurately the network reproduces these vertical profiles.

Additionally, to further validate the robustness of our model, we will investigate its

performance on an external validation dataset. This dataset will include float cycles

that the network has not previously encountered either in the training or in the testing

phase, offering an assessment of its predictive capability in novel scenarios.

5.3.1 Training

We divided the dataset into three subsets: training, testing, and validation. The train-

ing set was used for model training and parameter optimization. The testing set was

utilized to evaluate the model’s performance on unseen data and assess its generaliza-

tion ability. Finally, the validation set was employed for hyperparameter tuning and

model selection. The dataset was randomly partitioned, ensuring that each subset con-

tained a representative distribution of the overall data characteristics. The sizes of the

training, testing, and validation sets were chosen as 80, 10, and 10. This approach en-

abled us to assess and validate the performance of our model effectively. Moreover,

before operating this partition, a few float instruments have been selected and all of

their measurements have been excluded from both the training, test, and validation

set. These samples will be used as an external validation dataset. The metrics and the

performances over this external validation dataset are a more effective indicator of the

generalization capabilities of the PPCon model with respect to the metrics on the test

set.

In order to train the NN model efficiently, the input dataset is partitioned into mini-

batches, where each minibatch contains 32 samples. The batch size, which determines

the number of samples processed before updating the model weights, is a hyperparam-

eter that must be set prior to training. By processing multiple samples in a minibatch,

https://github.com/gpietrop/PPCon
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#samples #epochs batchsize dropout rate λ α

nitrate 2337 50 32 0.2 0.001 0.001
chlorophyll 3189 150 32 0.2 0.0001 0.0001
BBP 3942 100 32 0.2 1e−7 1e−7

TABLE 5.3: Summary of PPCon hyperparameters and dataset sizes for all inferred
variables.

the model can update its parameters more frequently, which can lead to faster con-

vergence and improved generalization performance ([276]). Once all the mini-batches

have been processed by the optimization algorithm, the model has completed an epoch

of training.

Adadelta ([277]) is the algorithm that is selected as the optimizer for training the net-

work due to its ability to dynamically adapt over time using only first-order informa-

tion. This method eliminates the need for manual tuning of the learning rate and has

been found to exhibit robustness in the face of noisy gradient information, various data

modalities, different model architecture choices, and hyperparameter selection.

Let us recall that the PPCon architecture includes a 1D CNN and four MLPs, which

convert point-wise input into a vector form suitable for use by the CNN. The MLPs

and the CNN component of PPCon were trained using the same optimizer, with con-

current weight updates across all networks. This approach enables the joint learning

of optimal information transfer from point-wise input to vector form, as well as the

accurate generation of predicted profiles based on the input tensor.

To accelerate the training process, the model was trained using a GPU (graphics pro-

cessing unit), which allowed for parallelized computation of the forward and backward

passes.

The model’s performance was evaluated once every 25 epoch by assessing its ability to

predict outcomes on the test set, which consists of previously unseen data. To prevent

overfitting and minimize computational burden, we introduced an early stopping rou-

tine. Specifically, the training was interrupted if the error metrics on the validation set

increased for two consecutive evaluations (i.e., after 50 epochs of training). The final

model selected was the one trained prior to the two consecutive test loss increases.

5.3.2 Experimental Settings

Since each output variable has intrinsic differences in training set size, range of val-

ues, and profile shapes and variabilities, a separate hyperparameter tuning step is per-

formed for each of them. These hyperparameters were tuned using a systematic search
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over a range of values, guided by the performance of the model on a held-out valida-

tion set. To avoid overfitting in the test set, we employed cross-validation techniques

to estimate the generalization performance of the model and selected the hyperparam-

eters that yielded the best performance.

The hyperparameters used for training the three PPCon architectures are summarized

in Table 5.3, together with the size of the dataset, the total number of epochs performed,

and the batch size dimension which have been already discussed in previous sections.

In our experiments, we applied a dropout rate of 0.2, which was consistent across all

trained models. This means that during training, each neuron in the NN has a 20%

chance of being randomly excluded from the computation. Dropout regularization is a

technique used to prevent overfitting by encouraging each neuron to encode informa-

tion independently, thereby inhibiting co-dependencies among neurons.

Table 5.3 also reports the multiplicative factors that determine the relative contributions

of different elements that compose the loss function defined in Section 5.2.3. The val-

ues of these hyperparameters vary depending on the variable being inferred, as these

variables have different orders of magnitude and result in RMSE values that vary in

magnitude as well. It is crucial to accurately balance the regularization term, governed

by λ, and the smoothness term, governed by α, to prevent them from dominating the

loss function’s RMSE component. The optimal values reported in Table 5.3 guarantee a

good and smooth prediction of the vertical profile.

The last implementation detail to be addressed concerns the creation of vectors used

to feed the PPCon architecture. As previously discussed, vectorial inputs of different

natures are fed into the CNN component of PPCon: firstly, the outputs of an MLP archi-

tecture; secondly, vectors representing input variables (temperature, salinity, oxygen)

at different depths. To ensure that all input vectors have the same length, we adopted

the following strategy: (i) the output and input variables have been interpolated on

a regular grid of size 200, and (ii) the output of MLPs have the same length and dis-

cretization of the input variable vectors. For nitrate, we considered a depth range of

0 to 1000 meters with an interpolation interval of 5 meters, whereas, for chlorophyll

and BBP, we considered a depth range of 0 to 200 meters with an interpolation interval

of 1 meter. Then, we set the output layer dimension of the MLP to 200 to ensure that

all input vectors have the same length. As a result, the final dimension of the input

tensor is 7 (the number of inputs) x 200 (the length of the input vector) x the number of

dimensions in the training set.
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North West Med. South West Med. Tyrrhenian Ionian Levantine
Latitude 40◦N − 45◦N 32◦N − 40◦N 37◦N − 45◦N 30◦N − 45◦N 30◦N − 37◦N
Longitude −2◦E − 9.5◦E −2◦E − 9.5◦E 9.5◦E − 15◦E 14◦E − 22◦E 22◦E − 36◦E

TABLE 5.4: Geographical limits of the five areas in which is divided the Mediterranean
for the posterior analysis.

FIGURE 5.2: Histograms representing the distribution of the training samples over
different season and different geographic areas.

5.3.3 A Posterior Validation Analysis of PPCon

To validate the PPCon architecture, we will conduct a thorough analysis of its average

performance in different geographic areas and across various seasons. The choice un-

derlying this investigation originates from the fact that diverse geographic areas and

seasons are known to possess distinct profile properties, such as the shape of the ver-

tical profiles (e.g., depth and slope of the nitracline, or depth and intensity of DCM)

and the values at the surface and in deep water. Our goal is to evaluate the model’s

ability to accurately capture these variations. We want to stress again that the model

is trained on the entire dataset, and this division is purely for a posteriori analysis of

the performances. This a posteriori analysis of the performances has the objective to

identify possible influence and bias of the uneven spatial and temporal distribution of

the profiles on the performance of the PPcon model.

Five different geographic areas are considered, namely: Northern West Mediterranean,

Southern West Mediterranean, Tyrrhenian, Ionian, and Levantine. The geographical

limits related to these variables are reported in Table 5.4. Moreover, Figure 4.6 reports a

visual representation of those limits, displayed directly on the Mediterranean Sea area.
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FIGURE 5.3: Profiles of nitrate for some selected floats (WMO numbers in the title) and
dates.

Comparison between measured profile (green lines), MLP reconstruction (azure
dashed lines), and PPCon reconstruction (blue dash-dotted lines). Profiles are from the

subset used for the test.

WMO Date Latitude Longitude

Nitrate
6901653 24/07/2014 41.85 4.55
6901769 20/12/2016 39.11 10.96
6901771 18/10/2015 36.01 20.12

Chlorophyll
6902901 10/10/2019 42.91 7.62
6901776 13/04/2014 42.79 7.01
6901773 19/09/2017 32.93 31.24

bbp700
6901657 13/02/2019 39.80 7.23
6901776 20/09/2014 42.76 7.25
6903240 20/05/2018 42.20 28.57

TABLE 5.5: WMO, date, and geolocation of the float profiles reported in Figure 1 − 3.

To gain a comprehensive understanding of how the model performs across different

seasons, we conducted an analysis of four distinct time periods: winter (January to

March), spring (April to June), summer (July to September), and autumn (October to

December).

Figure 5.2 offers valuable insight into the distribution and variability of the training

samples specific to each geographic region and season. This information can be partic-

ularly useful for post-analysis purposes, as it sheds light on the amount of information

that the PPCon architecture possesses for a given region and season and such insights

are essential for justifying the model’s predictive capabilities.



87

FIGURE 5.4: Profiles of chlorophyll for some selected floats (WMO numbers in the
title) and dates.

Comparison between measured profile (green lines) and PPCon reconstruction (blue
dashed lines). Profiles are from the subset used for the test.

FIGURE 5.5: Profiles of bbp700 for some selected floats (WMO numbers in the title)
and dates.

Comparison between measured profile (green lines) and PPCon reconstruction (blue
dashed lines). Profiles are from the subset used for the test.

FIGURE 5.6: Boxplot representing the RMSE of PPCon prediction in the test set.
The box represents the RMSE distribution computed above all the profiles belonging

to a fixed geographic area and a fixed season
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FIGURE 5.7: Comparison of the mean of PPCon predicted profiles with the mean mea-
sured by the float instruments in the test set.

The mean is computed over all the profiles belonging to a fixed geographic area and a
fixed season

FIGURE 5.8: Plot of the RMSE distribution with respect to the data variability and
training dataset size

The different sub-areas are displayed through different colors of the symbols and
different seasons are displayed through different symbol fill patterns. RMSE values

are categorized by the size of the symbols.

5.4 Results

This section presents the results of the PPCon model in predicting nitrate, chlorophyll,

and bbp700 profiles. The effectiveness of the model is evaluated by presenting both

quantitative skill metrics (i.e., RMSE) and visual representations of the predicted pro-

files based on the test set.

Specifically, we will assess the PPCon performance over different seasonal variations

(Table 5.6), and different geographic areas (Table 5.7). The absence of overfitting is
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Nitrate Chlorophyll bbp700

Winter
Train 0.640 0.082 2.561e−4

Test 0.665 0.098 2.571e−4

Spring
Train 0.591 0.129 3.101e−4

Test 0.610 0.134 2.691e−4

Summer
Train 0.570 0.069 1.871e−4

Test 0.615 0.067 1.941e−4

Autumn
Train 0.631 0.045 2.211e−4

Test 0.640 0.045 1.971e−4

TABLE 5.6: RMSE calculated between the float measurements and the reconstructed
values obtained from the PPCon architecture for all variables inferred.

This metric is evaluated individually for the train and test sets. The RMSE is
computed for different seasons of the year (described in Section 5.1).

Nitrate Chlorophyll bbp700

North Western Med
Train 0.514 0.119 2.661e−4

Test 0.531 0.139 2.641e−4

South Western Med
Train 0.637 0.103 2.501e−4

Test 0.643 0.098 2.581e−4

Tyrrhenian
Train 0.706 0.074 3.871e−4

Test 0.704 0.075 2.831e−4

Ionian
Train 0.426 0.051 2.051e−4

Test 0.445 0.047 2.081e−4

Levantine
Train 0.680 0.055 1.731e−4

Test 0.718 0.051 1.791e−4

TABLE 5.7: RMSE calculated between the float measurements and the reconstructed
values obtained from the PPCon architecture for all variables inferred.

This metric is evaluated individually for the train and test sets. The RMSE is
computed for different geographic areas (described in Section 5.1).

supported by reporting the RMSE for both the training and test sets, which exhibit

not-dissimilar values.

In terms of performances across different geographic areas (Table 5.7), it can be seen

that the lowest RMSE values for chlorophyll and bbp700 are in the eastern sub-basins,

while for nitrate the lowest and highest values are in the two eastern sub-basins. No-

tably, the prediction accuracy for nitrate is significantly higher in the Ionian Basin,

with RMSE values below 0.5. Considering the temporal evolution of RMSE values (Ta-

ble 5.6), the highest values of chlorophyll and bbp700 are in spring and winter, which

appears reasonable given the higher variability of vertical pattern during these seasons

([254, 255]). Errors for nitrate are pretty homogeneous among the seasons, which are

the highest during winter (e.g., vertical mixing season) and the lowest values during

the stratification seasons (i.e., spring and summer). As for chlorophyll, the western

basin of the Mediterranean shows higher RMSE values. This can be attributed to the
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naturally elevated chlorophyll levels observed in that specific area, which consequently

lead to higher RMSE values.

For each variable investigated, we present three instances of vertical profile reconstruc-

tion using the PPCon architecture, compared to the profile measured by the float in-

strument whose corresponding identification number is indicated above each profile.

To ensure geographic and seasonal diversity, we have selected profiles representing

different regions, including at least one from the West Mediterranean and one from the

East Mediterranean. Figure 5.3-5.5 displays examples of, respectively, reconstructed

nitrate, chlorophyll, and bbp700 profiles. For the nitrate variable, is also reported the

reconstruction performed by the MLP model ([1]). The information related to these

profiles, such as the date and geolocation of sampling, are reported in Table 5.5.

The obtained results confirm the quality of the profiles generated by the PPCon archi-

tecture, which appears to better reconstruct the shape and smoothness of the profiles

than the previous MLP architecture. Indeed, PPCon is able to capture different profile

shapes associated with different geographic and seasonal conditions, as clearly demon-

strated by the predicted nitrate and chlorophyll profiles. Higher quality in the predic-

tion is achieved for the nitrate variable, followed by chlorophyll, and last by bbp700.

This outcome is expected, as the nitrate variable exhibits lower variability in the values

and profile shapes than the other two variables. For a more detailed analysis of the

behavior of the PPCon architecture quality of the predicted profiles, Figure 5.7 reports

a comparison between the mean of PPCon predicted profiles and the mean of profiles

measured by the float instruments (in the test set) for all investigated variables, provid-

ing a more specific insight on the PPCon performances in different geographic areas

and seasons.

Figure 5.6 displays boxplots of the RMSE obtained by the PPCon model when predict-

ing profiles belonging to the test set. Each individual box within the figure signifies the

distribution of RMSE values computed across profiles within a consistent geographic

area and a fixed season. These results confirm what is already observed with Tables 5.6-

5.7. The quality of the prediction is lower in the Southern West Mediterranean, and this

is coherent with the dataset training samples distributions displayed in Figure 5.2. One

interesting observation that arises from these plots regards the uniformity observed

among these boxplots across distinct seasons. This uniformity extends to both the rela-

tive positioning of different boxes—indicating which area’s predictions outperform the

others—and the breadth of these boxes—indicating the distribution of RMSE values

and the extent to which prediction quality varies across different areas.

