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Chapter 1

Introduction

The advent of quantum computers promises a paradigm shift for computation, un-
locking unprecedented computational power to solve many problems with renowned
high impact, e.g. optimization problems, artificial intelligence, molecular and ma-
terial simulations. However, the practical realization of quantum utility to advance
industry relevant applications is hindered by some technological limitations, among
which noises affecting the ideal functionality of quantum computers. While quantum
error correction techniques are envisioned as the standard solution to such issues,
their successful implementation necessitates challenging breakthroughs yet to come.

Despite their imperfections, over the past three decades quantum computing de-
vices have evolved from being experiments in a lab, to complex machines able to
tackle non trivial tasks. It is becoming increasingly accepted that the best strategy
to be adopted is to direct efforts to accelerate practical applications involving the
presently available quantum hardware, acknowledging its imperfections. This sets
the main goal at this stage of development: it becomes of paramount importance
to understand and accurately model the impact of noises on quantum computation.
This entails the characterization and modeling of noises acting on quantum devices,
as well as the development of classical simulation tools that accurately mimic the
effects of a given noise model on quantum circuits. These efforts constitutes the solid
grounds onto which it is possible to devise techniques to actively suppress the impact
of noises. Particularly, this realizes the vision of turning a hardware problem into a
software problem, as the average effect of noises can be suppressed via effective error
mitigation strategies, that are software techniques that, differently from full quantum
error correction, aim at reducing the impact of noises to a level sufficient to enable
quantum utility.

As a milestone towards this long term vision, the core result of the thesis lies
in the introduction of a novel method for classically simulating the noisy behavior
of quantum circuits, named the noisy gates approach. We argue that this approach
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successfully surpasses existing methods by implementing the most efficient and accu-
rate simulator of the noisy results of a quantum circuit. The idea behind the noisy
gates approach is to improve the accuracy of the results by relaxing the main physical
assumptions of standard simulation methods while maintaining, or even improving,
the computational costs to run simulations. This results in a more accurate simulator
using less computing resources.

The simulation of noisy digital gate-based quantum circuits is typically imple-
mented by adding appropriate quantum operations, what we refer to as noise gates,
before and after each ideal gate of a quantum circuit. This is generally assumed to
be legitimate since the time scales of noises are very slow compared to the ideal gate
evolution, resulting in a formal decoupling of the two dynamics. However, separating
the action of the gate from that of the noise does not represent a faithful description
of what happens during a quantum computation. The controlled action on the qubits
generating the gates and the environment act simultaneously and potentially affect
each other. In this scenario, neglecting their interplay leads to inaccurate predictions,
especially when the number of gates and qubits is relatively large, which is actually
the regime where simulations are more interesting.

The noisy gates approach, as underlined by its name, efficiently incorporates envi-
ronmental effects into the evolution of gates, employing linear stochastic Schrödinger
equations to directly model state vector evolution. This allows not only to evolve
state vectors instead of density matrices (this is possible also for standard methods)
but also the linearity of the equations reduces the total amount of matrix vector multi-
plications, improving computational costs. The most notable result of the thesis is to
show the superiority of the noisy gates approach tailored to superconducting devices,
by rigorously benchmarking it against standard simulation methods, demonstrating
closer accuracy to analytical solutions and to real noisy quantum computers.

The application of the noisy gates approach is then extended to simulate noisy
optical circuits within the dual rail framework, rooted in the second quantization
formalism. Successfully adapting the approach to this domain is not straightforward.
The noisy version of optical elements is derived underlining the versatility of the
approach. The simulation is tested on a variational quantum algorithm for linear
optics.

The second part of the thesis introduces two complementary results. First, a
modification of the noisy gates approach is presented, enabling applications beyond
error analysis for quantum circuits. In particular, an efficient quantum algorithm
for simulating open quantum systems is devised, grounded in the generalization of
the noisy gate approach to quantum stochastic Schrödinger equations. Notably, the
algorithm exhibits a constant ancilla overhead, irrespective of the system size, and,
building upon the results of the noisy gates approach, provides a more accurate
perturbative approximation of the open system evolution. This is contrast with other
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proposals in the literature for algorithms that simulate open systems which present
an ancilla overhead dependent on the system size and less accurate approximate
solutions of the system evolution. These two aspects imply a substantial reduction of
both width and depth of the resulting circuit.

Finally, the thesis presents an example of characterization of fundamental noises
on superconducting transmon qubits. Specifically, the effects of the Continuous Spon-
taneous Localization (CSL) model are derived. CSL is a formulation of quantum me-
chanics that introduces a classical noise field that collapse superpositions of macro-
scopic objects. The direct effect of CSL of reducing superpositions of a transmon
qubit is found to be negligible, while its indirect manifestation as dissipation-induced
decoherence through superconducting excited states generation is stronger but still
not the leading contribution to the excess of excited states detected with experiments
on superconducting devices.

The thesis is organized as follows. In Chapter 2 we briefly introduce the formal-
ism of open quantum systems. In Chapters 3 and 4 we present different methods
for simulating noisy quantum circuits and we derive the generic expression of noisy
gates. Then in Chapter 5 the noisy gates approach is specified to superconducting
devices, and its superiority against standard method is thoroughly analysed. Chapter
6 presents the extension of the approach to integrated optical devices in the second
quantization formalism. The application of the quantum noisy gates to devise a quan-
tum algorithm to simulate open quantum systems is presented in Chapter 7. Chapter
8 estimates the impact of CSL on transmon qubits. We summarize the main results
of the thesis in the conclusions in Chapter 9.

The research presented in this thesis has resulted in the following publications:

1. Publication I. M. Vischi, L. Ferialdi, A. Trombettoni and A. Bassi. Possible
limits on superconducting quantum computers from spontaneous wave-function
collapse models. Phys. Rev. B 106, 174506, 2022.

2. Publication II. G. Di Bartolomeo, M. Vischi, F. Cesa, R. Wixinger, M. Grossi,
S. Donadi and A. Bassi. Noisy gates for simulating quantum computers. Phys.
Rev. Research 5, 043210, 2023.

3. Preprint I. M. Vischi, G. Di Bartolomeo, M. Proietti, S. Koudia, F. Cerocchi,
M. Dispenza and A. Bassi. Simulating photonic devices with noisy optical
elements. arXiv:2311.10613 [quant-ph].

4. Preprint II. G. Di Bartolomeo, M. Vischi, T. Feri, A. Bassi and S. Donadi.
Efficient quantum algorithm to simulate open systems through the quantum
noise formalism. arXiv:2311.10009 [quant-ph].
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Chapter 2

Noises in quantum computing
devices

The goal of this chapter is to introduce the basics of open quantum systems. We
show how the evolution of open systems is generally described through the operator
sum representation or, when this is possible, through the Lindblad master equation.
These represent the basic tools that are used throughout the rest of the thesis. The
presentation is based on references [1, 2].

2.1 The theory of open quantum systems

The effects of noises affecting quantum computing devices are usually described by
the theory of open quantum systems [1,2] where the system of interest interacts with
an external environment. This description is suitable to assess the effects of noises on
quantum computation at many levels. At the physical level, each qubit experiences
decoherence, the loss of its quantum information, because of its interaction with the
environment. This corrupts the outcomes of a quantum algorithm: a quantum circuit
is composed by many gates that are realized via time evolution of specific engineered
Hamiltonians, and decoherence of qubits modifies such ideal evolution, eventually
corrupting the final results of a circuit. We start by briefly reviewing the basics of
open quantum systems.

2.1.1 Quantum operations and the operator sum representa-
tion

The evolution of an open quantum system is usually regarded as the effective result
of the interaction between the system of interest in contact with an environment. The
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system and the environment together form a closed quantum system, thus one usually
assumes that the full dynamics of system plus environment is unitary. However, when
tracing out the degrees of freedom of the environment, the effective evolution of the
system alone generally looses unitarity. Assuming the system-environment input state
is a product state ρ̂ ⊗ ρ̂env, the reduced state of the system after the total unitary
interaction Û is

E(ρ̂) = Trenv
[
Û(ρ̂⊗ ρ̂env)Û

†] , (2.1)

where Trenv is the partial trace over the environment. The map E(·) in Eq. (2.1)
describes the evolution of the system and as such it can be expressed in terms of
operators of the system Hilbert space alone. This constitutes the operator sum rep-
resentation of the map E(·). We assume, without loss of generality, that the initial
state of the environment is a pure state ρ̂env = |e0⟩ ⟨e0|, where |ek⟩ is an orthonormal
basis for the environment. Then, Eq. (2.1) can be expressed as

E(ρ̂) =
∑
i

⟨ei| Û(ρ̂⊗ |e0⟩ ⟨e0|)Û † |ei⟩ (2.2)

E(ρ̂) =
∑
i

K̂iρ̂K̂
†
i , (2.3)

where K̂i := ⟨ei| Û |e0⟩ are operators acting on the system alone, called operation
elements. Eq. (2.3) is the operator sum representation of E(·). The operation elements
satisfy the completeness relation

Tr[E(ρ̂)] = Tr

(∑
i

K̂iρ̂K̂
†
i

)
= Tr

(∑
i

K̂†
i K̂iρ̂

)
= 1 , (2.4)

where we used the ciclicity of the trace. Since this equality holds for any density
matrix ρ̂, this implies that ∑

i

K̂†
i K̂i = 1 . (2.5)

The completeness relation, which is valid for trace-preserving quantum operations,
can be relaxed to include non-trace preserving quantum operations for which it takes
the expression

∑
i K̂

†
i K̂i ≤ 1, taking into account further leakage of information after

measurements. When the quantum operation is trace preserving is also called a Kraus
map, and the operation elements are called Kraus operators.

2.1.2 The Lindblad master equation

The operator sum representation is very effective in providing a general description
of the evolution of density matrices, including evolution of pure states into mixed
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states. It is often possible to describe the evolution of a density matrix by a differential
equation called master equation, that captures infinitesimal changes in the density
matrix. In general, a master equation has a closed form only when the evolution
of the system is Markovian, meaning that it is local in time. A closed form for the
master equation is not suitable in the general case because of flow of information from
the system to the environment and viceversa, which embody non-Markovian effects.
This means that ρ̂(t+dt) depends not only on ρ̂(t) but also on ρ̂ at any earlier time,
as the environment could retain past information of the system and put it back in it:
this flow of information results in non-Markovian fluctuations of the system.

The idea behind a Markovian description is that there is a sharp division between
the typical correlation time of the fluctuations and the time scale of the system evolu-
tion. We denote with ∆tenv the time it takes for the environment to lose information
acquired from the system and with ∆tcoarse a coarse graining in time as if we perceive
the dynamics through a filter that screens out the high frequency components of the
motion, with ω ≪ ∆t−1

coarse. A Markovian description is possible if ∆tenv ≪ ∆tcoarse,
meaning that we can neglect memory effects of the environment because the coarse
graining is not able to resolve them. The Markovian approximation is useful when
the time scale of the desired dynamics ∆tdamp is long compared to ∆tcoarse

∆tdamp ≫ ∆tcoarse ≫ ∆tenv . (2.6)

Now suppose that the Markovian approximation applies and the initial state of the
system is ρ̂(0). Then a general trace preserving quantum operation has Kraus repre-
sentation

ρ̂(t) = Et(ρ̂(0)) =
∑
i

K̂i(t)ρ̂(0)K̂†
i (t) , (2.7)

with E0 = 1. After an infinitesimal time interval dt one has that

ρ̂(dt) = ρ̂(0) + O(dt) , (2.8)

implying that one of the Kraus operators is K̂0 = 1 + O(dt) and all the others K̂i

with i > 0 describe the quantum jumps that the system might undergo each occurring
with a probability of order dt, and being themselves of order

√
dt. Thus we can write

K̂0 = 1 + (−iĤ + M̂)dt K̂i =
√
γidtL̂i , (2.9)

where γi are frequency factors, Ĥ and M̂ are Hermitian and L̂i, Ĥ and M̂ are all
zeroth order in dt. M̂ is determined by the normalization condition

1 =
∑
i

K̂†
i K̂i = 1 +dt(2M̂ +

∑
i>0

γiL̂
†
i L̂i) , (2.10)
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leading to

M̂ = −1

2

∑
i>0

γiL̂
†
i L̂i . (2.11)

Substituting M̂ into Eq. (2.7), expressing ρ̂(dt) = ρ̂(0) +dt ˙̂ρ(0) and equating terms
of order dt one obtains the Lindblad master equation [3, 4]

d

dt
ρ̂t = − i

ℏ
[Ĥt, ρ̂t] +

∑
k

γk

[
L̂kρ̂tL̂†

k −
1

2
{L̂†

kL̂k, ρ̂t}
]

; (2.12)

the first term is the free term generating the unitary evolution of the system, the
other terms describe possible transitions of the system due to interactions with the
environment. L̂k are called Lindblad operators. One usually expresses the Lind-
blad terms as a superoperator, acting on density matrices, such that LD [ρ̂t] =∑

k γk(L̂kρ̂tL̂
†
k − 1

2
{L̂†

kL̂k, ρ̂t}).
Now consider the Lindblad equation Eq. (2.12). Moving to the interaction picture

by defining χ̂t = Û †(t, t0)ρ̂tÛ(t, t0) and χ̂t0 = ρ̂t0 , leads to

d

dt
χt = LD(t) [χt] , (2.13)

where LD(t) [χ̂t] = Û †(t, t0)LD [ρ̂t] Û(t, t0). The formal solution of Eq. (2.13) is

χ̂t = T
[
e
∫ t
t0
dsLD(s)

]
χ̂t0 , (2.14)

where T [·] is the time ordering. Thus in the Schrödinger picture we can write the
formal solution of Eq. (2.12) as

ρ̂t = Û(t, t0)T

[
e
∫ t
t0
dsLD(s)

]
ρ̂t0Û

†(t, t0) . (2.15)

This formal expression captures, within the limits of validity of Lindblad’s equation,
the entire physics occurring during the open system’s evolution.

2.2 Discussion

The theory of open quantum systems has a broad applicability in the study of
noises in quantum computing. It allows to understand the effects of noises to help
suggesting hardware improvements or novel error mitigation strategies. From this
point of view, there are two main objectives of applying the theory of open quantum
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systems to quantum computing: characterize and model the noises acting on quantum
devices and, secondly, have good simulation tools allowing to simulate as accurately
as possible the effects of a given noise model on quantum circuits and algorithms.
In the next chapter we discuss different strategies to reach the second objective,
that are different ways to derive approximate solution of the Lindblad equation in
Eq. (2.15) by means of specific algorithmic approaches. We leave the discussion on
noise characterization for Chapter 8, where we investigate the effects of fundamental
noise sources on superconducting devices.
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Chapter 3

Simulation of noisy quantum
circuits

In this chapter we present different algorithmic approaches for simulating the
effects of noises in quantum circuits. We argue that to reach a good accuracy a
simulation method should substitute each ideal gate with a noisy gate, an expression
taking into account the unitary and the noise evolution all together. We further
show that when it is possible to derive an approximate noisy gate expression, the
best option at the algorithmic level is to unravel the Lindblad equations in terms of
diffusive stochastic Schrödinger equations.

3.1 From noise gate to noisy gates

The primary goal of a software simulator of noisy quantum circuit is to have the
most accurate results possible. This means that given a quantum circuit and an
underlying noise model of the device, that essentially specify a Lindblad equation
(or, more generally a quantum operation), we are interested in the most accurate
way to simulate the evolution dictated by such an equation, which is a complex
computational task.

The problem can be simplified by exploiting the structure of the quantum circuit
which consists of a sequence of gates. Setting the initial density matrix and consider-
ing the first gate in the circuit, one has to solve the corresponding Lindblad equation,
which is generally acting on a small subset of all qubits. The output density matrix
is the input to the second gate whose Lindblad equation has to be solved to get the
output density matrix and so on until the final density matrix is obtained. However,
exact analytic solutions of the gates’ Lindblad equations are not available. The brute
force approach of solving numerically for the gates’ Lindblad equations requires nu-
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merical efforts while other techniques such as quantum process tomography [2] that
reconstructs the full quantum operations of gates, involves the run of actual experi-
ments. This could and should be avoided when analytic approximate expressions for
the solutions of gates’ Lindblad equations are available.

It is possible to resort to analytic and approximate expressions based on reasonable
physical assumptions. Indeed, for most current noisy devices, characteristic times of
the noises are usually very large with respect to the time needed to realize a gate,
meaning that the effective dynamics of the system during the gate time can reasonably
assumed to be the ideal one with a small perturbation provided by the noises. For
instance, in IBM’s superconducting devices [5], the gate time is tg ∼ 10−8s, while
typical environmental effects have characteristic times of order T1, T2 ∼ 10−4s.

Based on this observation, the standard assumption is that in this regime it is
allowed to completely decouple the noise evolution from the ideal one. Thus, the
simulation of noisy gate-based quantum circuits is mostly implemented by adding
appropriate quantum operations, referred here as noise gates, before and after each
ideal gate [1,2,6]: schematically if an ideal (unitary) gateG is supposed to be executed,
the noises affecting it are modeled by adding appropriate operations E1 (E2) mimicking
the noise, before (after) the gate

ρ̂ E1 G E2 ρ̂′ , (3.1)

where neither E1 nor E2 have any dependence on the gate G or viceversa. More
specifically, the standard assumption translates to assuming in Eq. (2.15) that

LD(t) ≃ LD , (3.2)

thus getting
ρ̂t ≃ Û(t, t0)e

LD(t−t0)ρ̂t0Û
†(t, t0) . (3.3)

The noise term eLD(t−t0) is independent from the unitary evolution Û(t, t0) and vicev-
ersa. This reduces the problem to solving the Lindblad equation in Eq. (2.12) for
each gate without the Hamiltonian term to get eLD(t−t0), or if this is already known,
as it usually happens, to apply eLD·(t−t0) as a quantum operation, that constitutes a
noise gate.

This standard approach has some limitations. During a quantum circuit the con-
trolled action generating the gate and the environment act simultaneously and po-
tentially affect each other. Moreover current gate and noise characteristic times do
not completely justify a formal decoupling of the noise and gate dynamics. In this
scenario, neglecting this interplay leads to inaccurate predictions, especially when the
number of gates and qubits increases, approaching the regime where simulations are
more interesting.
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An alternative and more accurate approach should not involve a noise gate but
rather a noisy gate expression where the noise is integrated into the gates, in the sense
that the resulting noisy gate is computed by solving for the dynamics generating it,
with additional terms describing the noise added to it, schematically

ρ̂ G ρ̂′ , (3.4)

where in general G ≠ E2 ◦ G ◦ E1. This task is obviously achieved by solving the full
Lindblad master equation for each gate to get Eq. (2.15) or to know its operator sum
representation. However, as already pointed out, the gate’s Lindblad equations are
not solvable exactly and without such solutions it is not easy to know in advance
the operator sum representation of a noisy gate, as it is not clear how the ideal
gate evolution and the noise one will contribute together in the resulting full map in
Eq. (2.15). As we show in Chapter 4, it is possible to get an analytic expression G
for the solution of the Lindblad equation with perturbative (in the noise parameters)
methods. In particular we devise a noisy gate approach that corresponds to a first
order approximation in Eq. (2.15)

T

[
e
∫ t
t0
dsLD(s)

]
≃ 1 +

∫ t

t0

dsLD(s) , (3.5)

such that

ρ̂t ≃ Û(t, t0)

(
1 +

∫ t

t0

dsLD(s)

)
ρ̂t0Û

†(t, t0) . (3.6)

In Eq. (3.6) the noise depends on the Hamiltonian dynamics through LD(s) =
Û †(t, t0)LDÛ(t, t0). Notably, this expression contains more terms to first order in
the noise parameters than those included in Eq. (3.3) and since the first order is the
leading one, such method is expected to offer a more accurate description of each gate
evolution and therefore a better protocol for circuit simulations.

Both the standard approach and the noisy gate approach formulated in terms of
density matrices, face a computational limitation. Even though Eqs. (3.3) and (3.6)
are usually computed for single and two qubit gates, their results have to be composed
to get, eventually, the full density matrix of the circuit. This scales quadratically with
the number of qubits, as for N qubits the dimension of the density matrix is 22N .

It is possible to employ stochastic descriptions, statistically equivalent to the den-
sity matrix formalism, that evolve state vectors whose dimension for N qubits is
2N , thus providing a quadratic speedup. However, a stochastic description involves
an average over multiple realizations, i.e. a sampling overhead. The advantage is
that such overhead does not depend in general on N and thus stochastic state vector
descriptions are still preferable from the computational point of view.
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In the following, we recap the main stochastic state vector approaches and their
algorithmic implementations, highlighting when these allow for expressions in which
gates and noise dynamics affect each other. We further report their performances in
terms of both accuracy in reproducing the Lindblad equation and computational costs.
We already mention that the most favourable option to reproduce the approximate
solution in Eq. (3.6) is the noisy gate approach presented in this thesis, based on the
unraveling in terms of stochastic Schrödinger equation.