Figure 5.7 presents a comparison between the mean values of the PPCon predicted

profiles and the mean values of the sampled measurements obtained from the float
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Nitrate Chlorophyll bbp700
6901648 0,4288 6901648 0,1739 6901649 2,6231e−4

6901764 0,4583 6901496 0,0878 6900807 1,5071e−3

TABLE 5.8: RMSE calculated between the float measurements and the reconstructed
values obtained from the PPCon architecture over the external validation dataset.

instruments in the test set. This comparison encompasses all the variables examined.

The mean values are computed based on the profiles within a specific geographic area

and season. These profiles serve as additional indicators to assess the reliability of

predictions within different frameworks, providing valuable insights into the precision

of predictions at various depth levels. These results confirm the previous observations,

particularly the finding that the prediction quality is superior for the nitrate variables,

followed by chlorophyll, and lastly, bbp700. Additionally, an interesting characteristic

of the PPCon prediction is its higher quality in deep water compared to surface water.

This can be attributed to the higher variability of profiles in the surface water, making

it more challenging for the NN to accurately capture the diverse shapes.

In order to understand the impact of the training set numerosity and of the variability

of profiles on the quality of the PPCon predictions we investigated the relation between

these quantities and the PPCon error. Specifically, Figure 5.8 reports points whose size

corresponds to the prediction RMSE (divided according to the four seasons and the

five geographic areas) and their relation with the variability of the training set (on the

x-axis), quantified by the standard deviation, and the numerosity of the training set (on

the y-axis). This figure offers also valuable insight into the geographical and seasonal

distribution of the training d The analysis of the nitrate plot reveals pretty homoge-

neous errors across all sub-areas and seasons, suggesting a lack of a strong relationship

between errors and variability or data availability. In terms of chlorophyll and bbp700,

both variables exhibit similar behavior. In particular, data availability appears to have

no significant impact on the error, whereas RMSE tends to increase proportionally with

the variability.

5.4.1 PPCOn performance over an external validation dataset

For each inferred variable, Figures 5.9-5.11 display Hovmöller diagrams of measured

and reconstructed float instruments belonging to the external validation set, and Ta-

ble 5.8 reports the correspondent RMSE values. This represents a particularly stringent

validation test since no one of the profiles measured by these floats have been encoun-

tered by the PPCon model during the training or validation phases. The figures com-

pare the in situ float measurements (upper diagram) and the predictions generated by
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FIGURE 5.9: Hovmöller diagrams for the nitrate of two selected floats (WMO name in
the title) belonging to the external validation set.

BGC-Argo measurements (upper panels) and PPCon prediction (lower panels) are
compared. WMO 6901648 sampled the 40◦N − 42◦N and 2◦E − 6◦E area during

2014 − 2016, whereas WMO 691764 sampled the 31◦N − 34◦N and 26◦E − 40◦E area
during 2015 − 2017.

FIGURE 5.10: Hovmöller diagrams for the chlorophyll of two selected floats (WMO
name in the title) belonging to the external validation set.

BGC-Argo measurements (upper panels) and PPCon prediction (lower panels) are
compared. WMO 6901648 sampled the 40N − 42N and 2E − 6E area during

2014 − 2016, whereas WMO 6901496 sampled the 42N − 43N and 7E − 12E area
during 2013 − 2014.

the PPCon architecture (lower diagram) for floats that have been specifically selected

to cover different geographical regions of the Mediterranean Sea (e.g., one in eastern

and one in the western Mediterranean Sea) White lines in the diagram indicate float

measurements that cannot be compared due to various reasons such as the sensor’s

momentary inability to measure the specific variable inferred or the absence of one of

the inputs necessary for the PPCon architecture (e.g. at least one between temperature,

salinity, and oxygen). This could be attributed to limitations in the sensor or unac-

ceptable quality flags associated with the collected data. Nevertheless, the number of

profiles that can not be calculated by PPCon is pretty low and it does not degrade the

very good capability of the reconstructed profiles to reproduce the temporal evolution

of the vertical dynamics shown by the measured floats.
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FIGURE 5.11: Hovmöller diagrams for the bbp700 of two selected floats (WMO name
in the title) belonging to the external validation set.

BGC-Argo measurements (upper panels) and PPCon prediction (lower panels) are
compared. WMO 6901649 sampled the 39◦N − 41◦N and 3◦E − 7◦E area during

2014 − 2016, whereas WMO 6900807 sampled the 41◦N − 44◦N and 29◦E − 35◦E area
during 2014 − 2018.

These plots confirm the PPCon capability of performing accurate prediction also re-

garding float devices which are totally unseen by the model. The nitrate (Figure 5.9)

reconstructions exhibit a very good performance of PPCon in predicting the vertical dy-

namics associated with the temporal evolution of the nutricline depth (i.e., the depth

at which the sharp increase of the nitrate values is observed), the values in the deep

layers (which are different in the sub-areas sampled by the two floats), and the oc-

currence of deep vertical mixing when surface concentration increase to values higher

than 3mmol/m3. Particularly impressive is the capability of PPCon to reconstruct the

temporal dynamics of chlorophyll (Figure 5.10). The reconstruction effectively captures

the evolution of the chlorophyll surface peaks during winter and the formation of the

deep chlorophyll maximum during summer in both floats representing the two areas

of the Mediterranean Sea. Among the three variables, the bbp700 (Figure 5.11) shows

the least accurate predictions. However, the model still displays the ability to infer

the key characteristics of the variable’s temporal behavior. Nonetheless, the generated

predictions for bbp700 appear slightly less detailed compared to the original sampling,

indicating a partial limitation of the model in capturing small-scale variations.

Quantitatively, the prediction quality of the PPCon architecture (RMSE values in Ta-

ble 5.8 are pretty aligned with the metrics calculated over the test set, as indicated in

Table 5.7. In particular, nitrate errors of the two floats are pretty homogeneous and

30% lower than the RMSE values of the test set. The errors in chlorophyll and bbp700

predictions exhibit greater variability, with values almost double for the floats in the

western Mediterranean with respect to the eastern ones. This is, however, in line with

results reported in Table 5.7, and Figure 5.8 where higher errors are associated with

higher variability.
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5.5 Discussion

To our knowledge, the PPCon architecture is the first attempt to predict vertical BGC-

Argo profiles by means of a convolutional architecture. Its primary objective is the

incorporation of typical profile shapes during the training phase, in contrast with pre-

vious architectures which all relied on MLP architectures and point-wise strategy.

Moreover, the posterior study that we conducted shows that is no significant variation

in the error across different geographic areas and seasons of the year (Table 5.6-5.7),

confirming that PPCon can be successfully applied to all the float profiles collected in

the Mediterranean basin.

Specifically, the PPCon architecture serves as a valuable tool for significantly enriching

the BGC-Argo dataset. This became useful as ocean observing systems - while essential

for the monitoring of the health of the marine ecosystem ([26]) - have large limitations

given their sparse and scarce space-temporal coverage. Surface satellite observations

are limited by cloud covers and incomplete swaps of satellite sensors ([278]) while pro-

filing the ocean interior is limited by the capacity of deploying and retrieving sensors

and measurements with sufficient coverage. Gap filling and interpolation of satellite

observations ([279], [280, 281]) are nowadays consolidated practices to provide gap-

free and high-level products ([226, 282]). Our PPCon architecture presents a valuable

approach to harness the potential of the Argo and BGC-Argo network by enabling the

synthetic generation of essential variables (chlorophyll, nitrate, and bbp700) even when

these costly sensors are not present in the deployed floats. The application of PPCon

on the GDACs BCG-Argo float dataset (spanning from 2015 to 2020) enabled the gen-

eration of 5234 synthetic nitrate profiles, 3879 chlorophyll profiles, and 3307 bbp700

profiles, which means doubling the chlorophyll and bbp700 BGC-Argo profiles and

more than triple those of nitrate. Enhancing the float dataset through the inclusion of

reconstructed nutrient profiles (and possibly other biogeochemical variables) has been

demonstrated successful in observing system simulation experiments ([283, 284]) and

in real assimilation numerical experiments (Amadio et al., (2023)). In particular, the as-

similation of reconstructed profiles effectively corrects a widespread positive bias ob-

served in the Operational System for Short-Term Forecasting of the Biogeochemistry of

the Mediterranean (MedBFM), and the addition of the reconstructed profiles increase

the spatial impact of the BCG-argo network from 20% to 45% (Amadio et al., (2023))
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5.6 Final Considerations

This Chapter presents a novel approach for reconstructing low-sampled variables, namely

nitrate, chlorophyll, and bbp700, using high-sampled variables such as date, geoloca-

tion, temperature, salinity, and oxygen. The introduced model, named PPCon, utilizes

a spatial-aware 1D CNN architecture that effectively learns the characteristic shape of

the vertical profile, enabling precise and smooth reconstructions. PPCon represents

a notable advancement over previous techniques relying on MLPs, which operate on

point-to-point input and output, making it challenging to generate continuous curves

when forecasting complete vertical profiles. The training dataset consists of a collection

of BGC-Argo float measurements in the Mediterranean basin. The proposed architec-

ture has been specifically designed to handle both punctual and vectorial input, with

careful tuning of the architecture and loss function for the task. An extensive hyper-

parameter tuning phase has been conducted to ensure the best architecture for each

variable.

To evaluate the accuracy of the profiles generated by the PPCon architecture, both

quantitative metrics and visual representations of the results have been provided. Ad-

ditionally, the method has been validated on an external dataset to verify its genera-

bility. The results confirm the model’s ability to predict high-quality synthetic profiles,

with particularly accurate predictions for the nitrate variable, followed by chlorophyll,

and lastly, bbp700. The RMSE for nitrate reconstruction is reduced from RMSEMLP =

0.87 to RMSEPPCon = 0.61. PPCon demonstrates its capability to capture and learn

distinct typical shapes in the profiles, which characterize the inferred variables across

different seasons and geographic areas. Detailed error analysis confirms the model’s

robust performance, accounting for seasonal and regional variations, suggesting that

PPCon’s ability to learn these differences can make it successful for broader-scale train-

ing beyond the Mediterranean basin. Furthermore, the model exhibits accurate perfor-

mance on an external validation dataset, confirming its capability for generalization.

The PPCon architecture serves as a valuable tool for significantly enhancing the BGC-

Argo dataset, thereby improving our capacity to observe and comprehend the ocean

and its changes effectively.



Chapter 6

GANs for Integrating Deterministic

Model and Observations.

Improving the capability of monitoring and forecasting the status of the marine ecosys-

tem has important implications (e.g. sustainable approaches to fishing and aquacul-

ture, mitigation of pollution, and eutrophication), especially considering the changes

caused by human activities ([26]).

An unprecedented improvement in monitoring the oceans has arisen from satellite sen-

sors in the 90s and in situ autonomous oceanographic instruments. Satellites cover with

high resolution the whole marine domain but only at the surface and they suffer from

cloud cover. The marine domain can be monitored also through automatic devices,

introduced in Chapter 3, i.e. Argo-floats. Float instruments provide profiles of the wa-

ter column but their number is not sufficient to cover exhaustively the ocean surface.

As an example, figure 6.1 shows the spatial distribution of the float profiles collected

during 2015 over the entire Mediterranean sea. Hence, observational data available are

spatially sparse, and with a scarcity of series spanning more than a few decades.

Deterministic physical-biogeochemical models have been exploited to simulate the ma-

rine environment, as they can provide reanalyses and predictions for the whole 3D

domain. However, uncertainties in parameterization and input data and high compu-

tational costs can impact their reliability and applicability.

The current state-of-the-art deterministic marine ecosystem modeling integrates obser-

vations (e.g. satellite ocean color, BGC Argo float) with ocean model through data as-

similation methods ([285]). The incorporation of ML techniques offers alternative and

stimulant opportunities for advancing the capacity of integrating theory, knowledge,

and observations to simulate the marine environment ([158]).

96
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Research Question

The principal research questions addressed in this chapter are as follows:

• Can a DL model integrate diverse data types, such as those provided by de-

terministic models, satellite, and in-situ observations, effectively leveraging the

strengths of each method?

• Is the proposed DL model capable of accurately replicating 3D marine fields?

Specifically, does it replicate the patterns of horizontal sections and the typical

shapes of vertical profiles, accounting for variations across different geographic

areas and seasons?

• Can the DL model learn from observed variables and, through the designed ar-

chitecture, transfer this knowledge to variables that are not measured?

To evaluate these questions, we will:

• Conduct an experimental analysis to determine if the deep learning approach

can effectively assess the spatial and temporal variability of physical and biogeo-

chemical variables.

• Analyze non-in-situ measured variables to see if the architecture can transfer in-

sights from measured variables to them.

Contributions

The DL method proposed in this work is based on the approach of filling missing pixels

of a considered image, which is a well-known and extensively studied computer vision

task, often referred to as image inpainting [286]. Since this method has been created

specifically to synthesize visually realistic, coherent, and semantically plausible pixels

for missing regions, the idea is to exploit its architecture to assemble a model capable

of skilfully reconstructing the physical and biogeochemical variables and also to fill the

information gap typical of the inhomogeneity of in-situ and satellite observations. This

approach is tested in the Mediterranean Sea, where a rich collection of model, satellite,

and in-situ data are already available: a validated model [287], 1km-resolution satellite

data from Copernicus [288] and in-situ BGC-Argo floats [255].

Specifically, our method is composed of two DL models. The first DL model, referred

to as EmuMed, harnesses Generative Adversarial Networks (GAN) ([111]) and is struc-

tured upon an inpainting architecture ([133]). EmuMed derives spatial and temporal
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relationships among marine ecosystem variables from the output of the deterministic

model MedBFM, exploiting the inherent architecture of the DL model. The second DL

model, denoted as InpMed, extends EmuMed by incorporating additional observations

while retaining the same architectural framework as EmuMed.

We will represent the 3D marine domain by dividing it into horizontal maps at various

depths: essentially, the 3D domain is modeled using 2D maps. Therefore, it’s crucial to

choose an architecture that capitalizes on the spatial horizontal relationships present in

variables from the same horizontal field

Based on these considerations a 2D CNN-based architecture seems the more suitable

for dealing with this kind of spatial data since these networks conserve the spatial struc-

ture of the input.

The central concept underlying our approach was to transform horizontal maps of the

designated domain into imagery that mirrors the marine environment, akin to photog-

raphy. In this context, traditional RGB channels are replaced by channels that represent

various marine variables. In standard imagery, the three color channels exhibit a strong

interdependence, as they work in tandem to generate a broad spectrum of colors. Anal-

ogously, we endeavor to establish an inherent and robust interrelation among marine

ecosystem variables, given their natural correlations and dependent on each other.

Then, considering that dealing with in-situ measurements leads also to the aforemen-

tioned problem of the insufficient spatial coverage of information, an architecture ca-

pable of filling areas where measurements are missing becomes essential. These ad-

ditional considerations lead us to choose a convolutional architecture specifically con-

structed to deal with inpainting tasks above horizontal sections of the marine domain.

Challenges

Modeling marine ecosystem variables using DL presents several challenges, which

have already been introduced in Chapter 3. Here the ones that influence mostly the

choice adopted for the learning architecture and the training are mentioned again, for

a more in-depth discussion the reader is remanded to Chapter 3.

• Marine datasets encompass four dimensions, namely: temporal (time), vertical

(depth), and two horizontal (latitude and longitude). These dimensions are dis-

tinguished by varying scales and units, with horizontal and vertical spatial di-

mensions measured in kilometers and meters, respectively.
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• The number of variables that our model must be able to predict can become ex-

tremely large considering the large amount of physical and biogeochemical com-

ponents that are necessary for a satisfactory understanding of the marine ecosys-

tem dynamics.

• The DL architecture is chosen and designed to be suitable for merging two types

of information of different nature, i.e. the output of a deterministic model and

datasets of observations. This architecture should be also able to spread local in-

formation provided by the in-situ measurement, to update the model not only in

the precise location where the measurement has been performed but also around

its neighborhood.

• Unlike other ML applications, we cannot rely on ground-truth data. Indeed, the

deterministic model is just an approximation of the marine ecosystems, with the

observations providing only a very sparse and incomplete picture of it.

Structure of the Chapter

The chapter is structured as follows: in Section 6.1, the particulars of the DL architecture

are introduced, encompassing the network structure, the employed loss function, and

other essential details aimed at ensuring the complete reproducibility of the proposed

model. Section 6.2 provides an overview of the experimental context. This encom-

passes defining the specific boundaries of the domain under study, its discretization,

and the selection of hyperparameters which led to the convergence of the DL model.

Proceeding to Section 6.3, the obtained results are presented, both in terms of visual rep-

resentation of the reproduced domain and through the application of statistical mea-

sures. Section 6.4 houses the principal discussions arising from the results obtained.

Lastly, Section 6.5 concludes and outlines potential avenues for improvement in future

research.

6.1 Material and Method

In this section, we describe our DL model, divided into two parts: EmuMed and InpMed.

The model’s architecture, along with details like the training process and loss function,

is presented in Section 6.1.1. Section 6.1.2 focuses on the EmuMed component. Lastly,

we discuss the InpMed component in Section 6.1.3.
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FIGURE 6.1: Map of the float measurements over the Mediterranean Sea collected dur-
ing the year 2015.

6.1.1 DL Architecture

The models introduced in this work are based on a convolutional inpainting architec-

ture [133], which is in turn based on GANs. In this paper, we will consider an inpaint-

ing model composed of three interacting convolutional NNs: the completion network

used to complete the image; the global discriminator, and the local discriminator, which

are two auxiliary networks. The completion and the discriminators compete in a two-

player game, where simultaneous improvements are made to both of them during the

training phase. Thus, while the completion network learns how to fill the holes in a

realistic and coherent way, discriminators are trained to understand whether or not the

provided input has been completed. The improvement of the completion implies a

betterment of the discriminators’ performance; and vice-versa, the improvement of the

discriminators’ capability to recognize completed input implies a rise in the completion

performance, to fool the discriminators.

Completion Network. The completion network is a convolutional NN, consisting of

17 layers, as detailed in [133]. The architecture exploits an encoder-decoder technique

that initially decreases the resolution of the input features to reduce the computational

effort and then restores the original resolution. Like in the image generation task, the

input of the completion network is an RGB image with binary channels, where 1 indi-

cates that a mask is applied to the input pixel, and the output is an RGB image, properly

completed.

The core characteristics of this architecture are summarized in Table 6.1. This table

shows that the architecture consists of convolutional, deconvolutional, and dilated

convolutional layers ([289]). Dilated layers are favored because they expand the area

each layer considers as input without adding more trainable parameters, which keeps

the computational cost manageable. Dilated convolutions introduce a new parameter
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TABLE 6.1: Completion architecture details illustrated in diagram form.

The key attributes of the NN are outlined, encompassing parameters, output size (i.e.
number of output channels), as well as any additional layers. More specifically, ”BN”

denotes the batch normalization layer and ”SELU” represents the non-linear selu()
activation layer. )

Layer Kernel Stride Dilation Output Size Add. Details
Conv. 2D 5 1 1 64 BN, SELU
Conv. 2D 3 2 1 128 BN, SELU
Conv. 2D 3 1 1 128 BN, SELU
Conv. 2D 3 2 1 256 BN, SELU
Conv. 2D 3 1 1 256 BN, SELU
Conv. 2D 3 1 1 256 BN, SELU
Dilated Conv. 2D 3 1 2 256 BN, SELU
Dilated Conv. 2D 3 1 4 256 BN, SELU
Dilated Conv. 2D 3 1 8 256 BN, SELU
Dilated Conv. 2D 3 1 16 256 BN, SELU
Conv. 2D 3 1 1 256 BN, SELU
Conv. 2D 3 1 1 256 BN, SELU
Deconv. 2D 4 1 2 128 BN, SELU
Conv. 2D 3 1 1 128 BN, SELU
Deconv. 2D 4 1 2 64 BN, SELU
Conv. 2D 3 1 1 32 BN, SELU
Output. 2D 3 1 1 3 SELU

called the dilation rate, which specifies the gap between values in a kernel. From a

mathematical point of view, a 2-D dilated convolution can be defined for each pixel as

follows ([106]):

y(m, n) =
M

∑
i=1

N

∑
j=1

x(m + r × i, n + r × j)w(i, j) (6.1)

where y(m, n) is the pixel component of the output of dilated convolution from the

pixel component of input x(m, n) and a filter w(i, j) with the length and the width of

M and N respectively. The parameter r is the dilation rate. If r = 1, a dilated con-

volution turns into a normal convolution. In dilated convolution, a small kernel with

dimensions k × k is expanded to a larger size, specifically k + (k − 1)(r − 1), using a di-

lated stride of r. This expansion permits the flexible gathering of multi-scale contextual

information while maintaining the original resolution of the input.

In contrast to other architectures that employ multiple pooling layers to reduce reso-

lution, our network model reduces resolution only twice. It achieves this by utilizing

strided convolutions, reducing the image size to 1
4 of the original. This approach is

crucial for preserving sharp textures in the missing regions, avoiding the issue of blur-

riness ([290]).
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TABLE 6.2: Local Discriminator architecture details illustrated in diagram form.

The key attributes of the NN are outlined, encompassing parameters, output size (i.e.
number of output channels), as well as any additional layers. More specifically, ”BN”
denotes the batch normalization layer and ”RELU” represents the non-linear ReLU()

activation layer.
Layer Kernel Stride Padding Output Size Add. Details
Conv. 2D 5 2 2 64 BN, RELU
Conv. 2D 5 2 2 128 BN, RELU
Conv. 2D 5 2 2 256 BN, RELU
Conv. 2D 5 2 2 512 BN, RELU
Conv. 2D 5 2 2 512 BN, RELU
Fully Conn. - - - 1024 RELU

TABLE 6.3: Global Discriminator architecture details illustrated in diagram form.

The key attributes of the NN are outlined, encompassing parameters, output size (i.e.
number of output channels), as well as any additional layers. More specifically, ”BN”
denotes the batch normalization layer and ”RELU” represents the non-linear ReLU()

activation layer.
Layer Kernel Stride Padding Output Size Add. Details
Conv. 2D 5 2 2 64 BN, RELU
Conv. 2D 5 2 2 128 BN, RELU
Conv. 2D 5 2 2 256 BN, RELU
Conv. 2D 5 2 2 512 BN, RELU
Conv. 2D 5 2 2 512 BN, RELU
Conv. 2D 5 2 2 512 BN, RELU
Fully Conn. - - - 1024 RELU

Discriminator Networks. Two discriminators play against the completion network

introduced above: the global discriminator and the local discriminator. The former

tests the reliability of the input in its entirety, while the latter focuses on smaller areas,

thus paying more attention to details. The discriminators take as input the complete

image (adequately re-scaled), both of them are implemented using convolutional NNs

followed by a fully connected layer producing a real-valued vector as output. The

detailed architecture selected for the discriminators is reported in Table 6.2-6.3.

The global context discriminator takes the entire image as input. It’s composed of

six convolutional layers and one fully-connected layer, which generates a single 1024-

dimensional vector. The local context discriminator follows a similar pattern, but it

takes in a smaller image patch, specifically the initial input resolution is half of that for

the global discriminator, and thus the first layer used in the global discriminator isn’t

needed here. In both cases, the output is a 1024-dimensional vector representing the

context information either globally or locally around the completed region.
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Finally, the two resulting vectors are concatenated and passed again as input of a fully-

convolutional layer, that returns a continuous value indicating the probability that the

provided input is real or fake.

Training. The completion network accepts both an image and a mask as input, with

the mask using binary values to indicate which pixels need to be filled in. Prior to com-

mencing the pixel completion task, the first step of the completion network involves

replacing the region in the training image that requires completion with a constant

color. This color corresponds to the mean pixel values found within the entire dataset.

This preliminary step significantly enhances the NN performance.

The loss function employed to train the completion network, introduced in [135], is the

weighted MSE defined as follows:

L(x, Mc) = ||Mc ⊙ (C(x, Mc)− x)||2 (6.2)

where Mc is the completion region mask, x is the input image, C(x, Mc) denote the com-

pletion network, ⊙ stands for the pixel-wise multiplication and || · || is the Euclidean

norm. Furthermore, the GAN loss [111] is used for training together completion and

discriminators network. While discriminators aim to maximize the average of the log

probability of real images and the log of the inverse probability for fake images, the

generator aims to minimize the log of the inverse probability predicted by the discrimi-

nator for fake images. Therefore, the generator tries to minimize the following function

while the discriminator tries to maximize it:

min
C

max
D

E[log D(x, Md) + log(1 − D(C(x, Mc), Mc))] (6.3)

where Md is a random mask, D(x, Md) is the discriminator’s estimate of the proba-

bility for the real input x with mask Md to be real, D(C(x, Mc)) is the discriminator’s

estimate of the probability for the fake input x to be real, and E indicate the average

over the training input. Finally, taking in account both Equation 6.2 and Equation 6.3,

the resulting loss function is:

min
C

max
D

E[L(x, Mc) + log D(x, Md) + αlog(1 − D(C(x, Mc), Mc))] (6.4)

where α is a fixed hyperparameter. The training of the algorithm, which is schematized

in Algorithm 2, consists of three main phases: during phase 1 the completion network

is trained among all the features of the training set for TC epochs; then, during phase 2,

the completion network is fixed and the discriminator network is trained for TD epochs;
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Algorithm 2 Pseudocode of the training steps for the DL architecture underlying EmuMed,
and, consequently InpMed.

1: for t = 0 . . . TC do ▷ phase 1
2: for all x in the training set do
3: Generate masks Mc with random holes.
4: Compute C(x, Mc).
5: Update completion network weights through Equation 6.2.
6: end for
7: end for
8: for t = 0 . . . TD do ▷ phase 2
9: for all x in the training set do

10: Generate masks Mc with random holes.
11: Compute D(x, Md) and D(C(x, Mc), Mc).
12: Update discriminator network weights through binary cross entropy loss
13: end for
14: end for
15: for t = 0 . . . TCD do ▷ phase 3
16: for all x in the training set do
17: Generate masks Mc with random holes.
18: Generate masks Md with random holes.
19: Compute D(x, Md) and D(C(x, Mc), Mc).
20: Update discriminator network weights through binary cross entropy loss.
21: Update completion network weights through Equation 6.4.
22: end for
23: end for

finally, during phase 3 both the completion network and the discriminators are trained

at the same time for TCD epochs.

6.1.2 EmuMed

The EmuMed is the first-step model that we present in this paper, named after the fact

that it behaves as an emulator (meaning that it is learning information from) of the

deterministic biogeochemical marine model MedBFM [38, 287]. The architecture un-

derlying EmuMed is the one presented in Section 6.1.1: a generative convolutional NN

trained through adversarial loss. The input (tensors) employed for the training are ob-

tained from a discretization of data generated through a simulation of the deterministic

model. These tensors represent 2-dimensional maps of a fixed region of the Mediter-

ranean Sea (here, with the term map we denote a horizontal section of the region at a

fixed depth). The role that pixels accomplished for the image completion task is carried

out by rectangles that represent a discretization area of the Mediterranean Sea, while

the standard RGB channels are substituted with channels that contain values repre-

senting the oceanographic physical and the biogeochemical variables that we aim to

reproduce. Thus, EmuMed consists of a generative model capable of reconstructing the
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relationship between biogeochemical variables for the Mediterranean Sea domain con-

sidered. Among the strengths of this DL model with respect to the classic deterministic

one, we annoverate, firstly, that the convolutional intrinsic structure combined with

the choice of assigning a channel to each marine variable, allows the creation of an in-

trinsic link between them, that leads to a capability of capture biological and chemical

interactions. Notice that EmuMed is significantly less computationally expensive com-

pared to the deterministic model, as obtaining a prediction for a certain variable does

not require a complete simulation.

6.1.3 InpMed

InpMed is the second step of the model presented in this chapter, obtained starting from

EmuMed and then performing a further training phase adding both in-situ measure-

ments collected by the float devices and by satellite sensors. This additional training

phase is performed according, again, to phase 1 of the Algorithm 2 described in Sec-

tion 6.1.1. The weights of EmuMed are updated to fit these new data.

In this model, the loss is computed once more employing Equation 6.2. However,

in this instance, the mask is applied in all regions except where observational data

is present. As a result, the model undergoes an automatic enhancement in its per-

formance solely based on the available observational data. The reduction in the loss

signifies the model’s increasing capability to simulate observations effectively.

InpMed ensures an improvement in the simulating capability of the model, as the con-

volutional structure guarantees the distribution of information provided by observa-

tion.

Another crucial point is that there are certain marine indicators that are not measured

either through in-situ devices or via satellite sensors, such as the primary production,

which prediction can be improved anyway by taking advantage of a combination of the

ML architecture and of the observed data. In fact, thanks to the convolutional structure,

observations concerning measured variables (e.g. temperature, oxygen, and so on) do

not only update the model weights among their channel but improve the prediction

with respect to all the variables considered including the unobserved ones. Relations

between variables are learned through the training of EmuMed; subsequently, InpMed

exploits the information provided by the measured variables and the relations learned

from the deterministic model to improve the prediction for both the measured variables

and the ones that cannot be measured.
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TABLE 6.4: Experimental settings values concerning the DL architecture. Horizontal
lines separate: common parameters, EmuMed parameters and InpMed parameters.