3.1.1 Unraveling of quantum operation

Most of the relevant quantum computing frameworks implement a noisy simula-
tion approach based on the so called stochastic unraveling of Kraus maps. A generic
Kraus map reads

E(ρ̂) =
m∑
i

K̂iρ̂K̂
†
i , (3.7)

where
∑m

i K̂
†
i K̂i = 1 and m is the total number of Kraus operators. Suppose that

the state of the system is initially in a pure state |ψ⟩. The map is unraveled to
a stochastic map on state vectors by imposing that, at a given time, |ψ⟩ changes
randomly as follows

|ψ′⟩ =
1

√
pj
K̂j |ψ⟩ , (3.8)

with probability
pj = | ⟨ψ| K̂†

j K̂j |ψ⟩ |2 . (3.9)

The pj are probabilities as the normalization condition
∑m

i K̂
†
i K̂i = 1 ensures their

values ranges between zero and one and that they sum up to one. In the limit of a
large number of realizations Ns, the average density matrix is given by

ρ̂ =
1

Ns

Ns∑
n=1

|ψ′
i⟩ ⟨ψ′

i| (3.10)

=
1

Ns

Ns∑
n=1

p−1
jn
K̂jn |ψ⟩ ⟨ψ| K̂

†
jn
, (3.11)

where K̂jn is the randomly picked Kraus operator in the n-th trial. This channel,
which is itself a Kraus map, can be rewritten by grouping terms involving the same
Kraus operators as

ρ̂ =
m∑
i=1

Ni

Ns

p−1
i K̂i |ψ⟩ ⟨ψ| K̂†

i , (3.12)
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where Ni is the total number of times the Kraus operator K̂i is randomly selected.
This number in the limit of large Ns can be approximated as Ni ≈ Nspi, leading to

ρ̂ ≈
m∑
i=1

K̂i |ψ⟩ ⟨ψ| K̂†
i , (3.13)

recovering the original Kraus map. We report in Alg. 1 the pseudo code associated
to the unraveling of Kraus maps.

Algorithm 1 Kraus map Simulation

Input: Initial state |ψ0⟩, a noiseless circuit Ĉ = {Û (1), ..., Û (ng)} composed by ng
gates Û (i) and number of samples Ns

for 0 ≤ k ≤ Ns do
while 1 ≤ i ≤ ng do

compute |ψk⟩(i) = Û (i) |ψk⟩(i−1)

compute pj = | ⟨ψk|(i) K̂†
j K̂j |ψk⟩(i) |2

sample K̂j operator from {pj}

update the state to |ψk⟩(i) = 1√
pj
K̂j |ψk⟩(i)

end

compute ρ̂k = |ψk⟩(ng) ⟨ψk|(ng)

end

Output: ρ̂f = 1
Ns

∑Ns

k=1 ρ̂k

The time complexity of Alg. 1 is primarily determined by the matrix vector mul-
tiplication step, exhibiting a complexity of O(22n), where n is the number of qubits.
The space complexity is dominated by the storage of the state vector and it scales as
O(2n). It has to be noted that when the Kraus operators are not unitary one needs
to store the intermediate state vectors, which are necessary in order to compute the
probabilities in Eq. (3.9). This operation has the same time and space complexity
as those of the the previous step but introduces further computational costs. The
computation of probabilities can be avoided only for mixed unitary error channels,
for which all Kraus operators are unitary. In this case probabilities are known and
independent of the current state.

Alg. 1 works for any noise channel that admits a Kraus representation meaning
that this approach allows for a noisy gates description. This, however, requires the
knowledge of the full gate plus noise Kraus map. As previously suggested, one option
is to perform quantum process tomography and then use algorithm Alg. 1. This
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not only scales bad as for each one-qubit gate and for each two-qubit gate one must
estimate 12 and 240 parameters respectively [2], but also requires the characterization
of such parameters via experiment. Another option is to derive the approximate
solutions of the Lindblad equations of each gate as in Eq. (3.6), express them as
a Kraus maps, and then use algorithm Alg. 1. This reproduces the desired system
dynamics but it involves, in general, the additional computational cost of recovering
the probabilities in Eq. (3.9).

3.1.2 Unraveling of master equation in terms of random quan-
tum jumps

Another commonly used state vector stochastic method is the so called random
quantum jump approach. The Lindblad master equation in Eq. (2.12) can be equiv-
alently written as

d

dt
ρ̂t = − i

ℏ
[Ĥt, ρ̂t] +

∑
k

γk

[
L̂kρ̂tL̂†

k −
1

2
{L̂†

kL̂k, ρ̂t}
]

(3.14)

= − i

ℏ
[Ĥeff, ρ̂t] +

∑
k

γkL̂kρ̂tL̂†
k , (3.15)

where the Hamiltonian term and the anticommutator term are grouped together
leading to an evolution under an effective non-Hermitian operator

Ĥeff = Ĥt − iℏ
∑
k

γk
2
L̂†

kL̂k , (3.16)

plus an additional term
∑

k γkL̂kρ̂tL̂
†
k responsible for quantum jumps. In this context

the Lindblad operators are also called jump operators.
Given a system initially in a pure state ρ̂(t0) = |ψ(t0)⟩ ⟨ψ(t0)|, after a small time

dt the density matrix evolves to

ρ̂(t0 + dt) =
(
1 −

∑
k

dpk
)
|ψ0⟩ ⟨ψ0| +

∑
k

dpk |ψk⟩ ⟨ψk| , (3.17)

where dpk are probabilities and they are defined by

dpk = γk ⟨ψ(t0)| L̂†
kL̂k |ψ(t0)⟩dt . (3.18)

These probabilities are infinitesimal as they depend on dt. The new states appearing
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in Eq. (3.17) are

|ψ0⟩ =
1√

1 −
∑

kdpk
(1 − i

ℏ
Ĥeffdt) |ψ(t0)⟩ (3.19)

|ψk⟩ =
1

||L̂k |ψ(t0)⟩ ||
L̂k |ψ(t0)⟩ , (3.20)

with the following interpretation: after a timedt, with probabilitydpk the state of the
system jumps to |ψk⟩, a state associated to the jump operator L̂k. With probability
1 −

∑
kdpk no jump occurs and the system evolves to |ψ0⟩ according to the effective

operator Ĥeff. Since in both cases the evolution is not unitary, the state in Eq. (3.19)
has to be normalized.

The algorithmic implementation of the quantum jumps dynamics relies on the
so-called Monte Carlo wave function approach [7]. Suppose we want to simulate the
evolution of the open system in the time interval [t0, tg] needed to execute a gate.
Let the initial state of the system be the pure state |ψ(t0)⟩ and choose a time step dt
smaller than the time scales relevant for the evolution of the system in the interval
[t0, tg]. At each time step dt, sample a random number ϵ from a uniform distribution
in the unit interval [0, 1]. If ϵ <

∑
kdpk, the system jumps to one of the state |ψk⟩. In

particular to |ψ1⟩ if 0 < ϵ <dp1, to |ψ2⟩ ifdp1 < ϵ <dp1 +dp2 and so on. On the other
hand if ϵ >

∑
kdpk, the state evolve to |ψ0⟩ via the effective evolution operator. We

repeat the sampling for each dt. This constitutes a realization in terms of quantum
trajectories. The associated pseudo code is reported in Alg. 2.

17



Algorithm 2 Random Quantum Jump simulation

Input: Initial state |ψ0⟩, a noiseless circuit C = {Û (1), ..., Û (ng)} composed by ng
gates Û (i), time step dt and number of samples Ns

for 0 ≤ k ≤ Ns do
while 1 ≤ i ≤ ng do

while dt ≤ j dt ≤ tg do

compute dp
(i,j)
l = γ

(i)
l ⟨ψk((j − 1)dt)|(i) L̂(i) †

l L̂
(i)
l |ψk((j − 1)dt)⟩(i) dt;

sample a random number 0 < ϵ < 1;

if 0 < ϵ < dp
(i,j)
1 then

update the state to
|ψk(jdt)⟩(i) = 1

||L̂(i)
1 |ψk((j−1)dt)⟩(i)||

L̂
(i)
1 |ψk((j − 1)dt)⟩(i)

else if dp
(i,j)
1 < ϵ < dp

(i,j)
1 + dp

(i,j)
2 then

update the state to
|ψk(jdt)⟩(i) = 1

||L̂(i)
2 |ψk((j−1)dt)⟩(i)||

L̂
(i)
2 |ψk((j − 1)dt)⟩(i)

...

else
update the state to
|ψk(jdt)⟩(i) = 1√

1−
∑

l dp
(i,j)
l

(1 − i
ℏĤ

(i)
eff dt) |ψk((j − 1)dt)⟩(i)

end

end

end

compute ρ̂k = |ψk⟩(ng) ⟨ψk|(ng)

end

Output: ρ̂f = 1
Ns

∑Ns

k=1 ρ̂k

We mention that the evolution of the state vector is formalized by means of a non
linear stochastic Schrödinger equation of the form

d|ψt⟩ =

[
− iĤ −

∑
k

γk
2

(L̂†
kL̂k − ⟨ψt| L̂†

kL̂k |ψt⟩)dt

+
∑
k

(
1√

⟨ψt| L̂†
kL̂k |ψt⟩

L̂k − 1

)
dNk

]
|ψt⟩ ,

(3.21)

where dNk are Poisson increments, that satisfy dNidNj = δijdNj and E[dNk] =

γk ⟨ψt| L̂†
kL̂k |ψt⟩dt. Thus, the probability that the variable dNk is 1 during the given
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time step dt is γk ⟨ψt| L̂†
kL̂k |ψt⟩dt, showing a direct dependence on the state vector.

For most of the time the variables dNk are zero, and the system evolves continu-
ously by means of the non-Hermitian effective operator. When a variable dNk is 1 a
quantum jump occurs.

The time and space complexities of Alg. 2 are the same as those for Alg. 1, re-
spectively O(22n), where n is the number of qubits, and O(2n). Similarly to the
unraveling of Kraus maps, the state of the system must be stored in order to com-
pute the probabilities in Eq. (3.18) and the normalization factors in Eq. (3.19) and
Eq. (3.20). This is an effect of the non linearity of the method that increases its
computational cost. Notably, the quantum jump approach provides, in the limit of a
large number of realization Ns and small dt, a solution to the full Lindblad equation,
as in Eq. (2.15), allowing for a very accurate noisy gate description. However this
can be achieved only by dividing the time interval of a given gate into small time
steps dt, increasing the number of total matrix vector multiplications. This becomes
inefficient and therefore analytic and approximate expressions for the whole gate time
are preferable.