Parameter Value
Completion input size 30 × 65 × 75
Local Discriminator input size 20 × 50 × 50
lrc 0.01
lrd 0.01
Tc 5000
Td 200
Tcd 1000
α 4 × 10−4

lr f loat 0.001
Tf loat 200

TABLE 6.5: Experimental settings values concerning the definition of the input struc-
ture.

Parameter Value
time interval weekly
latitude interval 36◦ − 44◦

longitude interval 2◦ − 9◦

depth interval 0 − 600 m
time resolution weekly
latitude resolution 12 km
longitude resolution 12 km
depth resolution 20 m

6.2 Experimental Setting

The geographical area considered in this work is the western Mediterranean portion,

specifically, the one with latitude ranging between 36 and 44 and longitude varying be-

tween 2 and 9 and the vertical dimension covers a depth ranging from 0 to 600 meters.

It consists of the portion between southern France and northern Africa, delimited on

the east limit by Corsica and Sardinia and on the west limit by Balearic islands. The

spatial resolution is 12 km in both latitude and longitude axes and 20 meters in the

vertical one. The time period covers the year 2015 which is discretized on a weekly

basis. Therefore, the 4-dimensional input tensor consists of a horizontal map, of the

central-western Mediterranean Sea area, whose dimensions are: length, height, width,

and channel. Each channel of the tensor, in turn, collects one marine ecosystem vari-

able. Namely, the variables considered are temperature, salinity, oxygen, chlorophyll-a,

and primary production. All the variables can be obtained via the deterministic model

MedBFM, while only the first four are collected via float measurement (Anywayas it

is not possible to measure primary production via any sensor), and only chlorophyll-a
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FIGURE 6.2: Surface chlorophyll maps for weeks 21 and 33: (a) generated by MedBFM
and (b) reconstructed via DL model.

can be inferred through satellite. Each location in the 3D field has 5 variables asso-

ciated and a time resolution of one week is used (thus, 52 weekly observations are

available). Due to their nature, each float provides a 1D profile, where latitude and

longitude are fixed and only the depth can change. Finally, since satellites can observe

only the surface of the water, they provide 2D data (with spatial gaps due to cloud

cover). Thereby, the 5 variables are positioned in a 3D field and 52 weekly snapshots

are available, float observations are a given number of 1D profiles where latitude and

longitude are fixed and only depth changes and satellite observations are 2D maps of

the surface with holes due to the cloud covers. For the training of EmuMed, we used

the following hyper-parameters (summarized in Table 6.4): the completion network

is trained for 5000 epochs, the discriminator network is trained for 200 epochs, and

finally the two networks are trained simultaneously for 1000 epochs. These hyperpa-

rameters have been fixed after an appropriate preliminary study. The optimizer chosen

is ADADELTA [277], which sets the learning rate for each weight in the network auto-

matically. The learning rate initial value for both the completion and the discriminator

is set to 0.01. Subsequently, InpMed is trained for 200 epochs with a learning rate value

set initially to 0.01.
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FIGURE 6.3: Temperature maps at 60 meters and 400 meters depths: (a) produced by
MedBFM, (b) reconstructed using the DL model, and the difference between them

6.3 Experimental Results

To assess the goodness of the proposed reconstruction, the analysis focuses on the qual-

ity of the reconstruction of the map of some of the inferred variables and on some sta-

tistical properties (averages and variances) of the simulated fields.

In particular, Figure 6.2 reports maps of the surface chlorophyll demonstrating InpMed

capability to emulate the intense spatial variability of surface chlorophyll fields. Given

the significant variability observed in horizontal surface chlorophyll layers—a variabil-

ity that surpasses other variables studied—we selected chlorophyll to evaluate the DL

model’s proficiency in mimicking spatial distribution. To assess the DL model’s effi-

cacy in capturing the diverse patterns of the chlorophyll variable across seasons, we

present two maps corresponding to distinct times of the year. One map depicts the

chlorophyll surface during week 21 (May) and the other during week 33 (August). The

May map reveals pronounced values in the Gulf of Lion and along the Algerian cur-

rent in the southern region. In contrast, the August map illustrates the typical summer

conditions, marked by subdued values and smaller patches. The DL model (as seen in

the right column) effectively replicates these characteristics.

Figure 6.3 reports another visual representation of the results, depicting a comparison

of temperature maps generated by the deterministic model and the ones generated

by the DL model proposed. To further investigate the model’s behavior at different

depth levels, the comparison includes maps illustrating temperature distribution in the
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Week 2

(a) (b) (c)

(d) (e)

Week 35

(a) (b) (c)

(d) (e)

FIGURE 6.4: Vertical profiles of the spatial averages over the considered domain. Vari-
ables represented are: (a) temperature, (b) salinity, (c) oxygen, (d) chlorophyll, (e) pri-

mary production.
The gray line represents the MedBFM model predictions, the orange line represents
the EmuMed predictions, and the green represents the InpMed predictions. First row

reports results relative to week 2 (winter), second row is relative to week 35 (summer).
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FIGURE 6.5: Box-plots showing the distributions of the standard deviation of the ma-
rine variables computed from the spatial maps at different depths.

From top to bottom are shown, respectively, temperature, salinity, oxygen,
chlorophyll, and primary production. For the first three, the mean is computed over

600m, and for the last two is computed over the first 200m. The box plot with the
median gray line represents MedBFM, while the box plot with the green median line
represents InpMed. From left to right are shown, respectively, week 1, week 10, week

20, and week 30.

uppermost layer (approximately 60 meters) and in a deeper layer (around 400 meters).

To provide a clearer view of the distinctions between the deterministic predictions and

the DL model’s outputs, the figure also presents a map highlighting the differences

between the two. The higher the difference, the higher the uncertainty of the DL model

in emulating the deterministic one.

Figure 6.4 shows the vertical profiles of the spatial averages among two given weeks

of the year (e.g., one in winter and one in summer), assessing the capability of the

technique to simulate different periods for all modeled variables. These plots compare
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the original deterministic model MedBFM profile with the EmuMed and InpMed recon-

structions, showing the benefits provided by the different architectural components.

The benefit can be judged by the fact that InpMed distances EmuMed showing that in-

formation from observations was integrated.

Finally, Figure 6.5 compares, via box-plot, the distributions of the standard deviation of

the spatial variability of MedBFM and InpMed. Four weeks of the year are displayed in

order to show how the spatial heterogeneity of the marine proprieties varies through-

out the year and how it is successfully handled by InpMed. In particular the differences

show the impact of the integration of new information from observations.

6.4 Discussion

Regarding the model’s ability to infer distinct horizontal surface layers, performance

was evaluated using a variable (chlorophyll) characterized by complex and high hor-

izontal variations. The results affirm that the DL model effectively captures the dis-

tinct horizontal distributions typical of different periods of the year. The DL model

accurately discerns the elevated presence of chlorophyll during spring compared to

autumn, and it also identifies the regions where chlorophyll concentration is higher in

both seasons. However, it’s worth noting that the DL model appears to generate images

with smoother patches than the deterministic model. This observation may suggest the

need for enhancing the model’s capacity to infer fine details in the horizontal compo-

nent.

As for the model’s capacity to replicate the horizontal field of variables at different

depth levels, the results obtained with temperature first indicate that the model suc-

cessfully reproduces variations in domain shape at varying depths. An analysis of

difference distribution highlights that the DL model is more adept at replicating the

distribution of variables with depth than that observed at the surface. This is likely

attributed to the fact that, in the Mediterranean Sea, the behavior of water temperature

changes with depth, adhering to a pattern commonly observed in many oceans and

seas. The uppermost layer of the Mediterranean Sea, often referred to as the mixed

layer, experiences the most pronounced temperature variations. This layer is directly

affected by solar radiation and is subject to seasonal fluctuations. In contrast, the deeper

layers of the Mediterranean Sea exhibit a higher level of temperature stability. The rate

of temperature change with depth becomes significantly slower in this region. This ob-

servation applies not only to temperature but also extends to all the predicted variables.

Another observation arising from these plots is the DL model’s relatively weaker per-

formance near the coastlines: in fact, even if the overall structure looks quite realistic,
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the difference between the deterministic model and the one proposed increases signif-

icantly in the coastal areas, where the variability is higher. This effect is a consequence

of the employed architecture, as learning near the image borders in CNNs poses more

significant challenges due to reduced receptive fields. Again, this observation applies

to all the predicted variables.

Results show that the EmuMed has learned well to reproduce the typical mean vertical

profiles, simulated by MedBFM, for all variables but salinity (Figure 6.4). Deviations of

InpMed from EmuMed profiles (e.g., orange and green lines in oxygen, chlorophyll, and

primary production in Figure 6.4) highlight how the inclusion of the observations in the

ML architecture introduced possible corrections (i.e., new information) to the MedBFM

simulated fields. Temperature shows that the inclusion of observations had a marginal

effect while salinity shows that observations bring InpMed profiles closer to MedBFM

highlighting a possible inaccurate reconstruction of EmuMed, that anyway is corrected

in the second phase of the training, confirming the added values of the two-step archi-

tecture implemented in InpMed. Regarding the spatial variability of horizontal fields of

marine variables, maps of Figure 6.2 show qualitatively the good performance of the

ML reconstruction. From a quantitative point of view, the comparison of the standard

deviation boxplots (Figure 6.5) shows that the spatial variability of InpMed is generally

higher than MedBFM for all variables in all selected weeks. This highlights that, when

observations are included in the reconstruction, the ML model InpMed simulates hori-

zontal fields characterized by more spatial structures, possibly due to the effect of the

integration of observations.

A separate comment can be done for primary production (i.e., a variable that is not

observed). Despite the mean vertical profiles are not substantially changed by ML ar-

chitecture (Figure 6.4), it is possible to notice that the InpMed model differs from the

EmuMed even if, during the training, no observed data have been provided for primary

production. The fact that the variability introduced by the observed variable is clearly

propagated by InpMed can be also observed in Figure 6.5. This evidence confirms that

information provided by observed data has an effect on the InpMed capability to simu-

late the unobserved variable, thanks to the relations among variables learned from the

output of the deterministic model by the DL architecture exploited.

In terms of the overall structure, employing multiple channels in CNNs allows for the

simultaneous prediction of various biogeochemical variables. This approach enhances

the capacity of the DL model to gather a broader range of information and to distribute

that knowledge among different variables. To the best of our understanding, this rep-

resents the first endeavor to model multiple biogeochemical variables simultaneously,

while also merging the results of a deterministic model and observations concurrently.
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In the current phase, we have opted for a 2D CNN instead of a 3D CNN mainly for

computational efficiency, though this choice doesn’t permit the most effective dissem-

ination of information across different depth levels. To fully exploit the potential for

learning and make the most of the available information, it would be worthwhile to

consider the use of a 3D architecture.

6.5 Final Considerations

We investigated the integration of an existing ecosystem deterministic model with in-

situ and satellite information through a convolutional generative DL architecture. This

case study limited to a restricted area of the Mediterranean aims to demonstrate the

reliability of ML reconstruction for marine ecosystem variables and to show how the

different components of the ML architecture contribute to the reconstruction quality.

Merging these two different kinds of information allows us to combine their strengths

and exploit them to lessen each other’s limits. We remark that a DL model can also be

less computationally expensive, once trained, with respect to a deterministic one, as it

does not require an entire simulation in order to get specific variable estimations (e.g.,

primary production). Such a comparison will be one of the aspects that will be investi-

gated in future studies. Moreover, exploiting the intrinsic structure of the architecture,

the learning framework makes possible the spread of information provided from the

observed variables (temperature, salinity, oxygen, chlorophyll) also to variables that

are not possible to directly collect via in-situ or satellite measurements (e.g., primary

production). Experimental results on both EmuMed and ImpMed have confirmed the va-

lidity of the proposed approach, showing that our models can infer correctly informa-

tion from the deterministic model and, in the case of ImpMed, also from observations.

This work represents the first step to exploiting DL architecture aimed at merging large

deterministic model output with observations to reconstruct the marine ecosystem’s

temporal and spatial variability. Our main goal will be to extend this architecture by

inserting a larger number of channels, exploiting this architecture to model unobserved

variables (as we did for primary production). The extension of the present ML model

to the entire Mediterranean Sea represents another important computational challenge

given the significant increase in data volume to handle.



Chapter 7

Discussion and Conclusion

In recent years, our understanding of ocean state and variability has witnessed signif-

icant improvements. This progression is attributed to three factors: an unprecedented

capability of getting observations, novel data-driven methods (particularly NN), and a

substantial boost in computing resources.

The oceanography field today benefits from an abundance of data sources: determinis-

tic model-generated outputs, satellite-derived measurements, and in-situ oceanographic

instrument readings. These vast data sources naturally lend themselves to the applica-

tion of DL methods. The significance of data in training DL models is evident – a richer

dataset typically leads to an improvement in the model’s accuracy.

However, the vastness of oceanographic data also brings its set of challenges. Deter-

ministic models provide a comprehensive view of physical and biogeochemical vari-

ables across the marine domain. Yet, these models, being simulations, can sometimes

be inaccurate due to uncertainties in their formulation and parameterization. On the

other hand, while observational data is often more accurate, it is constrained in terms

of spatial and temporal coverage.

Dealing with this complex set of oceanographic data requires innovative solutions. This

thesis proposes and evaluates various NN architectures to address these challenges,

focsed on the biogeochemistry of the Mediterranean Sea.

In Chapter 4, is presented a method that enables the prediction of low-sampled biogeo-

chemical variables using scalar point-based inputs. In contrast, Chapter 5 proposes a

transition to vectorial data, resolving the same challenge of the previous chapter but

directly predicting vertical profiles. Finally, Chapter 6 expands the dimensionality by

employing a 2D CNN to predict outcomes in a 3D domain.
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7.1 Final Discussion

The ability to predict low-sampled variables from high-sampled ones offers a signifi-

cant opportunity. It not only enhances our understanding of biogeochemical variables

within the Mediterranean Sea but also unlocks the full potential of the observing sys-

tems.

For instance, within cruise-based measurements and datasets derived from Argo floats,

variables like temperature, oxygen, and salinity are more frequently observed. Pre-

dicting additional marine variables based on these frequent observations can provide

comprehensive datasets, substantially enriching our knowledge of the Mediterranean’s

biogeochemistry.

However, the structure of datasets containing observations varies depending on how

observations are collected. Given this variability, it’s crucial to design architectures that

optimally extract the information within the input features. The goal is to maximize the

potential of their characteristics and provide meaningful predictions for low-sampled

variables.