3.1.3 Unraveling of master equation in terms of Stochastic
Schrödinger equation

The stochastic Schrödinger equation in Eq. (3.21) is one of the many equivalent
unravelings of the Lindblad equation in terms of stochastic Schrödinger equations.
Among them there is always one which is linear [8–12]

d|ψt⟩ =

[
− i

ℏ
Ĥtdt+

∑
k

(
i
√
γkL̂kdWk(t) −

γk
2
L̂†

kL̂kdt

)]
|ψt⟩ , (3.22)

where the dWk(t) are Wiener increments with means zero E[dWi(t)] = 0 and corre-
lations E[dWi(t),dWj(t)] = δijdt. Eq. (3.22) is a stochastic Itô equation. We notice
its similarity with Eq. (3.21), but in this case Wiener increments are continuous and
diffusive and not discrete and jump-like as Poissonian increments.

The distinctive feature of Eq. (3.22) is linearity: given the state at time |ψt0⟩, the
state at a later time is expressed as

|ψt⟩ = N̂g(t, t0) |ψt0⟩ , (3.23)

where N̂g(t, t0) is a linear matrix which constitutes a stochastic noisy gate. For this

reason, from now on we will call this approach the noisy gates approach. N̂g(t, t0)
is not unitary in general. Indeed Eq. (3.22) does not preserve the norm of the state
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vector in a single trajectory; the variation of the norm is given by

d∥|ψt⟩∥2 = ⟨dψt|ψt⟩ + ⟨ψt|dψt⟩ + ⟨dψt|dψt⟩ = −i
∑
k

⟨ψt| L̂†
k − L̂k |ψt⟩dWk(t) ,

(3.24)

which is zero only if L̂†
k = L̂k for each k, i.e. only if each Lindblad operator is

Hermitian. We notice that according to the rules of Itô calculus, terms like ⟨dψt|dψt⟩
must be taken into account because squared Wiener increments contribute to order
dt. Non preservation of the norm is a consequence of the chosen unraveling: one
could have chosen norm-preserving unravelings [13,14] (involving Wiener increments
but similar to Eq. (3.21)), which however are not linear and therefore do not allow
for a gate-like formulation. The lack of norm preservation is not a problem since at
the statistical level, i.e. when the average over the noise is taken, one recovers the
Lindblad equation, which is trace preserving. Given

ρ̂t = E
[
|ψt⟩ ⟨ψt|

]
, (3.25)

by resorting to the rules of Itô calculus, one can prove that

dρ̂t = E[d|ψt⟩ ⟨ψt|] = E[d|ψt⟩ ⟨ψt|] + E[|ψt⟩d⟨ψt|] + E[d|ψt⟩d⟨ψt|]

= − i

ℏ
[Ĥt, ρ̂t]dt+

∑
k

γk

[
L̂kρ̂tL̂†

kdt−
1

2
{L̂†

kL̂k, ρ̂t}dt

]
,

(3.26)

showing that the linear stochastic Schrödinger equation is statistically equivalent to
the Lindblad equation.

Eq. (3.22) does not admit a solution in closed form, unless for special cases e.g.
when the deterministic terms commute with the stochastic ones. However when
γk ≪ Ω where Ω is the characteristic frequency of the gate Hamiltonian, it is possible
to use a perturbative approach to write an analytic expression over the entire gate
time of the noisy gate, as in Eq. (3.23). This will be the subject of the next chapter.
We notice the advantages of the noisy gates approach: on the one hand, linearity and
the statistical equivalence allow to avoid the computation of any intermediate norm
of the state vector, as in Eqs. (3.9) and (3.18), on the other hand it is not required
to discretize the gate time in smaller time steps to maintain a good accuracy. The
noisy gates approach does not present any additional time complexity other than
the matrix vector multiplications, at the same time significantly reducing the total
number of such multiplications.

The general procedure therefore is the following. Given a noiseless algorithm,
the corresponding noisy one is obtained by replacing each ideal gate with a noisy
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gate as in Eq. (3.23). The resulting noisy algorithm, which is stochastic, is repeated
for different realizations of the random variables, as if they were different runs on a
physical quantum computer. This produces a statistics of outcomes, to be compared
with those of a real computer, or to be used to predict the behavior of a noisy device.
We summarize the noisy gates simulation approach in Alg. 3.

Algorithm 3 Noisy Gates Simulation

Input: Initial state |ψ0⟩, a noiseless circuit Ĉ = {Û (1), ..., Û (ng)} composed by ng
gates Û (i) and number of samples Ns

for 0 ≤ k ≤ Ns do

map a noisy circuit ˆ̃C = {N̂ (1), ..., N̂ (ng)} on Ĉ

sample stochastic processes W inside noisy gates N̂ (i)

compute |ψk⟩ = N̂ (ng) . . . N̂ (1) |ψ0⟩
compute ρk = |ψk⟩ ⟨ψk|

end

Output: ρf = 1
Ns

∑Ns

k=1 ρk

The time complexity of Alg. 3 is again O(22n), determined by the matrix vector
multiplication step. Analogously, the space complexity is O(2n). We stress again that
in Alg. 3 there is no need to perform the scalar product in Eq. (3.9) or Eq. (3.18).
Moreover, all the optimizations to reduce the time complexity that are possible for
Algs. 1 and 2 are also possible for Alg. 3. Finally, we show later that the sampling
of random numbers has a constant scaling.

The unraveling in terms of a linear stochastic Schrödinger equation is the only
one providing a noisy gate description, which is analytic in the gate time (but ap-
proximate) and being linear it avoids any norm computation of intermediate states.
In this regard, it is the best approach to use, keeping in mind both accuracy in
reproducing the system evolution and algorithmic complexity. Moreover the linear
stochastic Schrödinger equations are very flexible. Indeed Markovianity, which is the
main physical assumption behind the Lindblad equation, and it is a very convenient
working hypothesis, can be released in favour of more general noises [1,10,15–18]. The
advantage of using stochastic Schrödinger equations is that it is possible to describe a
non-Markovian evolution of the state vector even when this does not correspond to a
master equation for density matrices in closed form. The treatment of non-Markovian
evolution is left for future research.
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3.1.4 Unitary unraveling

The noisy gates in Eq. (3.23) are matrices which, in general, are not unitary, as the
norm of state vectors is not preserved, see Eq. (3.24). It is possible to derive a unitary
unraveling of the Lindblad equation, through the quantum noise formalism [12, 19]
that essentially promotes classical Wiener processes to quantum Wiener processes.
The quantum noise formalism arises by considering the system in contact with a
reservoir of thermal baths. The system-environment Hamiltonian reads

Ĥ = Ĥ + ĤE + ĤSE (3.27)

where Ĥ is the system Hamiltonian while ĤE and ĤSE are, respectively, the environ-
ment Hamiltonian and the system-environment interaction Hamiltonian

ĤE = ℏ
∑
k

∫
dωωb̂†k(ω)b̂k(ω), (3.28)

ĤSE = iℏ
∑
k

∫
dωχk(ω)

(
b̂†k(ω)L̂k − L̂†

kb̂k(ω)
)
, (3.29)

where b̂k(ω) is the annihilation operator of the k-th thermal bath, ω is the frequency
of the mode and L̂k is an arbitrary system operator. Starting from the Hamiltonian
in Eq. (3.27), one can solve the Heisenberg equation for b̂k(ω) and substitute the cor-
responding solution in the Heisenberg equation for an arbitrary system-environment
operator Ô. In the Markov approximation, namely when χk(ω) =

√
γk/(2π), the

Heisenberg equation for the operator Ô reads [19]

d

dt
Ô =

i

ℏ
[Ĥ, Ô] +

∑
k

γk

(
L̂†
kÔL̂k −

1

2
{L̂†

kL̂k, Ô}
)

+
∑
k

√
γk

(
b̂†in,k(t)[Ô, L̂k] + b̂in,k(t)[L̂

†
k, Ô]

)
,

(3.30)

where b̂in,k(t) = 1√
2π

∫
dωe−iω(t−t0)b̂k(ω).

Given the vacuum state |0ω⟩E of the thermal baths, we define ρ̂in = |0ω⟩E ⟨0ω|E.
By defining a quantum average as EQ[ · ] ≡ TrE(ρ̂in · ) the following relation holds

EQ[b̂k(ω)b̂†j(ω
′)] = TrE(ρ̂inb̂k(ω)b̂†j(ω

′)) = δkjδ(ω − ω′) (3.31)

and the mean value of any other combination of two bath operators is zero. We notice
that by identifying

dB̂k(t) = b̂in,k(t)dt, (3.32)
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then the only non zero mean value involving a combination of two such operators is

EQ

[
dB̂k(t)dB̂

†
j (t)
]

= δkjdt. (3.33)

Eq. (3.33) generalizes to operators the properties of means and correlations of classical
Wiener incrementsdW (t). Thus, the operators B̂k(t) can be interpreted as the quan-
tum generalization of Wiener processes [20, 21] and from Eq. (3.30) one can write
down the following quantum stochastic differential equation (QSDE) for the state
vector of the system-environment |Ψt⟩

d|Ψt⟩ =
[
− i

ℏ
Ĥdt+

∑
k

√
γk

(
L̂k dB̂†

k(t) − L̂†
k dB̂k(t)

)
−
∑
k

γk
2
L̂†
kL̂kdt

]
|Ψt⟩ .

(3.34)
Such equation leads to the Lindblad master equation for the density matrix ρ̂ of the
system, when this is calculated as ρ̂t = TrE(|Ψt⟩ ⟨Ψt|). To show this fact, we as-
sume that the initial state of system-environment is factorized as |Ψt0⟩ = |ψt0⟩S |0ω⟩E
and for simplicity we consider a single Lindblad operator L̂ with coefficient γ, the
generalization to more Lindblad operators being straightforward. Starting from
ρ̂t = TrE(|Ψt⟩ ⟨Ψt|), we differentiate on both sides to get

dρ̂t = TrE
(
d|Ψt⟩ ⟨Ψt| + |Ψt⟩d⟨Ψt| +d|Ψt⟩d⟨Ψt|

)
. (3.35)

By using the expression ford|Ψt⟩ in Eq. (3.34), its conjugate ford⟨Ψt|, and neglecting
terms of order O(dt2) one gets

dρ̂t = − i

ℏ
[Ĥ, ρ̂t]dt−

γ

2
{L̂†L̂, ρ̂t}dt+

√
γL̂TrE

(
dB̂†(t) |Ψt⟩ ⟨Ψt|

)
−√

γL̂† TrE
(
dB̂(t) |Ψt⟩ ⟨Ψt|

)
+
√
γ TrE

(
|Ψt⟩ ⟨Ψt|dB̂(t)

)
L̂†

−√
γ TrE

(
|Ψt⟩ ⟨Ψt|dB̂†(t)

)
L̂+ γL̂TrE

(
dB̂†(t) |Ψt⟩ ⟨Ψt|dB̂

)
L̂†

− γL̂TrE
(
dB̂†(t) |Ψt⟩ ⟨Ψt|dB̂†(t)

)
L̂− γL̂† TrE

(
dB̂ |Ψt⟩ ⟨Ψt|dB̂

)
L̂†

+ γL̂† TrE
(
dB̂ |Ψt⟩ ⟨Ψt|dB̂†(t)

)
L̂

= − i

ℏ
[Ĥ, ρ̂t]dt−

γ

2
{L̂†L̂, ρ̂t}dt+ γL̂ρ̂tL̂

†dt

(3.36)

where we used the fact that since dB̂(t0) |Ψt0⟩ = 0 then dB̂(t) |Ψt⟩ = 0 at all
times [22], together with the ciclicity of the trace, which implies that the only term
surviving is the second term in the third line, leading to the Lindblad master equa-
tion, Eq. (2.12). We mention that the equivalence is valid for a generic state |Ψt⟩
of the system-environment, i.e. not necessarily factorized, as far as this state is
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evolved from an initial state which is factorized with the bath in the vacuum state
i.e. |Ψt0⟩ = |ψt0⟩S |0ω⟩E.