When it comes to predicting low-sampled variables using input from a cruise mea-

surements dataset (such as EMODnet, described in Chapter 4), an MLP approach is

essential due to the dataset’s scalar nature.

This MLP methodology can also be effectively applied to Argo-float datasets. By lever-

aging individual entries from the vertical profiles as scalar input features, we can pre-

dict an entire vertical profile. Starting with Argo-floats equipped with sensors for tem-

perature, salinity, and oxygen, it becomes feasible to predict profiles of additional vari-

ables such as nitrate, phosphate, silicate, alkalinity, chlorophyll, and ammonium.

A visual representation of profiles predicted by the MLP model described in Chapter 4

is illustrated in Figure 5.3, which shows a comparison between measured profiles, MLP

reconstruction and PPCon reconstruction.

The MLP model’s predictions exhibit overall good performance, closely capturing the

characteristic shape of nitrate profiles. Moreover, the model reproduces the expected

nitrate values within the deeper layers in 2 out of 3 examples.

In addition to the visual comparison, an evaluation of the skill metrics for the recon-

structed BGC-Argo nitrate profiles confirms the MLP model’s capability in inferring

vertical profiles. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)

calculated for approximately 2200 nitrate profiles spanning the period from 2015 to
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2020 amount to 0.75 and 0.87, respectively. These values closely resemble those com-

puted on the test set data, underscoring the model’s quality and its capacity to gener-

alize effectively to an independent and more extensive dataset.

However, upon closer inspection, a potential weakness of the model is evident: the

reconstructed profiles are not as smooth as expected.

This irregularity may result from the model being trained on punctual data, which

could lead to a lack of awareness of the typical shape of biogeochemical variable pro-

files that it aims to infer.

In light of this limitation, an alternative prediction model has been developed, the PP-

Con introduced in Chapter 5, explicitly tailored for Argo float data. This novel model

naturally incorporates information concerning profile shapes in the learning process.

This approach harnesses Convolutional DL architectures, specifically 1D CNN, which

are inherently spatially-aware structures adept at processing structured data. By cap-

italizing on the spatial awareness embedded within CNNs, the model becomes better

equipped to capture the distinctive shapes and seamless variations present in marine

variable profiles.

There are notable distinctions between the two approaches: MLPs were trained on

cruise data, which are known to be more precise in collecting variables than autonomous

sensors such as the BGC-Argo ([248, 291]). However, while MLP architectures can pro-

vide good training and test errors ([1, 169, 215, 216]), they have been found to exhibit

higher errors when predicting BGC-Argo profiles ([1]). In contrast, the PPCon architec-

ture, which relies directly on BGC-Argo float measurements for the training, showed

very good test and external validation performances.

However, it must be noted that an intrinsic measurement error is introduced by the

higher uncertainty of the variables measured throughout the autonomous sensors. We

alleviated this limitation by using only DT and high-quality checked Argo and BGC-

Argo floats data, however, the use of the present PPCon in operational oceanography

([254, 292]) should be considered cautiously given the lower reliability of Adjusted or

near real-time (NRT) Argo data. According to the analysis conducted by [293], the BGC-

Argo float data for oxygen, nitrate, and chlorophyll concentrations exhibit RMSE values

evaluated at 5.1± 0.8µmol/kg, 0.25± 0.07µmol/kg, and 0.03± 0.01mg/m3, respectively.

We have demonstrated that the RMSE for the PPCon architecture is 0.61. Therefore, a

research question pertains to understanding how the measurement error of the float

instrument impacts the performance of the PPCon architecture, and how to estimate

an overall error that combines the contribution of the instrument error and the error

associated with the PPCon.
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Although both MLPs and PPCon employ similar input information (date, geolocation,

temperature, oxygen, and salinity), their treatment of this data differs significantly.

MLPs process the input and output as discrete data points, while PPCon utilizes vector

representations of the vertical profiles. This approach was necessitated to effectively

exploit the potential of a 1D CNN, which intrinsically preserves the characteristic pro-

file shape of the input and output variables [65]. When comparing the predictive per-

formance of these techniques in generating vertical profiles from float data, distinct

differences emerge. MLPs tend to produce profiles characterized by apparently artifi-

cial discontinuity and jumps, while the profiles generated by PPCon exhibit a smoother

and more realistic appearance (Figure 5.3). This improvement is confirmed also by the

RMSE, which is lower when using the PPCon model (RMSEPPCon = 0.61) compared to

the state of the art of MLP architectures (RMSEMLP = 0.87 according to [1]).

Additional significant observations regarding these two methods become evident. While,

on one hand, the MLP model can be harnessed to predict biogeochemical variables us-

ing input data derived from cruise measurements (i.e., discrete inputs) and from the

Argo dataset, the PPCon model allows for the prediction of variables exclusively utiliz-

ing vertical profiles from the Argo dataset as input. The PPCon can not predict starting

from punctual input, thus it can not be applied to datasets such as EMODNet.

While the PPCon model uses variable profile inputs to predict a variable profile output,

the inpainting model introduced in Chapter 6 expands this concept to the 3D compo-

nent. In fact, profiles of BCG-Argo are integrated with a previously trained 3D emulator

to predict a 3D field of biogeochemical variables.

Both architectures leverage CNNs: the former uses a 1D structure, while the latter in-

corporates multiple 2D configurations to represent the horizontal maps of the 3D do-

main.

This design choice stems from the mutual goal of integrating information from neigh-

boring variables through convolutional operators. In the first architecture, the CNN

is tailored to model the vertical relationship (depth). Conversely, in the second, the

emphasis is on the horizontal relationship (latitude and longitude), with vertical di-

mension consistency ensured by the input, namely the deterministic model and the

profiles.

7.2 Conclusion and Future Works

The use of DL in oceanography has witnessed significant growth in recent years. How-

ever, most applications have concentrated on the physical variables of the problem
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rather than biogeochemistry, leaving this scientific area relatively underexplored.

The methodologies presented in this thesis cater to a diverse range of data types and

structures. By adopting a flexible approach, we can harness the full potential of the

available oceanographic data. The results obtained demonstrate not only the feasibility

but also the effectiveness of using NN in this domain. The predictions generated are

both accurate and reliable, making them invaluable for further oceanographic research

and applications.

The thesis seeks to convey an insight that different tasks, datasets, and dimensions of

the problem necessitate distinct DL architectures. It provides empirical evidence of the

potential of DL models to address various oceanographic challenges, such as bridging

the gap between sparsely and densely sampled variables and discovering innovative

ways to integrate observations with deterministic models.

Throughout, we highlight the importance of multivariate relationships among marine

biogeochemical variables. Harnessing these relationships has enhanced predictive ca-

pabilities. This is evident in the first two chapters, where certain variables were used to

predict others. It is also demonstrated in the latter chapters, where these relationships

facilitated the transfer of information from observations to other variables.

Despite the advancements and successes highlighted in this thesis, challenges persist

and there is space for improvements in the design of the models.

The PPCOn architecture, while adept at predicting smoother vertical profiles, is con-

strained by the number of predictable variables due to the limitations of float instru-

ments. On the other hand, the MLP model allows for a broader biogeochemical indica-

tor prediction spectrum. A comprehensive model should expand its predictive scope

beyond the Argo dataset, possibly harnessing theoretical relationships or extracting

properties from more expansive ship-based datasets, integrating them within convolu-

tional paradigms.

Moreover, the reiteration of the DA procedure with the PPCOn dataset is necessary.

The only reason why we performed the DA study using the MLP-generated dataset

was chronological. Given PPCOn’s enhanced synthetic profile quality, we believe that

DA using the PPCOn-generated dataset will provide better results.

The inpainting method’s architecture, which predicts the 3D domain via 2D horizontal

maps at variable depths, might impede vertical information propagation. A possibility

that needs to be investigated in the future is the use of a 3D model, which consequently

can take as input the whole 3D marine domain, avoiding the loss of the information
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provided by the vertical link between variables. While computationally demanding,

the potential model enhancements could be significant.

Additionally, an embedding of the PPCOn and inpainting models is worth exploring.

The PPCOn model, by enhancing the dataset with vertical biogeochemical profiles,

could serve as a valuable training augmenter for the InpMed model. This amalga-

mation could refine deterministic model corrections and amplify efficacy.

In closing, while this thesis provides a comprehensive exploration of NNs in oceano-

graphic data analysis, the journey doesn’t end here. The vastness and complexity of

the oceans demand continuous exploration and innovation.



Appendix A

Combining Neural Networks and

Data Assimilation

The Array for Real-time Geostrophic Oceanography (Argo) programme appears to be

one of the better examples of countries and human resource capacities in working

together to provide global data coverage [253] that supports the investigation of the

present (analysis), future (forecast) and past years (reanalysis) ocean state conditions.

In the last 10 years, the increase of in-situ observations from autonomous platforms

(Johnson et al. 2013 and Johnson and Claustre 2016) has opened up new perspectives

for biogeochemical oceanographers. Indeed, BGC-Argo (biogeochemical Argo, 2023)

has yielded new insights in describing the interior of the global ocean [295] and key

processes such as the deep chlorophyll maximum (Mignot et al. 2014, Barbieux et al.

2019, D’ortenzio et al. 2020, Ricour et al. 2021, and Barbieux et al. 2022), oxygen and

[300], nutrients vertical fluxes (Taillandier et al. 2020 and Wang et al. 2021) and carbon

exports (Dall’Olmo and Mork 2014 and Wang and Fennel 2023).

Among the BGC sensors, oxygen (O2) is currently the most common measured vari-

able, with approximately 270,000 profiles worldwide until now, which is double that of

suspended particles and chlorophyll and more than four times those of nitrate, down-

welling irradiance, and pH (https://biogeochemical-argo.org). Currently, the Global

Data Assembly Centres (GDACs, e.g., Coriolis, NOAA) distributes oxygen data in Real

Time (RT) Adjusted (AM) and Delayed Mode (DM). The quality of AM data is con-

trolled within 24 hours using internationally agreed and automatic quality-control pro-

cedures performed at the surface, along the entire vertical profiles and along the trajec-

tory [305]. DM data are generally distributed a few months later (nearly six months) in

more rigorous form [269].

120
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Major efforts have been devoted to improve the long-term reliability and accuracy of

autonomous O2 measurements [215]. As described in [306] and in [307], raw oxygen

data from floats can have errors of up to 20% in terms of oxygen saturation (at the

surface) due to sensor drift during storage out of the water. By improving the accuracy

up to 5-10%, 1st-order correction methods can correct storage drift by multiplying

the oxygen concentrations with a gain factor derived from a reference dataset [308].

Additionally, oxygen measurements are calibrated using values of saturation at the

surface (in water for the older ones and in air for floats with new sensors, Bushinsky

et al. 2016). Despite correction and calibration progress, [307] and [309] found a drift in

about 25% (mean drift -0.07% per year ) and 70 % (mean -0.12 % per year) of analyzed

floats, respectively. Positive and negative values of drift were found in [248] and [310].

Therefore, the development and dissemination of a post-deployment quality control

(QC) method has been encouraged to avoid spurious results [311] and to distinguish

between ocean signals or trends (e.g., deoxygenation) and potential optode drift.

The combination of in-situ observations and numerical models represents a promising

approach to exploit the BGC-Argo potentialities. Indeed, BGC-Argo data are used for

several BGC modelling tasks such as: (i) model tuning [311], (ii) validation ( Terzić

et al. 2019, Salon et al. 2019 and Wang et al. 2021), and (iii) assessment of the BGC

ocean state and variability through data assimilation (DA) (Cossarini et al. 2019 and

Teruzzi et al. 2021 d’Ortenzio et al. 2021). DA underpins decades of progress in ocean

prediction [241] by increasing the type and number of observational datasets and asso-

ciated uncertainty into a prediction model, and solving problems connected to uneven

distribution and scarcity of the observations [256].

Given their capacity to approximate continuous functions [316], NN algorithms match

specific DA tasks such as bias correction (Kumar et al. 2015 and Zhou et al. 2021), cross

calibration [319], reformulation of observation operators [320] and new product cre-

ation or dataset reconstruction [319]. As an example, ocean color (OC) datasets were

employed to test Multi-Layer Perceptrons (MLP, namely the most common NN) by re-

trieving past and long-term BGC time-series (Martinez et al. 2020, Martinez et al. 2020,

Roussillon et al. 2023). Moreover, in [282], MLP serves to infer vertical BGC distri-

bution from OC. High performance in predicting biogeochemical states (e.g., oxygen)

from physical profiling floats measurements were achieved in [323] for the Black Sea.

In [215], an MLP-NN is used to approximate nutrient concentration and carbonate sys-

tem from physical and oxygen profiles, and the updated version of [169] allows refining

the previous work with the so-called Canyon-b NN method. A configuration to adapt

global Canyon-b NN in the Mediterranean Sea region is developed by [216]. A further

update of the application of the MLP method in the Mediterranean Sea is provided in
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[1], by achieving a lower error in the predictions through a larger training dataset, a

hyperparameter refinement and a two-step quality control of the input data.

In the context of operational oceanography, the biogeochemical modelling component

of the Copernicus Marine Service for the Mediterranean Sea (MedBFM) provides anal-

ysis, short term forecast [313] and long term reanalysis [287], including the assimilation

of satellites Ocean Colour (OC) and BGC-Argo observations [313].

The variational assimilation scheme, 3DVarBio, of MedBFM has evolved over time by

including a greater number of observation types and variables. Starting from the first

release [324], the assimilation has progressively included coastal OC observations [258],

chlorophyll and nitrate profiles from BGC-Argo (Cossarini et al. 2019 and Teruzzi et al.

2021 respectively). Given the growing availability of O2 from BGC-Argo, in this pa-

per we propose an additional upgrade of the MedBFM to include BGC-Argo oxygen

assimilation, with a novel post-deployment quality control, and the integration of NN

reconstructed profiles in the assimilation scheme.

The constant evolution of the observation networks and assimilation capacities requires

an updated understanding of the impact of observation on the numerical model result

[325]. This can be achieved by using the numerical assimilative models in Observing

System Experiments (OSEs) where the impact of existing observations on the model

performance is assessed [326].

In this paper, our OSE experiment, that combines data assimilation and neural network

in a sequential modular approach (hereafter NN-MLP-MED), aims at quantifying how

Argo and BGC-Argo networks can be exploited. Spatial and temporal impacts of the

OSE have been evaluated using classic and new skill performance metrics in three two-

year (2017-2018) numerical experiments performed using the MedBFM coupled with

the 3DVarBio: a control run (HIND) without assimilation; a multivariate run (DAfl)

with assimilation of BGC-Argo chlorophyll, nitrate, and oxygen; and a multivariate

run that also assimilates in-situ observations and reconstructed ones (DAnn).