Similarly to the standard stochastic Schrödinger equation (see Eq. (3.22)), since
Eq. (3.34) is linear its solution can be written as

|Ψt⟩ = N̂g(t, t0) |Ψt0⟩ . (3.37)

The matrix N̂g(t, t0) has another important property: it is always unitary. However

this comes at the price of enlarging the Hilbert space, as N̂g(t, t0) is unitary in the
system-environment Hilbert space. The latter is a reservoir of thermal baths with
infinite dimension, making the approach of no practical use, in principle. However, in
Chapter 7 we show that it is possible to define a suitable finite representation of the dB̂
operators, such that they act on a single bath qubit, i.e. on a two dimensional Hilbert
space. Even if this leads to a finite dimensional matrix N̂g(t, t0), if the approach has
to be used for classical simulating the output of noisy quantum circuits, it is not
favourable from the computational point of view with respect to the classical noisy
gates approach introduced in Sec. 3.1.3 as, even in this finite representation, the
dimension of N̂g(t, t0) is double that of the noisy gates N̂g(t, t0) in Eq. (3.23). This is
a consequence of the fact that unitarity is possible only in a larger physical system.

However unitarity opens up the possibility of using this framework in a way that
goes beyond the classical simulation of noisy quantum circuits: in Chapter 7 we show
that it is possible to implement N̂g(t, t0) in Eq. (3.37) as unitary gates on a quantum
computer, effectively devising a quantum algorithm that simulates the dynamics of
open quantum systems.

3.2 Libraries for noisy quantum circuit simulations

There exist many relevant quantum computing software frameworks. In Tab. 3.2
we list them together with the indication of which of the algorithmic approach de-
scribed above they apply. Most of them rely on Alg. 1 which for this reason is
generally regarded as the standard approach. Few examples implement Alg. 2. None
of the software frameworks in Tab. 3.2 implements Alg. 3. The added value of this
work is that the noisy gates approach presented here is available as an open source
python package quantum-gates at this link. The current available version of the
quantum-gates package implements the noisy gate approach that will be presented
in the next chapters, designed on IBM superconducting devices.
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Company Name Ref. Alg. I Alg. II Alg. III
IBM Qiskit [23] Yes - -

Rigetti pyQuil [24] Yes - -
Quantinuum t|ket⟩ [25] Yes - -

Xanadu Pennylane [26] Yes - -
Xanadu Strawberry Field [27] Yes - -

Microsoft LIQUI|⟩ [28] Yes - -
Google Cirq [29] Yes - -
Google TensorFlow Quantum [30] Yes - -
Intel Intel QS [31] Yes - -

Baidu Paddle Quantum [32] Yes - -
Amazon Braket [33] Yes - -

- QiBO [34] Yes - -
- QuTiP [35] - Yes -

Table 3.1: List of relevant quantum computing software frameworks. In the first
column we list the owner companies while in the fourth, fifth and sixth columns we
specify whether the noise simulation is implemented through Alg. 1, Alg. 2 or Alg. 3
respectively.
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Chapter 4

The noisy gates approach

In this chapter we derive the analytic and approximate expression of the stochastic
noisy gates introduced in Sec. 3.1.3. We show how this expression is statistically
equivalent to an approximate solution to first order in the noise parameters of the
Lindblad equation, as in Eq. (3.6). We finally comment on the properties of the noisy
gates.

4.1 General derivation of noisy gates

In order to derive the analytic expression for the noisy gates, we consider the linear
stochastic unraveling of the Lindbald equation in terms of the stochastic Schrödinger
equation introduced in Sec. 3.1.3

d|ψt⟩ =

[
− i

ℏ
Ĥtdt+ iϵ

∑
k

L̂kdWk(t) −
ϵ2

2

∑
k

L̂†
kL̂kdt

]
|ψt⟩ , (4.1)

where Ĥt is the time dependent Hamiltonian realizing a given gate, and L̂k are the
Lindblad operators capturing the action of the environment. For practical purposes
we now indicate with ϵ :=

√
γ. We notice that, in principle, a different ϵk :=

√
γk

should correspond to each L̂k in Eq. (2.12); however, for simplicity and without loss of
generality, we assume that all noise strengths are of the same order of magnitude, and
we consider a single ϵ. In general, Eq. (4.1) cannot be solved in a closed form [20,36]
except for few specific cases, for example when all operators commute. We show how
to solve Eq. (4.1) to order O(ϵ2), valid for small ϵ, by using perturbative methods for
stochastic differential equations [20].
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4.1.1 Small noise expansion

We use a perturbative method known as small noise expansion or asymptotic
perturbative expansion [20]. For simplicity, let us consider the Stochastic Schrödinger
equation in Eq. (4.1) with a single Lindblad operator

d |ψt⟩ =

[
− i

ℏ
Ĥsdt+ iϵL̂dWt −

ϵ2

2
L̂†L̂dt

]
|ψt⟩ , (4.2)

the generalization to the general case of multiple Lindblad operators being straight-
forward, and let us set the following ansatz

|ψt⟩ =
∣∣ψ0

s

〉
+ ϵ
∣∣ψ1

t

〉
+ ϵ2

∣∣ψ2
t

〉
+ O(ϵ3) . (4.3)

Substituting this ansatz into Eq. (4.2) and equating terms with the same power of ϵ,
we get a system of stochastic differential equations (SDE)

d
∣∣ψ0

t

〉
= − i

ℏ
Ĥt

∣∣ψ0
t

〉
dt

d
∣∣ψ1

t

〉
= − i

ℏ
Ĥt

∣∣ψ1
t

〉
dt+ iL̂

∣∣ψ0
t

〉
dWt

d
∣∣ψ2

t

〉
= − i

ℏ
Ĥt

∣∣ψ2
t

〉
dt+ iL̂

∣∣ψ1
t

〉
dWt −

1

2
L̂†L̂

∣∣ψ0
t

〉
dt, (4.4)

which must be solved with the initial condition
∣∣ψ0

t0

〉
= |ψt0⟩. The zero-th order differ-

ential equation is the standard Schrödinger evolution driven by the gate Hamiltonian,

hence its expression is |ψ0
t ⟩ = Û(t, t0) |ψt0⟩, where Û(t, t0) = e

−i/ℏ
∫ t
t0
Ĥ(s)ds

. The first
order SDE is an example of a time-dependent Ornstein-Uhlenbeck process [20]. In
this case the stochastic term of the equation does not depend on the process itself,
|ψ1
t ⟩. For this type of stochastic differential equations the solution is known and it is

given by [20] ∣∣ψ1
t

〉
= iÛ(t, t0)Ŝ(t, t0) |ψ0⟩ , (4.5)

where we defined the matrix Ŝ(t, t0) =
∫ t
t0

dWsL̂(s, t0) of random processes called Itô

integrals, with L̂(s, t0) = Û †(s, t0)L̂Û(s, t0) the time dependent Lindblad operator.
The solution to the second order SDE is expressed as∣∣ψ2

t

〉
= −Û(t, t0)

[1

2

∫ t

t0

L̂†(s, t0)L̂(s, t0)ds+

∫ t

t0

L̂(s, t0)Ŝ(s, t0)dWs

]
|ψ0⟩ . (4.6)

Then, the solution to order ϵ2 is given by |ψt⟩ = N̂g(t, t0) |ψ0⟩ + O(ϵ3), where the

noisy gate is N̂g(t, t0) = Û(t, t0)N̂(t, t0), with

N̂(t, t0) =

[
1+iϵŜ(t, t0)−

ϵ2

2

∫ t

t0

L̂†(s, t0)L̂(s, t0)ds−ϵ2
∫ t

t0

L̂(s, t0)Ŝ(s, t0)dWs

]
. (4.7)
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We can recast the last term in the above equation in a suitable form by using Itô
calculus [20]. We start from

dŜ2(t, t0) =dŜ(t, t0)Ŝ(t, t0) + Ŝ(t, t0)dŜ(t, t0) +dŜ(t, t0)dŜ(t, t0)

= L̂(t, t0)Ŝ(t, t0)dWt + Ŝ(t, t0)L̂(t, t0)dWt + L̂2(t, t0)dt

= 2L̂(t, t0)Ŝ(t, t0)dWt − [L̂(t, t0), Ŝ(t, t0)]dWt + L̂2(t, t0)dt

(4.8)

where we used the fact that (dWt)
2 = dt and [·, ·] is the commutator. Isolating for

L̂(t, t0)Ŝ(t, t0)dWt and integrating over [t, t0] on both sides of the equation, one has
that ∫ t

t0

L̂(s, t0)Ŝ(s, t0)dWs =
1

2

∫ t

t0

Ŝ2(s, t0) −
1

2

∫ t

t0

L̂2(s, t0)ds+ Ĉ(t, t0) , (4.9)

where we have defined Ĉ(t, t0) := 1
2

∫ t
t0

[L̂(s, t0), Ŝ(s, t0)]dWs. Substituting this ex-
pression into Eq. (4.7), we get to second order

N̂(t, t0) = 1 + iϵŜ(t, t0) −
ϵ2

2
Ŝ2(t, t0) −

ϵ2

2
D̂(t, t0) + ϵ2Ĉ(t, t0) (4.10)

where D̂(t, t0) :=
∫ t
t0

(L̂†(s, t0)L̂(s, t0) − L̂2(s, t0))ds is a deterministic term. Inserting

the final expression in Eq. (4.10) in the noisy gate N̂g(t, t0), the latter is equivalent
to an approximate solution of the Lindblad equation as in Eq. (3.6)

ρ(t) = E[|ψt⟩ ⟨ψt|] = E[N̂g(t, t0) |ψt0⟩ ⟨ψt0| N̂ †
g (t, t0)]

= Û(t, t0)E

[(
1 + iϵŜ(t, t0) −

ϵ2

2
Ŝ2(t, t0) −

ϵ2

2
D̂(t, t0) + ϵ2Ĉ(t, t0)

)
ρ̂(t0)

(
1 + iϵŜ†(t, t0) −

ϵ2

2
Ŝ†2(t, t0) −

ϵ2

2
D̂†(t, t0) + ϵ2Ĉ†(t, t0)

)]
Û †(t, t0)

= Û(t, t0)

[
ρ̂(t0) + ϵ2

∫ t

t0

L̂(s, t0)ρ̂(t0)L̂
†(s, t0)ds

− ϵ2

2

∫ t

t0

{L̂†(s, t0)L̂(s, t0), ρ̂(t0)}ds

]
Û †(t, t0)

= Û(t, t0)

[
1 +

∫ t

t0

LD(s)dsρ̂(t0)

]
Û †(t, t0) ,

(4.11)

where we are keeping only terms up to order ϵ2 and we used the fact that E[Ŝ2(t, t0)] =∫ t
t0
L̂2(s, t0)ds and E[Ŝ2†(t, t0)] =

∫ t
t0
L̂2†(s, t0)ds, which is a consequence of Eq. (4.9)

28



and the fact that E[Ĉ(t, t0)] = E[Ĉ†(t, t0)] = 0. Indeed

E[Ĉ(t, t0)] = E

[
1

2

∫ t

t0

L̂(s, t0)Ŝ(s, t0)dWs

]
− E

[
1

2

∫ t

t0

Ŝ(s, t0)L̂(s, t0)dWs

]
= E

[
1

2

∫ t

t0

∫ s

t0

L̂(s, t0)L̂(u, t0)dWudWs

]
− E

[
1

2

∫ t

t0

∫ s

t0

L̂(u, t0)dWuL̂(s, t0)dWs

]
,

(4.12)

both terms in the last line have mean zero, since the process integrated over dWs,
which is

∫ s
t0
L̂(u, t0)dWu, depends on dW at times u always earlier than s and thus

it is non anticipating [20]. Itô integrals of non anticipating functions have mean
zero [20]. Despite this fact, the term Ĉ(t, t0) is problematic from the computational
point of view in a single realization of N̂g(t, t0). Being the sum of two matrices of
Itô integrals whose integrand are random processes, their probability distributions
are generally not known. This raises the problem of how to sample processes inside
Ĉ(t, t0). However, the derivation in Eq. (4.11) shows that the presence of the term
Ĉ(t, t0) is important to order ϵ2 only in a single realization, but its effects on the final
averaged density matrix are washed away, i.e. on average it gives zero contribution
to the final density matrix. For this reason we can simply drop Ĉ(t, t0) in Eq. (4.10),
and write

N̂(t, t0) = 1 + iϵŜ(t, t0) −
ϵ2

2
Ŝ2(t, t0) −

ϵ2

2
D̂(t, t0)

=

[
1 − ϵ2

2
D̂(t, t0)

][
1 + iϵŜ(t, t0) −

ϵ2

2
Ŝ2(t, t0)

]
= e−

ϵ2

2
D̂(t,t0)eiϵŜ(t,t0) + O(ϵ3),

(4.13)

where the second equality holds to order ϵ2. The expression for N̂(t, t0) in Eq. (4.13)
leads to the same approximate average density matrix in Eq. (4.11).

The final expression for N̂g generalizes in the case of multiple Lindblad operators

L̂k. Now we substitute different ϵk :=
√
γk for each Lindblad operators, and the

expression becomes

N̂g(t, t0) = Û(t, t0)e
D̂(t,t0)eiŜ(t,t0) , (4.14)

where the deterministic term D̂(t, t0) and the stochastic term Ŝ(t, t0) are defined as

D̂(t, t0) =
∑
k

D̂k(t, t0) = −
∑
k

γk
2

∫ t

t0

ds(L̂†
k(s, t0)L̂k(s, t0) − L̂2

k(s, t0))

Ŝ(t, t0) =
∑
k

Ŝk(t, t0) =
∑
k

√
γk

∫ t

t0

L̂k(s, t0)dWs .

(4.15)
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4.1.2 Protocol for noisy gates simulations

At a first glance, Eq. (4.14) suggests that the final expression has a unitary (ideal)

term Û(t, t0) separated from the noise terms eD̂(t,t0)eiŜ(t,t0), thus we obtained a noise
gate rather than a noisy gate. Indeed such terms act as separate matrices on the state
vector. However, it has to be noted that eD̂(t,t0) and eiŜ(t,t0) contain the Lindblad
operators L̂k(s, t0) in the interaction picture, L̂k(s, t0) = Û †(s, t0)L̂kÛ(s, t0), which
make them dependent on the gate Hamiltonian, i.e. the noise dynamics is influenced
by the unitary evolution realized by Û(t, t0).

Moreover, the final noisy gate expression in Eq. (4.14) is very handy from the com-
putational point of view. The real part [ŜRk (t, t0)]ij and the imaginary part [ŜIk(t, t0)]ij
of the entries of the operators Ŝk in Eq. (4.15) are Itô integrals of deterministic func-
tions: [Ŝmk (t, t0)]ij =

∫ t
t0

dWk(s)[L̂
m
k (s, t0)]ij for m = R, I. Differently from entries

of the problematic term Ĉ(t, t0), their probability distribution is known. They are
Gaussian stochastic processes with means zero

E
[
[Ŝmk (t, t0)]ij

]
= 0 , (4.16)

and with variances and covariances given by

V
[
[Ŝmk (t, t0)]ij

]
=

∫ t

t0

ds([L̂mk (s, t0)]ij)
2

E
[
[Ŝmk (t, t0)]ij[Ŝ

n
k (t, t0)]i′j′

]
=

∫ t

t0

ds[L̂mk (s, t0)]ij[L̂
n
k(s, t0)]i′j′ .

(4.17)

Once all the variances and covariances are computed, the stochastic processes can
be sampled to generate a single realization of each Ŝk(t, t0), to be used to com-

pute eiŜ(t,t0). Indeed for each Ŝk(t, t0) the final resulting probability distribution is
a multi-normal distribution with zero mean and with covariance matrix defined by
the variances and covariances of its entries. Sampling from such distributions has a
constant computational cost. Other terms in N̂g are deterministic and can be easily
computed.

The noisy gate approach presented here is general and valid for any Hamiltonian
and Lindblad operators. As such it can be applied to different noisy quantum com-
puters, as long as the approximation holds. The approach results in the following
procedure to implement the simulations of noisy quantum circuit on a given device
through Alg. 3

1. specify the Hamiltonians, i.e. the unitaries, realizing the set of native gates of
the given quantum device. This constitutes a universal set with a very limited
number of gates;
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2. given a noise model of the device specify all the possible Lindblad operators and
compute them in the interaction picture for each native gate. Find the resulting
expressions of each native noisy gate in Eq. (4.14);

3. characterize the momenta in Eqs. (4.16) and (4.17) of the Itô integrals appearing
in Ŝ(t, t0).

Native gates are usually single-qubit or two-qubit operations and typical noises have
a limited m locality of the Lindbladians, meaning that Lindblad operators act non
trivially at most on m qubits (generally m = 2, meaning nearest neighbor interac-
tion). Thus, the calculation of Lindblad operators in the interaction picture is not
computationally intensive: the dimension of matrices to be computed does not scale
with the size of the quantum device, but it is ultimately dictated by the locality of the
noise. In the next chapter we follow the outlined procedure for IBM superconducting
devices. In this case it is rather straightforward to carry out results with analytic
calculations. However me mention that all these steps can be easily automated.

Once all the steps are performed, given an ideal quantum circuit decomposed into
native gates it is sufficient to follow Alg. 3. By averaging over the number Nsamples of
realizations of the final state |ψt⟩k, one recovers the final density matrix of the system

ρ̂ =
1

Nsamples

∑
k

|ψt⟩k ⟨ψt|k , (4.18)

where ρ̂ is an approximate solution of the Lindblad equation as in Eq. (3.6).
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Chapter 5

Noisy gates on IBM
superconducting devices

In this chapter we specify the noisy gates method on IBM superconducting quan-
tum computers [5]. The primary aim is to show the improved performance of Alg. 3
with respect to the standard Alg. 1. Particularly, to implement the latter we use the
noise simulator provided by Qiskit (see also Tab.3.2). We show the superiority of
Alg. 3 in the simplest scenario possible: a standard underlying noise model. Casting
the behaviour of a real quantum device in a complete noise model is a hard task, and
the more accurate the model, the less general it is. The aim is not that of finding
the best noise model for a given quantum computer; rather, given a noise model, we
are interested in the best way, in terms of accuracy and computational resources, to
simulate its effects on quantum circuits. The standard noise model that we employ
gives appreciable results in the simulations, allowing to enlighten the main points.
When the aim is that of predicting the output of the noisy devices as accurately as
possible, better results can be achieved by refining the noise model. This goes beyond
the scope of this chapter.

First we report all Kraus maps of the standard noise model, necessary for Alg. 1
and their equivalent Lindblad terms, necessary for Alg. 3; then we specialize the
general derivation of the noisy gates presented in Chapter 4 to the native single and
two-qubits gates of IBM devices. We discuss the results of the simulations, which test
our approach against the standard one in reproducing the solution of the Lindlbad
equation, as well as the outcomes of current IBM quantum computers. We conclude
with some general remarks.
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5.1 Standard noise model

The noises which are more relevant in the functioning of superconducting devices
have extensively been characterized in the literature [2,6,37]; in this section we briefly
present the standard noise model that we used for the simulations. First we indicate
the Kraus maps needed for Alg. 1. Then we present their equivalent Lindblad terms
needed for Alg. 3.

5.1.1 Kraus maps

The standard noise model assumes that noises associated to gate execution are
suitable compositions of single-qubit depolarization and single-qubit amplitude and
phase damping, noise associated to measurements is the single-qubit bitflip channel
and noise acting on idle qubits is the single-qubit amplitude and phase damping
channel [37, 38]. Here we report the Kraus maps for these channels. These define a
custom noise model in Qiskit that is used for the simulations through Alg. 1.

Single-qubit depolarization brings the qubit state towards the totally mixed one
[6], 1/

√
2; the Kraus map of single-qubit depolarization on the a-th qubit reads

E (a)
d (ρ̂) =

(
1 − 3

4
p(a)
)
ρ̂+

p(a)

4
X̂ρ̂X̂ +

p(a)

4
Ŷ ρ̂Ŷ +

p(a)

4
Ẑρ̂Ẑ , (5.1)

where ρ̂ is the density matrix of the qubit, X̂, Ŷ , Ẑ are the Pauli matrices and p(a)/4
is the equal probability of having a bit flip, a phase flip or a bit and phase flip of
the states of the computational basis. The probability p(a) used in the simulations is
the single-qubit gate error provided as a calibration parameter for IBM devices. We

assume a behaviour in time of the form p(a) = (1 − e−γ
(a)
d t) for a characteristic time

T
(a)
d = 1/γ

(a)
d and with t the evolution time.