Given its particular characteristics and the high density of BGC-Argo profiles, the Mediter-

ranean Sea represents an ideal site for OSE experiments to evaluate the potentiality

of the BGC-profiles assimilation. The Mediterranean Sea is an anti-estuarine semi-

enclosed sea characterized by specific physical and biogeochemical dynamics [327],

with a complex horizontal circulation consisting of mesoscale and sub-basins scale gyre

structures, transitional cyclonic and anticyclonic gyres and eddies, influenced by bathy-

metric features interconnected by currents and jets [328]. Despite its relatively limited

extent in the mid-latitude temperate zone, the Mediterranean Sea has a considerable
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BGC variability that can be roughly approximated in an oligotrophic West-East gra-

dient with low nutrient availability at the surface, insufficient to sustain significant

phytoplankton biomass (Siokou-Frangou et al. 2010 and Marañón et al. 2021) and a

deeper nitracline in the east (¿120m) with respect to the west (¡100m). Additionally,

chlorophyll has a particular seasonal cycle with pronounced winter/early spring sur-

face blooms only in the western part and a few locations in the eastern part. During

summer, a deep chlorophyll maximum follows the stratified and oligotrophic condi-

tions at increasing depth moving eastward (¿100m at East and ¡100m in the West) [255].

Dissolved oxygen has a subsurface maximum at about 50m, with higher values in the

west (partly due to the dependence of oxygen solubility on temperature). Noticeable

differences are observed in the intermediate layers where the oxygen minimum ranges

between 300 (west) and 1000 m (east) [331].

The paper is organized as follows. After a brief presentation of the OSE approach,

each component and the experimental setup are described in detail (Section 2). In the

following section (Section 3), we describe the results of the novel NN-MLP-MED and

the assimilation simulations by using different skill metrics to assess model capability

in reproducing the main biogeochemical seasonal dynamics. A discussion of some key

issues involved in the NN and DA is provided in Section 4, then the paper closes with

some final remarks (Section 5).

A.1 Methods

A novel combined Neural Network (NN-MLP-MED) and Data Assimilation (3DVar-

Bio) approach is included in the Mediterranean MedBFM model system to integrate

BGC-Argo and reconstructed profiles into biogeochemical simulations of the Mediter-

ranean Sea.

Our OSE experiment is based on a sequential modular approach [256] consisting of a

post-deployment quality control method of O2, hereafter QC O2 procedure, a trained

multi-layer perceptron NN [1] and a data assimilation scheme (the 3DVarBio varia-

tional scheme of MedBFM, Figure A.1).

The input of the first two modules, QC O2 and NN-MLP-MED are the BGC-Argo and

Argo datasets, while the final 3DVarBio module also takes the enhanced datasets as

input: quality checked O2 (qcO2) and reconstructed nitrate (recNO3, Figure A.1).

In the following sections, the novel modules of the MedBFM system (i.e., the QC O2

procedure and the NN-MLP-MED scheme) and the dataset (BGC-Argo and recon-

structed datasets) are described together with the revised 3D-VarBio.
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FIGURE A.1: Flowchart of the NN-MLP-MED and DA approach.

In green boxes: the modules. In plain boxes: the datasets. Arrows refers to Argo

(temperature and salinity) and BGC Argo profiles of chlorophyll (Chla), oxygen

(qcO2) nitrate (NO3) and reconstructed nitrate (recNO3)

A.1.1 The regional model for the Mediterranean Sea, MedBFM

The MedBFM consists of the OGS transport model (OGSTM) based on the OPA 8.1 sys-

tem [332] and updated according to the [333] and [334] versions, the BFM, Biogeochem-

ical Flux Model described in [335] and [336], and the 3DVarBio variational assimilation

scheme as in [324] and [258].

OGSTM solves advection, diffusion, sinking terms and the free surface and variable

volume-layer effects on the transport of tracers [313], and it is forced by the output

(current, T, S and sea surface height) of the NEMO3.2 model. OGSTM and NEMO3.2

share the same bathymetry and z* grid configuration, open boundary and river condi-

tions [337].

The Biogeochemical Flux Model, BFM, is a biomass and functional group based marine

ecosystem model. BFM solves governing equations for nine living-organic state vari-

ables (diatoms, autotrophic nanoflagellates, picophytoplankton, dinoflagellates, car-

nivorous and omnivorous mesozooplankton, bacteria, heterotrophic nanoflagellates,

and microzooplankton, macro-nutrients (nitrate, phosphate, silicate and ammonium )

and labile, semi-labile, and refractory organic matter and oxygen. In addition, the BFM

includes a carbonate system model (Cossarini et al. 2015 and Canu et al. 2015).
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A.1.2 3DVarBio data assimilation scheme

Based on 3DVarBio (Teruzzi et al. 2014, Teruzzi et al. 2018, Cossarini et al. 2019 and

Teruzzi et al. 2021), the assimilation scheme adopted in the present work integrates

oxygen, chlorophyll and nitrate to update all the assimilated variables as well as all the

phytoplankton biomasses and phosphate.

The 3DVarBio is a variational data assimilation scheme [324] based on the minimization

of a cost function (J) which relies on the misfit between the model background (xb) and

the observations (y) weighted with the respective error covariance matrices (B and R)

as follows:

J(xa) = (xa − xb)
TB−1(xa − xb) + (y − H(xb))

TR−1(y − H(xb)) (A.1)

Here, the observation operator (H) maps the values of model background state in the

observation space. Following [340], the background error covariance matrix, B, is fac-

torised as B=VVT with V=VVVHVB. The V operators describe different aspects of the

error covariances: the vertical error covariance (VV), the horizontal error covariance

(VH), and the state variable error covariance (VB). VV is defined by a set of reconstructed

profiles evaluated by means of an Empirical Orthogonal Function (EOF) decomposition

applied to a validated multi-annual 1998-2015 run [258]. EOFs are computed for 12

months and 30 coastal and open sea sub-regions in order to account for the variability

of biogeochemical anomaly fields. VH is built using a Gaussian filter whose correlation

radius modulates the smoothing intensity. A non-uniform and direction-dependent

correlation radius has been implemented as in [254]. VB operator consists of prescribed

monthly and sub-region varying covariances among the biogeochemical variables (e.g.,

nitrate to phosphate). Specifically, for the assimilation of chlorophyll, the VB operator

includes a balance scheme that maintains the ratio among the phytoplankton groups

and preserves the physiological status of the phytoplankton cells (i.e., preserve optimal

values for the internal chlorophyll, carbon and nutrients quota). The operators VV and

VB of the 3DVarBio have been updated for the assimilation of oxygen. VV involved

the calculation of specific EOF profiles for oxygen including a localization function to

avoid spurious assimilation in the deepest part of the water column. VB included only a

new direct relation for oxygen (i.e., oxygen assimilation update only the oxygen itself),

given that it has been shown that it barely affects other variables [341].

Assimilated observations are composed by the QC BGC-Argo listed in Table A.1. Oxy-

gen and nitrate profiles in the 0-600 m layer are used in the assimilation, while chloro-

phyll is assimilated in the 0-200 m layer.
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The observation error covariance matrix R is diagonal with a monthly varying error in

chlorophyll [254]. In nitrate and reconstructed nitrate profiles, the observation error is

constant in time and increases along the vertical with a constant values of 0.25 mmol

m−3 in the 0-450 meters layer [293] and linearly increasing of up to 0.35 mmol m−3

between 450-600m (nitrate maximum assimilation depth). Although the accuracy of

the reconstruction of profiles is 0.87 mmol m−3 [1], we decided to not use different

values of error for the two nitrate subsets in order to show the highest potential impact

of the OSE.

Observation error for oxygen is set to 5 mmol m−3 in the upper 200 meters of depth

and gradually goes to 20 mmol m−3 in correspondence of the maximum assimilation

depth.

A.1.3 The neural network architecture and the reconstructed nitrate dataset

The NN-MLP-MED [1] is the evolution of previous MLP architectures developed to

predict low-sampled variables (e.g., nutrients) starting from high-sampled ones (e.g.,

temperature) (Sauzède et al. 2017 , Bittig et al. 2018 and Fourrier et al. 2020)

The NN-MLP-MED presents some novel elements with respect to the mentioned meth-

ods (and in particular with respect to Canyon-Med in Fourrier et al. 2020), which lead to

improved results. Firstly, the input dataset includes a larger sample size and broader

coverage of the Mediterranean Sea region. Secondly, the quality of the input dataset

benefits from a two-step quality check process, removing noisy and unreliable sam-

ples. The neural network architecture was also modified to enhance prediction per-

formance by incorporating nonlinear functions, adjusting neuron count, and optimiz-

ing the training algorithm. The error of reconstructed nitrate, obtained by using the

EMODnet as validation dataset, was 0.5 mmol m−3 [1]

In our OSE experiment, the trained NN-MLP-MED is used to reconstruct nitrate pro-

files from temperature and salinity (Argo), oxygen (BGC-Argo) and float date, latitude

and longitude. The reconstruction also includes a vertical smoothing (running mean of

5-10 m window) and an adjustment to the 600 m climatology derived from EMODnet

[313].

The input nitrate dataset for assimilation is made up of 938 BGC-Argo profiles and 2146

reconstructed nitrate profiles (Table A.1). The reconstructed nitrate profiles are located

61% in the western and 39% in the eastern Mediterranean Sea, thus providing a larger

and more homogeneous spatial coverage as shown in Figures A.2.
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A.1.4 BGC-Argo data and post-deployment oxygen quality control

BGC-Argo profiles available between the 2017-2018 period were downloaded from

Coriolis GDAC (last visit on July 2022). Adjusted and delayed mode data were selected

for oxygen and chlorophyll, while exclusively DM data were considered for nitrate.

Table A.1 reports the total number of BGC-Argo profiles, characterized by a significant

number of oxygen and chlorophyll data against the relative paucity of nitrate. Fig-

ure A.2 shows the spatial distribution of the BGC profiles of chlorophyll and nitrate,

while oxygen coverage can be approximated by merging nitrate and reconstructed ni-

trate profiles locations. Despite the lack of data in specific sub-basins (Alboran, South

Western Ionian and Northern Adriatic Seas), all the three BGC variables have a fairly

homogeneous spatial coverage between the western and eastern Mediterranean Sea.

FIGURE A.2: BGC-profiles of chlorophyll-a (red), Nitrate in-situ (orange) and recon-
structed Nitrate (grey) assimilated in Mediterranean Sea (2017-2018).

Subdivision of the Mediterranean domain in sub-basins used for the validation.
According to data availability and to ensure consistency and robustness of the metrics,
different subsets of the sub-basins or some combinations among them can be used for
the different metrics: lev=lev1+lev2+lev3+lev4; ion=ion1+ion2+ion3; tyr=tyr1+tyr2;

adr=adr1+adr2; swm=swm1+swm2.

Since oxygen sensors may drift and lose accuracy over time, the accurate determination

of dissolved oxygen is typically more challenging and requires some form of correction

[308]. Expressed in % per year, the loss of accuracy is observed over the time, partic-

ularly 12 months after the deployment (https://www.euro-argo.eu). Deep ocean drift

is considered as a proxy for oxygen sensor drift because of the lack of seasonal and

annual signals for oxygen at depth [306].
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Here, the optode sensor in-situ drift is evaluated through non parametric tests (RANSAC

and Theil Sen) at two different depths (600 and 800 meters). Tests are applied when the

life of a float is longer than 1 year.

The RANSAC and Theil Sen methods split the oxygen dataset into a set of inliers and

outliers and drift is estimated only using inliers, avoiding possible biases due to the

outliers (Dang et al. 2008 and Fischler and Bolles 1981).

The presence of a drift is established when all four drift estimates agree in sign and

their average value is greater than 1 mmol m−3 y. This threshold was chosen on the

basis of results in [310].

When detected, the suspicious drift is removed from the oxygen profiles by setting the

computed drift values (i.e., the average of the four estimates) at 600 meters and linearly

interpolating toward the surface, where drift is set equal to zero. Indeed, it can be

assumed that O2 values at surface are already fixed by the GDACs [305].

A.1.5 Design of numerical experiments

Three numerical experiments were performed to analyze the impact of different assim-

ilation setups. Simulated period is 1.1.2017-31.12.2018, and the MedBFM setup mostly

corresponds to the standard adopted in the Mediterranean Analysis and Forecast bio-

geochemical system of the Marine Copernicus Service. Set up includes open boundary

conditions in the Atlantic, climatological input of nutrients, carbon and alkalinity for 39

rivers and the Dardanelles Straits; and initial conditions from EMODnet dataset (De-

tails are provided in Salon et al. 2019 ).

Our experimental setup differs from the standard one for the physical forcing, which

are from Mediterranean Copernicus reanalysis [344], and the initial conditions of oxy-

gen which are retrieved from BGC-Argo float climatology computed after QC O2 pro-

cedure (described in section A.1.4).

The three simulations, which share the same setup except for the assimilated datasets,

are: (1) control run without assimilation (HIND); (2) assimilation of BGC-Argo chloro-

phyll, nitrate and oxygen and (DAfl) (3) assimilation of additional reconstructed nitrate

profiles used to enhance the DAfl assimilative set up (DAnn).

Before integrating data in the 3D-VarBio, the same pre-assimilation assessments de-

scribed in [255] were applied for chlorophyll. Nitrate profiles are rejected if concentra-

tion at the surface is higher than 3 mmol m−3. Finally, oxygen exclusion is evaluated

on the basis of the difference with the oxygen saturation values, using a threshold of
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Test Case Chl O2 NO3 Updated variables
HIND – – – –
DAfl 1773 1924 938 phyto biomass, NO3 , O2 and PO4

DAnn 1773 1924 2146 phyto biomass, NO3 , O2 and PO4

TABLE A.1: Summary of the numerical experiments and assimilated BGC-profiles

10 mmol m−3 and comparing oxygen data at 600m with respect to a reference dataset

using a threshold of 2 times the standard deviation of the reference dataset. For the ref-

erence dataset, we used the EMODnet2018 int data collection that integrates the in-situ

aggregated EMODnet data [63] and the datasets listed in [334] and [345]. The EMOD-

net2018 int dataset is available for 16 sub-basins (see Figure A.2) in the Mediterranean

Sea.

During the data assimilation, profiles can be excluded when model-observation mis-

fit is higher than given thresholds. For chlorophyll the threshold is set 2 mg m−3 and

it must be found in at least 5 vertical levels in the 0-50m layer. For nitrate, the misfit

thresholds are set to 2 and 3 mmol m−3 in 0-50 m and 250-600m layers, respectively.