The second type of noise associated to gates execution is due to the thermalization
with the environment, inducing the decay of the qubit towards its ground state |0⟩,
an effect which is also known as amplitude damping [2, 6]. Amplitude damping of

the a-th qubit is characterized by a relaxation time T
(a)
1 , which identifies the time

scale for the initial state to decay towards |0⟩; in turn this induces also a damping
of the off-diagonal elements of the density matrix, a phase damping, which (if only

amplitude damping is acting) has a characteristic time 2T
(a)
1 . However, at the same

time the environment contributes with a further pure phase damping, resulting in
an effective dephasing rate 1/T

(a)
2 ≥ 1/2T

(a)
1 . The Kraus map of the single-qubit

amplitude and phase damping on the a-th qubit is given by [2, 6]

E (a)
apd(ρ̂) = K̂ρ̂K̂ + p

(a)
1 σ̂−ρ̂σ̂+ + p(a)z P̂1ρ̂P̂1 , (5.2)
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where we defined the operator

K̂ =

(
1 0

0

√
1 − p

(a)
1 − p

(a)
z

)
, (5.3)

and P̂1 = |1⟩ ⟨1| is the projector onto the |1⟩ state. In this case, p
(a)
1 = 1 − e−t/T

(a)
1 is

the probability of amplitude damping, t is the evolution time, T
(a)
1 is the relaxation

time and p
(a)
z = (1 − p

(a)
1 )p

(a)
pd , where p

(a)
pd = 1 − e−t/T

(a)
pd is the probability of pure

dephasing with T
(a)
pd = T

(a)
1 T

(a)
2 /(2T

(a)
1 − T

(a)
2 ), T

(a)
2 being the decoherence time. The

time scales T
(a)
1 and T

(a)
2 are related as T

(a)
2 ≤ 2T

(a)
1 . The times T

(a)
1 and T

(a)
2 that

are used in the simulations are directly provided as calibration parameters for IBM
devices.

Single-qubit depolarization and amplitude and phase damping are composed to
get the Kraus map associated to the execution of single-qubit gates on qubit a

E (a)(·) = E (a)
d (·) ◦ E (a)

apd(·) . (5.4)

The Kraus map is equivalent to the Lindblad term in Eq. (5.9) when t = tg, where tg
is the single-qubit gate time, γ

(a)
1 = 1/T

(a)
1 , γ

(a)
pd = 1/4T

(a)
pd , γ

(a)
d = p(a)/(4tg).

The standard noise model neglects cross talks and correlated noises [39] between
qubits; thus the Kraus map associated to two-qubit gates on qubits a and b is the
tensor product of the single-qubit Kraus maps in Eq. (5.4)

E (a,b)(·) = E (a)(·) ⊗ E (b)(·) . (5.5)

The two-qubit Kraus map is equivalent to the Lindblad term in Eq. (5.10) by choosing

t = t
(a,b)
g the two qubit gate time on qubits a and b, γ

(a)
1 = 1/T

(a)
1 , γ

(b)
1 = 1/T

(b)
1 ,

γ
(a)
pd = 1/4T

(a)
pd and γ

(b)
pd = 1/4T

(b)
pd , γ

(a)
d = γ

(b)
d = γ

(a,b)
d = p(a,b)/(4t

(a,b)
g ).

We mention that since in IBM devices t
(a,b)
g is ten times larger than tg, then p

(a)
1 ,

p
(a)
z and p(a,b) are ∼ 2 orders of magnitude higher than any probability appearing

in the single-qubit Kraus map. Thus, the standard noise model already takes into
account that two-qubit operations are more faulty than single-qubit ones.

Along with errors associated with the execution of each gate, the standard model
takes into account measurement errors at the very end of a quantum circuit. Such
errors are modeled with the single-qubit bit flip channel [6], whose Kraus map on
qubit a reads

E (a)
m (ρ̂) = (1 − r(a))ρ̂+ r(a)X̂ρ̂X̂ , (5.6)

where X̂ is the X-Pauli matrix and r(a) is the probability of having a flip of the states
of the computational basis. The probability r(a) that we used in the simulations is
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the readout error provided as a calibration parameter for IBM devices. We assume a

behaviour in time of the form r(a) = (1 − e−2γ
(a)
m t)/2 for a characteristic time T

(a)
m =

1/γ
(a)
m . The map is equivalent to the corresponding Lindblad equation in Eq. (5.11)

by choosing t = t
(a)
m the measurement time on qubit a, and γ

(a)
m = r(a)/t

(a)
m . t

(a)
m is

also provided as a calibration parameter for IBM devices, and it is usually 100 times
larger than single-qubit gate times.

5.1.2 Lindblad terms

We list the Lindblad terms corresponding to the Kraus maps presented above.
Single-qubit depolarization on qubit a has the following Lindblad term [2,6],

L(a)
d (ρ̂) = γ

(a)
d

3∑
k=1

[
σ̂kρ̂σ̂k − ρ̂

]
, (5.7)

where σ̂1 = X̂, σ̂2 = Ŷ , σ̂3 = Ẑ are the standard Pauli matrices.
When T1 ≥ T2 holds (and this is the case of interest to us), the single-qubit

amplitude and phase damping on qubit a has the following Lindblad term

L(a)
apd(ρ̂) = γ

(a)
1

[
σ̂−ρ̂σ̂+ − 1

2

{
P̂(1), ρ̂

}]
+ γ

(a)
pd

[
Ẑρ̂Ẑ − ρ̂

]
, (5.8)

where we use the convention σ̂− = |0⟩ ⟨1| and P̂(1) = |1⟩ ⟨1| is the projector onto |1⟩;
According to the standard noise model, during the execution of single-qubit gates,

we consider both sources of noise together, meaning that the Lindblad term is

L(a)(ρ) = L(a)
d (ρ) + L(a)

apd(ρ) . (5.9)

As already pointed out, this term is equivalent to the single-qubit Kraus map in
Eq. (5.4) by solving for a time t = tg and with the choices γ

(a)
1 = 1/T

(a)
1 , γ

(a)
pd =

1/4T
(a)
pd , γ

(a)
d = p(a)/4tg.

The two-qubit Lindblad term on qubits a and b is obtained with the direct sum

L(a,b)(ρ) = L(a)(ρ)
⊕

L(b)(ρ) . (5.10)

This is equivalent to the two qubit Kraus map in Eq. (5.5) by solving for a time t =

t
(a,b)
g and with the choices γ

(a)
1 = 1/T

(a)
1 , γ

(b)
1 = 1/T

(b)
1 , γ

(a)
pd = 1/4T

(a)
pd , γ

(b)
pd = 1/4T

(b)
pd ,

γ
(a)
d = γ

(b)
d = γ

(a,b)
d = p(a,b)/4t

(a,b)
g .

For measurements and noises on idle qubits, no drive is implemented and the cor-
responding Lindblad equation does not contain the Hamiltonian term. The Lindblad
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equation for measurement errors is that of a single-qubit bitflip channel. On the a-th
qubit this reads

d

dt
ρ̂t = γ(a)m (X̂ρ̂tX̂ − ρ̂t). (5.11)

Solving for a time t
(a)
m , with the choice γ

(a)
m = r(a)/t

(a)
m is equivalent to the Kraus map

in Eq. (5.6). Finally for idle qubits, i.e. qubits over which no gate is applied while

other are manipulated, the Lindblad equation is d
dt
ρ̂t = L(a)

apd(ρ̂) where L(a)
apd(ρ̂) is the

single-qubit amplitude and phase damping term in Eq. (5.8). We do not consider
depolarization error on idle qubits, because this channel is used to model incoherent
gate infidelities.

5.2 Noisy gates derivation

In this section we specialize the general derivation of noisy gates presented in
Chapter 4 to the native single-qubit and two-qubit gates of IBM superconducting
devices. The underlying noise model is the standard noise model introduced in Sec.
5.1.

5.2.1 Single qubit noisy gates

Single-qubit gates are realized by the capacitive coupling of a microwave drive line
with the superconducting transmon qubit in IBM devices. The effective Hamiltonian
of the drive is [37,40]

ĤD(t) =
ℏ
2
ω(t)(cos(ϕ)X̂ + sin(ϕ)Ŷ ) , (5.12)

where ω(t) = −χV0s(t) is the drive pulse, χ is a parameter depending on the capacities
of the transmon qubit and the coupling capacity, V0 is the amplitude of the drive
potential, s(t) is a dimensionless envelope function of the drive pulse and ϕ is an
arbitrary phase. The unitary evolution due to the drive Hamiltonian is given by

ÛD(t, t0) = e−
i
2
θ(t,t0)(cos(ϕ)X̂+sin(ϕ)Ŷ ) , (5.13)

where θ(t, t0) =
∫ t
t0
ω(s)ds is the rotation angle on the X-Y plane. In matrix notation

Eq. (5.13) reads

ÛD(t, t0) =

 cos
(
θ(t,t0)

2

)
−i sin

(
θ(t,t0)

2

)
e−iϕ

−i sin
(
θ(t,t0)

2

)
eiϕ cos

(
θ(t,t0)

2

)  . (5.14)
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In IBM devices, the drive Hamiltonian is calibrated to realize the native single-
qubit gates X and SX, which are rotations around the X-axis obtained by setting
that θ(t, t0) = π or θ(t, t0) = π/2 in Eq. (5.13). The additional phase ϕ allows to
implement rotations around the z-axis of arbitrary angles as virtual gates, since they
are mimicked by the software and are not associated to a physical action on the
device [40]. We derive the expression of the single-qubit noisy gates with generic
unitary evolution as in Eq. (5.14) modified by adding the single-qubit Lindblad term
in Eq. (5.9). The corresponding stochastic Schrödinger equation (see Eq. (3.22)) is

d|ψt⟩ =

[
− i

ℏ
ĤD(t)dt+ i

√
γdX̂dWt,x + i

√
γdŶ dWt,y + i

√
γdẐdWt,z −

3

2
γdÎdt

+ i
√
γ1σ̂

−dWt,1 −
γ1
2
P̂1dt+ i

√
γpd
4
ẐdWt,2 −

γpd
8
Îdt

]
|ψt⟩ ,

(5.15)

to be solved from t0 = 0 to tg, the single-qubit gate time. By using the perturbative
expression for the noisy gate in Eq. (4.14), we have

Û
(N)
D (tg, 0) =ÛD(tg, 0) · exp

(
γ1
2
D̂(tg, 0)

)
· exp

(
i
√
γdŜx(tg, 0) + i

√
γdŜy(tg, 0)