Exceeding misfit has to be found in at least 5 vertical levels. Oxygen profiles are dis-

carded by defining misfit thresholds of 30 and 50 mmol m−3 in at least 5 vertical levels

in the 0-150m and 150-600m layers respectively.

A.2 Results

A.2.1 The oxygen post-deployment quality check method

The post deployment oxygen QC method allowed to automatically correcting in-situ

sensor drifts.

Of the 40 floats available in the 2017-2018 period, the drift analysis was applied to 16

floats, while 24 floats could not be analyzed due to the limited length of the timeseries.

Over the 16 floats, a significant drift was found in 13 of them: 4 were affected by a

positive drift and 9 by a negative one. The remaining 3 floats had lower drift values

than the prescribed threshold (Section A.1.4).

The absolute average correction of the 13 floats is about 4.3mmol m−3 performed at 600

meters of depth. This quantity is in line with the ranges expressed in terms of sensor

drift percentage in [346] (1 − 1.5%).
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Figure A.3 shows an example of the evolution of oxygen profiles of a quasi-stationary

float (6902687) detected for a drift correction. In line with the conclusion reported in

several works such as [346] and [307], the presence of a drift, like the one detected by

our protocol, may reveal the possible tendency of the oxygen sensor to slowly degrade

over time. After 2 years, the bias due to the drift was approximately 5 mmol m−3 (1st

December 2017 profiles in Figure A.3. )

After removing of drift, the deep oxygen concentrations results to be closer to the

EMODnet climatological data, allowing to include a higher number of profiles (exam-

ple in Figure A.3, green star) in the assimilated O2 datasets (Figure A.1).

FIGURE A.3: Original (black) and corrected (blue) oxygen profiles of float 6902687 on
four selected dates.

EMODnet climatology for nwm subbasin is reported (green star)

A.2.2 Validation using Satellite and BGC-Argo datasets

Skills performance of the simulations listed in Table A.1 are evaluated by comparing

model results with satellite OC chlorophyll and BGC-Argo profiles. While for the satel-

lite comparison the model daily averages are considered, the model first guess (i.e. the

model state before the assimilation) is used for metrics based on BGC-Argo.

Root Mean Square Error (RMSE) metric is evaluated in winter (from February to April,

FMA) and summer (from June to August, JJA) to investigate the model’s capacity to

reproduce the specific bloom and stratification conditions in 16 Mediterranean Sea sub-

basins or in an aggregated combination of them (Figure A.2).

Satellite L3 products from Copernicus Marine Service catalogue were interpolated from

1 km to the model resolution and a composite weekly average was computed to ensure

gap-free maps, as in [324].
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The Winter RMSE with respect to OC chlorophyll in HIND spans between ca. 0.09 to

0.21 mg m−3 with a maximum in the Alboran Sea (Figure A.4). The addition of multi-

variate DA (DAfl) has a positive impact with a reduction of surface errors of by 6.5%

mainly observed in the eastern sub-basins. A further reduction of RMSE (up to 10%)

with respect to HIND is then obtained with DAnn showing that enlarging the nitrate

float network leads to improvements in reproducing surface phytoplankton dynamics.

All the Mediterranean sub-basins show an RMSE reduction with the exception of alb,

swm and nwm. A generalized slight worsening in the assimilated runs can generally

be observed during the summer stratification period. The RMSE with respect to OC

chlorophyll, which increases in all sub-basins, is fairly similar in the two assimilation

runs: about 6% and 7.5% in DAfl and DAnn, respectively. It should be noted that the

RMSE values in summer are an order of magnitude lower than in winter, reflecting the

seasonal chlorophyll variability in the Mediterranean Sea (i.e., the very low values of

chlorophyll at the surface).

FIGURE A.4: Seasonal chlorophyll RMSE: Winter bloom and Summer stratification
seasons in the Mediterranean Sea sub-basins for the HIND run (light blue), the DAfl

run (in orange) and the DAnn run (green).

The RMSE metrics based on BGC-Argo are computed for six selected aggregated macro-

basins (Alboran, South West Mediterranean, North West Mediterranean, Tyrrhenian,

Ionian and Levantine Seas) and in selected layers (0-10m, 10-30m, 30-60m, 60-100m,

100-150m, 150-300m and 300-600m) and are shown in Figure A.5 for nitrate (top panel),

chlorophyll (middle panel) and oxygen (bottom panel). It is worth recalling that only

in-situ profiles are used in the validation (i.e., reconstructed NN profiles are used only

for assimilation).

As expected, the assimilation of in-situ BGC-Argo considerably improves the quality

of modelled nitrate with respect to the HIND run (Figure A.5). Winter RMSE reduction

goes from 40% (DAfl) to approximately 46%, when also reconstructed profiles are as-

similated, while the reduction of summer RMSE increases from 59% in DAfl to 63% in

DAnn. Maximum RMSE reduction of RMSE of DAnn with respect to DAfl is observed
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in nwm and tyr (winter) and in ion (summer). This impact can be directly ascribed to

the increased number of reconstructed nitrate in these sub-basins and seasons where

additional profiles generate more persistent corrections.

The advantages of assimilating chlorophyll profiles have been already shown in [255].

Here, improvements related to chlorophyll assimilation can be observed in nwm, ion

and lev in winter and at depth in tyr, ion and lev in summer (Figure A.5 middle panel).

Even if phytoplankton dynamics depend on nutrients dynamics, the positive impact

of DAnn on nitrate RMSE does not transfer to the the vertical chlorophyll statistics in

the DAnn. This is mainly because the DAfl and DAnn simulations assimilate the same

chlorophyll dataset, and the direct chlorophyll assimilation is more effective than the

dynamical model adjustment after nitrate and reconstructed nitrate assimilation in the

areas close to the observed chlorophyll profiles.

Assimilating oxygen profiles enable reducing the model-BGC floats RMSE by about

30% during winter and summer. The correction involves the whole water columns

with a maximum correction between 150-600m during winter in the west and along

the entire profiles in the east (ion and lev) in both winter and summer. The addiction of

reconstructed profiles in the DAfl run does not significantly affect the quality of oxygen.
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FIGURE A.5: Seasonal Nitrate, Chlorophyll and Oxygen RMSE (top, middle, bottom):
Bloom (left) and Stratification (right) seasons in the Mediterranean Sea aggregated

sub-basins for the HIND run (pale blue), DAfl run (orange) and DAnn (green).

A.2.3 Integration of NN DA: the impact

A.2.3.1 Impacts on biogeochemical vertical dynamics

As expected, the profile assimilation plays a major role in changing the vertical gradi-

ents of biogeochemical variables. Figures A.6, A.7, A.8, and A.9 show the impact of

the assimilation in two sub-basins where the number of reconstructed profiles is high

(Figure A.2) and in the Mediterranean Sea (third column). The two sub-basins rep-

resent two different trophic conditions in the Mediterranean Sea. The North Western

Mediterranean (nwm) has higher level of nutrient concentration and more intense sur-

face bloom in winter (Siokou-Frangou et al. 2010 and Di Biagio et al. 2022). In summer,

nwm has higher chlorophyll concentration at the deep chlorophyll maximum (DCM),
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shallow nitracline, and shallow subsurface oxygen maximum (SOM) (first column in

Figures A.6, A.7, A.8, and A.9). On the contrary, more oligotrophic conditions and

deeper nitracline and DCM are found in the eastern subbasin ( ion2, second column of

Figures A.6, A.7, A.8, and A.9). The assimilation of nitrate corrects a general positive

bias of the model in all the Mediterranean areas (blue pattern in Figure A.7). The ad-

dition of reconstructed profiles makes the corrections stronger. At the Mediterranean

scale, the nitrate concentration below the nitracline decreases by 8% and 11% in DAfl

and DAnn runs, respectively. Nitracline depth changes (i.e. deeper values) by DAfl

assimilation by a few (nwm) and tens of meters (ion2). The deepening of the nitracline

becomes more intense with the inclusion of reconstructed profiles (DAnn). The differ-

ences between the assimilation and reference runs accumulates over time and eventu-

ally reach a stationary phase in the second year in the sub-basins with a high number

of BGC-Argo and reconstructed profiles, such as nwm and ion2. On the other hand,

considering the whole Mediterranean Sea, which comprises some under-sampled ar-

eas (e.g., southern Ionian and southern western basin), the effect of corrections is still

propagating after the two years (third column of Figure A.7)

Very similar patterns are also observed in the Hovmöller diagrams of phosphate (Fig-

ure A.8), which is an updated variable of the multivariate variational assimilation

scheme through nitrate. In fact, the general negative corrections on phosphate fields

are linked to the high positive values of the covariance matrix between nitrate and

phosphate [255]

As a consequence of both the direct assimilation of chlorophyll profiles and the dy-

namical model adjustment after nitrate assimilation, the main effects of DAfl are to

slightly reduce the intensity of chlorophyll concentration in the DCM (e.g., variation

smaller than 5% with respect to HIND simulation) and in adjusting the timing of the

surface winter blooms (second row in Figure A.6). Even if the chlorophyll validation

(Figure A.5) has not shown significant differences between DAfl and DAnn, the basin

wide averages of DAnn display more intense corrections with respect to DAfl in terms

of DCM depth and chlorophyll intensity and overall chlorophyll concentration (figure

A.6). Over the 0-200 layer of the entire Mediterranean Sea, the chlorophyll decreases

with respects to HIND are 4% and 5% for DAfl and DAnn, respectively.

BGC-Argo oxygen profiles assimilation (DAfl, second row in Figure A.9) provides pos-

itive or negative corrections depending on the observation-model bias which varies

in time and space (e.g., mostly negative in nwm and mostly positive in ion2). On a

Mediterranean basin-wide scale, the average correction is of 0.2% for the 0-200m layer.

The addition of the nitrate reconstructed profiles does not alter the correction pattern

with an average correction of 0.3%. The only noticeable difference between the two
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assimilation runs can be spotted in areas with a high density of reconstructed profiles

during summer (e.g., nwm, first column in Figure A.9). As observed in the nitrate and

chlorophyll figures, the assimilation of reconstructed profiles causes a decrease of the

summer productivity in the DCM layer. Consequently, less oxygen is produced gen-

erating the negative changes in the DCM layer in the bottom left panel of Figure A.9.

Because of the smaller amount of subsequent sinking organic matter, less oxygen is

consumed in remineralization processes in layers below the DCM in late summer and

autumn, and positive oxygen changes are generated, particularly during 2018.

FIGURE A.6: Hovmöller diagram of chlorophyll of hindcast simulation (first row) and
differences between assimilation runs and hindcast (second and third rows) for 2 sub-

basins (nwm and ion2) and the Mediterranean Sea (med).

Evolution of the depth of nitracline for the three runs: red (hind) and black (DAfl and

DAnn) lines. The averages of 0-200m concentration and of nitracline for the simulated

period are reported.
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FIGURE A.7: Hovmöller diagram of nitrate of hindcast simulation (first row) and dif-
ferences between assimilation runs and hindcast (second and third rows) for 2 sub-

basins (nwm and ion2) and the Mediterranean Sea (med).

Evolution of the depth of nitracline for the three runs: red (hind) and black (DAfl and

DAnn) lines. The averages of 0-200m concentration and of nitracline for the simulated

period are reported.

FIGURE A.8: Hovmöller diagram of phosphate of hindcast simulation (first row) and
differences between assimilation runs and hindcast (second and third rows) for 2 sub-

basins (nwm and ion2) and the Mediterranean Sea (med).

Evolution of the depth of phosphocline for the three runs: red (hind) and black (DAfl

and DAnn) lines. The averages of 0-200m concentration and of phosphocline for the

simulated period are reported.
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FIGURE A.9: Hovmöller diagram of oxygen of hindcast simulation (first row) and
differences between assimilation runs and hindcast (second and third rows) for 2 sub-

basins (nwm and ion2) and the Mediterranean Sea (med).

Evolution of the depth of subsurface oxygen maximum (SOM) for the three runs: red

(hind) and black (DAfl and DAnn) lines). The averages of 0-200m concentration and of

SOM for the simulated period are reported.

A.2.3.2 Impact on ecosystem indicator

Net primary production (NPP) integrates phytoplankton growth and respiration pro-

cesses which are at the basis of the marine trophic food web. Assimilation of chloro-

phyll and nitrate together with the updates of phosphate, directly and indirectly affect

primary production, since they impact phytoplankton biomass and nutrient availabil-

ity. Thus, the comparison of primary production among the three simulations reveals

how the assimilation impacts on a key indicator that integrates several marine ecosys-

tem processes. Seasonal maps of net primary production integrated over the 0-200

m layer in the HIND, DAfl and DAnn simulations (Figure A.10) confirm that the as-

similation impact varies spatially and temporally. In the DAfl simulation, the largest

differences in primary production with respect to the HIND simulation are located in

the eastern Mediterranean with a decrease of nearly 10% in the Levantine sub-basins

and in the Ionian Sea close to the Greek coast. Reductions are slightly larger in winter.

In the western Mediterranean the impacts on primary production are negligible in both

seasons with the only exception of a 5% reduction in winter in the Tyrrhenian Sea. Ar-

eas with changes on NPP corresponding to the areas with assimilation of float profiles

that include nitrate. In the DAnn simulation, the impacts on primary production are

more intense than in DAfl and the impacted areas are larger. In particular, primary pro-

duction is decreased also in areas such as the western Mediterranean in summer (8%)

and in the northwestern Mediterranean and in the Tyrrhenian Sea in winter ( 5%).
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Moreover, a further reduction of NPP occurs in the Ionian Sea in both seasons. In

general, the impact on primary production is greater where nitrate observations or

nitrate reconstructed observations are assimilated, suggesting a dynamical bottom-up

control of primary production. In fact, the weaker fertilization of the surface layer in

DAnn, which occurs for both macronutrients after assimilation (Figure A.7 and A.8),

appears to be the main cause of reduced NPP, outweighing the effects due to changes

in phytoplankton biomass after chlorophyll assimilation.

FIGURE A.10: Maps of net winter (FMA) and summer (JJA) primary production [NPP,
mgC m-2 d-1] in the three runs: A. HIND B. DAfl C. DAnn.

Seasonal averages are computed considering the period 2017-2018.

A.2.3.3 Impact on Argo Observing system design

Analyzing the departure of an assimilated simulation from a reference solution pro-

vides insights into the impact of the observing system design and several data impact

indicators can be used (Ford 2021, Teruzzi et al. 2021 and Raicich and Rampazzo 2003).

In this work, we adopt the impact indicator Iij(t) described in [255], in order to quan-

tify the integrated (0-300m) response of assimilating BGC Argo profiles with respect to

the no assimilative run:

Iij(t) =
|Simij(t)− HINDij(t)|300

(HIND300)mean
(A.2)
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Here, HIND is here the reference, while Sim refers to one of the different DA set-ups.

|Simij(t)− HINDij(t)| is the absolute difference between simulations (for each day and

grid point) while the subscript 300 represents the integral over the 0–300m. The indica-

tor Iij(t) quantifies how much an assimilated run deviates from the reference (HIND)

simulation. Figures A.11 and A.12 show the nitrate and chlorophyll Iij(t) 95th per-

centile of the seasonal indicator in winter (left column) and in summer (right column)

in the DAfl (first row) and DAnn (second row) simulations. The 95th percentile of the

indicator shows that the BGC-Argo assimilation impacts (DAfl) both chlorophyll and

nitrate.

In DAfl, the extent of nitrate Iij(t) 95th above 0.1 is 16.5% and 18.7% in winter and in

summer respectively, with clear spatial distribution mapping the BGC-Argo density.

The introduction of reconstructed profiles in DAnn make it possible to increase the

nitrate impacted areas up to about 35% and 39% in winter and summer respectively.

The DAnn impact increase is mainly localized in the western Mediterranean Seas and

in the Ionian Sea, while the less evident impact in the Levantine, especially in summer,

is mainly due to the low number of NN reconstructed nitrate in the area.

Chlorophyll impact maps (Figure A.12) show that besides the direct impact of chloro-

phyll profiles assimilation, phytoplankton is also affected by the reconstructed nitrate

assimilation. Compared to a threshold of 0.4, the impacted areas increase from 18.2% to

29.8% in winter and from 10.8% to 14.5 in summer in the DAfl and DAnn runs. These

results suggest that the inclusion of reconstructed nitrate assimilation can potentially

extend the impact to almost all the Mediterranean Sea, with the only exclusion of the

marginal seas (Adriatic and Aegean) and the southern part of Ionian and Western sub-

basins.

Oxygen impact maps (not shown) are very similar to nitrate DAnn maps and do not

show differences between the two DA simulation, since the same QC oxygen dataset

was assimilated in DAfl and DAnn.
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FIGURE A.11: Maps of Iij(t) 95th percentiles for Nitrate in winter (left column) and
summer (right column) in the DAfl (first row) and DAnn (second row); white contours

identify the areas within three correlation radii from the float profiles

FIGURE A.12: Maps of Iij(t) 95th percentiles for Chlorophyll in winter (left column)
and summer (right column) in the DAfl (first row) and DAnn (second row); white

contours identify the areas within three correlation radii from the float profiles

A.3 Discussion

Our quality check procedure for oxygen drift detection and comparison with a ref-

erence dataset can successfully integrates the official QC BGC-Argo, making oxygen

BGC-Argo a robust and valuable dataset for initial conditions, data assimilation, val-

idation and new product reconstruction. Even if the distinction between real oxygen
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depletion signals and optode drift can remain problematic without in-situ high quality

data, we believe that literature and prior knowledge can be used as a baseline for drift

discrimination.

In particular, recent studies have revealed a decrease of oxygen concentrations in the

Mediterranean Sea (Sisma-Ventura et al. 2021 and Di Biagio et al. 2022); such tendency

has been defined as a multidecadal shifts (Coppola et al. 2018 and Mavropoulou et al.

2020) and also patchy deoxygenation [351]. One of the most evident signals is the early

1990’s East Mediterranean Transient (EMT) associated with the variations of thermo-

haline circulation, which has caused a strong interannual variability of oxygen [348].

Based on this literature and considering the recent years, a threshold of 1 mmol m−3 y

at 600 and 800 meters appears a prudent limit for sensor drift discrimination from real

long term signals.

Up to now, the oceanographer visual check is required to distinguishing ocean signals

from sensor drift [311] and the debate on how to replace visual check to automatic

statistical procedures is still open. Thus, our work can contribute by proposing a new

tool to automatically handle deep ocean signal or optode drift issues.

The search of drift is based on a robust combination of several factors: (i) the float

history has to be longer than 1 year, (ii) the calculation is done with two robust non-

parametric trend methods and (iii) at two different depths (i.e. 600m and 800m) sam-

pling different water masses that can have different long-term dynamics. Lastly, the

sensor drift signal must be confirmed by the four results and has to be compared with

typical basin-wide trend values reported by scientific literature (i.e., the choice of the

threshold).

The method can be further developed by applying the oxygen drift analysis at some

fixed isopycnals together with the one at constant isobaths. Thus, possible oxygen con-

centration changes due to floats moving across different water masses can be filtered

out.

The assimilation of vertical profiles provides complementary information with respect

to satellite ocean color assimilation (Cossarini et al. 2019 and Verdy and Mazloff 2017),

which however is still the most commonly used in operational systems [285]. In fact,

the effectiveness of the profiles assimilation, which has the capability to constrain ver-

tical biogeochemical dynamics in subsurface layers (Kaufman et al. 2018, Teruzzi et al.

2021 and Wang et al. 2022), lies in the amount of available BGC-Argo data, that are gen-

erally insufficient to constrain a basin wide simulation. In [255], results of the impact

indicator principally showed the efficiency of ocean color assimilation in constraining

chlorophyll dynamics mostly during winter. In this work, important impacts are also
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observed in summer for all variables, as a consequence of the increased number of

assimilated profiles.

In fact, through the integration of NN and DA, the number of nitrate profiles ingested

can significantly increase, with a density of more than 30 profiles every ten days over

a basin of 2.5M km2. Indeed, as shown in the results, Argo and BGC-Argo oxygen

sensors can potentially support a density of biogeochemical profiles up to 1 in each

2.5° x 2.5° box every 10 days. This means that seasonal sub-basins scale dynamics

(e.g., bloom or stratification) can effectively be constrained while, up to now, mesoscale

dynamics can probably be exclusively locally studied [315]. Apart from an increase in

the numbers of floats, improvements in the simulation of mesoscale dynamics can be

achieved by redefining horizontal covariance errors in the data assimilation scheme.

Indeed, benefits of non-uniform correlation radius in the horizontal scale have been

previously investigated [254] and additional improvements could be provided by a 3D

varying correlation radius [355].

Looking at the recent evolution in the availability of BGC-Argo sensors (Figure A.13),

our combined NN and DA approach would allow keeping the benefits of the BGC-

Argo OS in the Mediterranean operational system. Even if nitrate and chlorophyll pro-

files have dramatically decreased after 2020, the assimilation of reconstructed profiles

can potentially overcome this lack. Nevertheless, as shown in our OSE experiments

(Figure A.11 and A.12), there are still undersampled areas by the Argo and oxygen sen-

sors, such as Alboran, Southern Ionian seas and the marginal seas (Northern Adriatic

and Northern Aegean Sea) which would require specific deployments.

With respect to previous BGC OSSE experiments (Yu et al. 2018, Ford 2021), we show

how to exploit the current Argo and BGC-Argo networks for reconstructing biogeo-

chemical variables.

MLP feed-forward methods to reconstruct biogeochemical variables are good enough

(Bittig et al. 2018, Sauzède et al. 2020 Fourrier et al. 2021 and Pietropolli et al. 2023) to

reach our purposes, even if their application to generate smooth and consistent profiles

still has some limitations [1]. The MLP-NN-MED method has a validation error of 0.50

mmol2 m−3 for nitrate and 0.87 mmol2 m−3 when it is used to predict BGC-Argo data

[1] . These values are slightly higher than the BGC-Argo error estimated from the triple

collocation method [293], which is used as the observation error. We recognized that

different error values can be used for BGC-Argo and reconstructed profiles to take ac-

count of their uncertainties. Then, it is intuitive that with higher error, the reconstructed

dataset impact would have been lower.
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Indeed, the larger error in MLP-NN-MED prediction of BGC-Argo profiles derives the

fact that the MLP methods, being pointwise based, are unaware of the vertical gradient

(e.g., typical shape) of the profiles of biogeochemical variables that they seek to infer.

This fact can lead to irregularities and lack of smoothness in the predicted profiles [1],

which we partly solved by adding a smoothing operator. However, one way to increase

the reliability of profile reconstruction would be to include information with a physical

meaning from observed data [256]. 1D Convolutional Neural Networks represent a

viable alternative approach considering their ability to treat the coherence of the 1D

signals (e.g., typical shapes of profiles) as shown in [358].

Integration of NN and DA have been tested in several geoscience applications (Buizza

et al. 2022, Brajard et al. 2021, Stanev et al. 2022) to infer unresolved spatial scales or

reproduce missing data. In our application, the integration of NN, which retrieves

a large number of profiles [1], and DA, which can apply the correction to all nutrients

through error covariances [255], allows spatial and multivariate changes to be captured

both at the local scale and across the basin to constrain Mediterranean productivity

(Figure A.10). Although the corrections take time to extend to the entire basin (Figure

A.7), our simulations have shown that constraining bottom-up ecosystem processes

(e.g., productivity, organic matter sink) has proven effective and should be used in

conjunction with the classical ocean color correction to phytoplankton biomass.

Any plan to learn directly from observations will have to face with some challenges,

such as the use of observations whose time and space coverage is uneven or related

to specific processes [241]. The modular approach followed in this work represents a

successful example of exploiting the strengths of neural networks and data assimilation

to enhance the observing system impact in the operational biogeochemical system of

the Mediterranean Sea.

FIGURE A.13: Timeserie of BGC-Argo profiles availability (2013-2022) for: nitrate
(green), chlorophyll (grey) and oxygen (yellow)
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A.4 Conclusions

Combining deterministic Feed-Forward Neural Network and Data Assimilation to de-

sign an Observing System Experiment has enabled demonstrating the enhanced pos-

itive impact of profiles assimilation in the Copernicus Operational System for Short-

Term Forecasting of the Biogeochemistry of the Mediterranean Sea (MedBFM).

The development of the oxygen QC procedure allowed to statistically deal with optode

in-situ drift and to derive accurate reconstructed profiles of nitrate, keeping the number

of assimilated observations at a much higher level despite the current negative trend

in BGC-Argo availability. Achieved BGC profiles density provides valuable and ad-

ditional information to complement that of ocean colour in describing phytoplankton

seasonal blooms and stratification dynamics at sub-basins scale.

The assimilation of BGC-Argo nitrate corrects a general positive bias of the model in

several Mediterranean areas, and the addition of reconstructed profiles makes the cor-

rection stronger.

Together with nitrate assimilation, the phosphate update through error covariances,

sustains spatial and multivariate changes that are capable of correcting key biogeo-

chemical processes (e.g., nitracline and deep chlorophyll maximum) and to constrain

ecosystem processes (e.g., productivity) at basin-wide scale.
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[61] Hervé Claustre, Kenneth S Johnson, and Yuichiro Takeshita. Observing the global

ocean with biogeochemical-argo. Annual review of Marine science, 12:23–48, 2020.

[62] Fionn Murtagh. Multilayer perceptrons for classification and regression. Neuro-

computing, 2(5-6):183–197, 1991.

[63] L Buga, L Boicenco, A Giorgetti, G Sarbu, A Spinu, et al. Emodnet chemistry–data

aggregation and product generations in the black sea. Journal of Environmental

Protection and Ecology, 19(1):300–308, 2018.

[64] Henry C Bittig, Tanya L Maurer, Joshua N Plant, Catherine Schmechtig, Annie PS
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laure Grégoire. Decline of the black sea oxygen inventory. Biogeosciences, 13(4):

1287–1297, 2016.

[301] Vincent Taillandier, Louis Prieur, Fabrizio d’Ortenzio, Maurizio Ribera d’Alcalà,
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[333] P Lazzari, C Solidoro, VALERİA Ibello, S Salon, A Teruzzi, K Béranger, S Colella,

and A Crise. Seasonal and inter-annual variability of plankton chlorophyll and

primary production in the mediterranean sea: a modelling approach. Biogeo-

sciences, 9(1):217–233, 2012.

[334] P Lazzari, C Solidoro, S Salon, and G Bolzon. Spatial variability of phosphate

and nitrate in the mediterranean sea: A modeling approach. Deep Sea Research

Part I: Oceanographic Research Papers, 108:39–52, 2016.

[335] Marcello Vichi, Nadia Pinardi, and Simona Masina. A generalized model of

pelagic biogeochemistry for the global ocean ecosystem. part i: Theory. Journal of

Marine Systems, 64(1-4):89–109, 2007.

[336] Marcello Vichi, Nadia Pinardi, and Simona Masina. A generalized model of

pelagic biogeochemistry for the global ocean ecosystem. part i: Theory. Journal of

Marine Systems, 64(1-4):89–109, 2007.

[337] Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon,

Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara

Goglio, Massimiliano Drudi, et al. The mediterranean forecasting system. part

i: evolution and performance. EGUsphere, pages 1–50, 2023.

[338] G Cossarini, P Lazzari, and C Solidoro. Spatiotemporal variability of alkalinity

in the mediterranean sea. Biogeosciences, 12(6):1647–1658, 2015.

[339] Donata Melaku Canu, Andrea Ghermandi, Paulo ALD Nunes, Paolo Lazzari, Gi-

anpiero Cossarini, and Cosimo Solidoro. Estimating the value of carbon seques-

tration ecosystem services in the mediterranean sea: An ecological economics

approach. Global Environmental Change, 32:87–95, 2015.

[340] Srdjan Dobricic, Nadia Pinardi, Mario Adani, Marina Tonani, Claudia Fratianni,

Alessandro Bonazzi, and Vicente Fernandez. Daily oceanographic analyses by

the mediterranean basin scale assimilation system. Ocean Science Discussions, 3

(6):1977–1998, 2006.



Bibliography 177

[341] Jozef Skakala, David Ford, Jorn Bruggeman, Tom Hull, Jan Kaiser, Robert R

King, Benjamin Loveday, Matthew R Palmer, Tim Smyth, Charlotte AJ Williams,

et al. Towards a multi-platform assimilative system for north sea biogeochem-

istry. Journal of Geophysical Research: Oceans, 126(4):e2020JC016649, 2021.

[342] Xin Dang, Hanxiang Peng, Xueqin Wang, and Heping Zhang. Theil-sen estima-

tors in a multiple linear regression model. Olemiss Edu, 2008.

[343] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981.

[344] Romain Escudier, Emanuela Clementi, Andrea Cipollone, Jenny Pistoia, Massim-

iliano Drudi, Alessandro Grandi, Vladislav Lyubartsev, Rita Lecci, Ali Aydogdu,

Damiano Delrosso, et al. A high resolution reanalysis for the mediterranean sea.

Frontiers in Earth Science, page 1060, 2021.

[345] G Cossarini, S Querin, and C Solidoro. The continental shelf carbon pump in

the northern adriatic sea (mediterranean sea): Influence of wintertime variability.

Ecological Modelling, 314:118–134, 2015.
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