+ i
√
γdŜz(tg, 0) + i

√
γ1Ŝ1(tg, 0) + i

√
γpd/4Ŝ2(tg, 0)

) (5.16)

where

D̂(t, t0) =

∫ t

t0

P̂1(s, t0)ds; Ŝx(t, t0) =

∫ t

t0

X̂(s, t0)dWs,x

Ŝy(t, t0) =

∫ t

t0

Ŷ (s, t0)dWs,y; Ŝz(t, t0) =

∫ t

t0

Ẑ(s, t0)dWs,z;

Ŝ1(t, t0) =

∫ t

t0

σ̂−(s, t0)dWs,1; Ŝ2(t, t0) =

∫ t

t0

Ẑ(s, t0)dWs,2

(5.17)

D̂(t, t0) is the deterministic term associated to the non Hermitian operator σ̂− of am-
plitude and phase damping and all other Ŝk are stochastic matrices. As an illustrative
example the matrix form of Ŝz(t, t0) is

Ŝz(t, t0) =

(
Sz,1(t, t0) −i e−iϕ Sz,2(t, t0)

i eiϕ Sz,2(t, t0) −Sz,1(t, t0)

)
, (5.18)

where

Sz,1(t, t0) =

∫ t

t0

cos(θ(s, t0))dWs,z Sz,2(t, t0) =

∫ t

t0

sin(θ(s, t0))dWs,z . (5.19)
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These two Itô integrals have a binormal joint probability distribution, with the fol-
lowing momenta

E[Sz,1(t, t0)] = E[Sz,2(t, t0)] = 0

E[S2
z,1(t, t0)] =

∫ t

t0

cos2(θ(s, t0))ds

E[S2
z,2(t, t0)] =

∫ t

t0

sin2(θ(s, t0))ds

E[Sz,1(t, t0)Sz,2(t, t0)] =

∫ t

t0

cos(θ(s, t0)) sin(θ(s, t0))ds .

(5.20)

The remaining Ŝ matrices in Eq. (5.17) have similar matrix forms, which can be
computed straightforwardly. If we assume that θ(t, t0) = π one gets the noisy gate
XN(ϕ), or with θ(t, t0) = π/2 one gets SXN(ϕ). We mention that for the simulations
in the next section and in the current version of the quantum-gates library, we
considered constant pulses for simplicity, i.e. ω(t) = ω with ω constant, being the
generalization to general functions rather straightforward. It should be noted that
according to the noisy gates approach the functional form of θ(t, t0), that in turn
depend on that of ω(t), affects the action of the noises on the system, meaning that
different pulse shapes could lead to different or perhaps smaller noise effects, i.e. error
mitigation; this is a question left for future research.

Finally we have decided to not diagonalize the single-quibt Lindblad term in
Eq. (5.9) in canonical form. In this way it is easier to discern terms coming from
depolarization or amplitude and phase damping. The total of five Lindblad operators
is redundant as any Lindblad term on n qubits can be diagonalized in canonical form
to always have 22n − 1 Lindblad operators, thus in the single-qubit case a total of
three Lindblad operators. In [41] the derivation is performed with the diagonalized
Lindblad term. This procedure involves a rewriting of the latter thus the resulting
dynamics is left unchanged and predictions are equivalent in the two formulations.

5.2.2 Two-qubit noisy gates

The native two-qubit interaction in IBM devices is the so-called cross resonant
(CR) gate [37,40,42], realized by the CR Hamiltonian [37,40,42]

ĤCR(t) =
ℏ
2
ω(t)Ẑ ⊗ (cos(ϕ)X̂ + sin(ϕ)Ŷ ) , (5.21)

where ω(t) is the drive pulse and ϕ is an arbitrary phase. The additional phase ϕ
allows to implement virtual z gates similarly to single-qubit gates, see [40] for further
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details. The corresponding unitary evolution is given by

ĈR(t, t0) = e−
i
2
θ(t,t0)Ẑ⊗(cos(ϕ)X̂+sin(ϕ)Ŷ ) (5.22)

where θ(t, t0) =
∫ t
t0
ω(s)ds. In matrix notation Eq. (5.22) reads

ĈR(t, t0) =

(
ÛD(θ(t, t0), ϕ) 0

0 ÛD(−θ(t, t0), ϕ)

)
, (5.23)

where ÛD(θ(t, t0), ϕ) and ÛD(−θ(t, t0), ϕ) are as in Eq. (5.14). The CNOT gate and
its inverse are implemented by combining single-qubit gates and CR gates.

In order to derive the corresponding CR noisy gate, the unitary dynamics is mod-
ified by adding the two-qubit Lindblad term in Eq. (5.10). The corresponding SDE
on qubits c, the control, and t, the target, is the following

d|ψt⟩ =

[
− i

ℏ
ĤCR(t)dt+ i

√
γdX̂ÎdW

(c)
t,x + i

√
γdŶ ÎdW

(c)
t,y +

i
√
γdẐÎdW

(c)
t,z + i

√
γdÎX̂dW

(t)
t,x + i

√
γdÎ Ŷ dW

(t)
t,y+

i
√
γdÎẐdW

(t)
t,z − 3γdÎ Îdt+ i

√
γ
(c)
1 σ̂−ÎdW

(c)
t,1 −

γ
(c)
1

2
P̂1Îdt+ i

√
γ
(t)
1 Î σ̂−dW

(t)
t,1 − γ

(t)
1

2
ÎP̂1dt+

i

√
γ
(c)
pd

4
ẐÎdW

(c)
t,2 + i

√
γ
(t)
pd

4
ÎẐdW

(t)
t,2 − 1

8

(
γ
(c)
pd + γ

(t)
pd

)
Î Îdt

]
|ψt⟩ ,

(5.24)

where for simplicity the tensor product between operators acting on the two qubits
is omitted.

Using the perturbative expression in Eq. (4.14) with t0 = 0 and t = t
(c,t)
CR , where

t
(c,t)
CR is the time needed to implement the cross resonance gate on qubits c and t, we

get

ĈRN(t
(c,t)
CR , 0) = ĈR(t

(c,t)
CR , 0) · exp

(
γ
(c)
1

2
D̂(c)(t

(c,t)
CR , 0) +

γ
(t)
1

2
D̂(t)(t

(c,t)
CR , 0)

)
· exp

(
i
√
γdŜ

(c)
x (t

(c,t)
CR , 0) + i

√
γdŜ

(c)
y (t

(c,t)
CR , 0) + i

√
γdŜ

(c)
z (t

(c,t)
CR , 0)

+ i
√
γdŜ

(t)
x (t

(c,t)
CR , 0) + i

√
γdŜ

(t)
y (t

(c,t)
CR , 0) + i

√
γdŜ

(t)
z (t

(c,t)
CR , 0)

+ i

√
γ
(c)
1 Ŝ

(c)
1 (t

(c,t)
CR , 0) + i

√
γ
(t)
1 Ŝ

(t)
1 (t

(c,t)
CR , 0) + i

√
γ
(c)
pd /4Ŝ

(c)
2 (t

(c,t)
CR , 0)

+ i

√
γ
(t)
pd /4Ŝ

(t)
2 (t

(c,t)
CR , 0)

)
.

(5.25)
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Stochastic and deterministic matrices are similar to those of Eq. (5.17). For instance

Ŝ
(c)
z (t, t0) =

∫ t
t0
ẐÎ(s, t0)ds. Their entries are deterministic or Itô integrals of trigono-

metric functions similar to Eq. (5.19).

5.2.3 Other noises

Noise gates corresponding to measurement errors and noises on idle qubits can be
derived exactly as in [43]. The single-qubit bit flip Lindblad equation in Eq. (5.11) is
unravelled to get the stochastic Schrödinger equation

d|ψt⟩ =

[
i
√
γX̂dWt −

γ

2
1dt

]
|ψt⟩ . (5.26)

Since X̂ and 1 commute, the equation is analytically solvable with standard methods
[20,21,36], and the corresponding noise gate is [43]

N SPAM(t, t0) = ei
√
γX̂W (t,t0), (5.27)

where W (t, t0) :=
∫ t
t0

dWs is a Wiener process. In this case, as X̂ is Hermitian, the
noise gate is unitary and we can interpret it as a stochastic Schrödinger evolution due
to the presence of W (t, t0). The probability distribution of W (t, t0) is Gaussian with
mean E[W (t, t0)] = 0 and variance E[W 2(t, t0)] = t− t0.

The stochastic Schrödinger equation for the single-qubit amplitude and phase
damping channel reads

d|ψt⟩ =

[
i
√
γ1σ

+dWt,1 −
γ1
2
P1dt+ i

√
γpd
4
ZdWt,2 −

γpd
8

dt

]
|ψt⟩ . (5.28)

Despite the fact that operators in Eq. (5.28) do not commute, the Itô equation is
analytically solvable [43] and we get the following non-unitary noisy gate

N relax(t, t0) =

(
eiαW2(t,t0) iS(t, t0)e

iαW2(t,t0)

0 e−
γ1
2
(t−t0)e−iαW2(t,t0)

)
, (5.29)

where for simplicity we defined α :=
√
γpd/4, and

S(t, t0) =
√
γ1

∫ t

t0

e−
γ1
2
(s−t0)e−2iαW2(s,t0)dWs,1 (5.30)

is a complex stochastic Itô process. The sampling of this term is problematic. For
instance, its real part

SR(t, t0) =
√
γ1

∫ t

t0

e−
γ1
2
(s−t0) cos

(
2αW2(s, t0)

)
dWs,1; (5.31)
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is an Itô integral of a stochastic function, and, as commented in Chapter 4, its prob-
ability distribution is not known. We can avoid such a difficulty by adequately sub-
stituting N relax(t, t0) with some modified noise gate, which is equivalent to the former
once the average is carried out, in the sense that Eq. (5.2) still holds even if the new
noise gate is not a solution of the unraveling in Eq. (5.28) anymore. For instance, it
is straightforward to verify that this holds for the following choice

Ñ relax(t, t0) =

(
eiαW2(t,t0) iS̃(t, t0)e

−iαW2(t,t0)

0 e−
γ1
2
(t−t0)e−iαW2(t,t0)

)
, (5.32)

with the definition

S̃(t, t0) =
√
γ1

∫ t

t0

e−
γ1
2
(s−t0)dWs,1; (5.33)

i.e., one always has that

E
[
N relax |ψ⟩ ⟨ψ|N relax†] = E

[
Ñ relax |ψ⟩ ⟨ψ| Ñ relax†]. (5.34)

The difference is that now the process S̃(t, t0) is the Itô integral of a deterministic
function, and it has a Gaussian statistics [20], making its sampling more convenient
in a simulation.

5.3 Comparison with the numerical solution of Lind-

blad equations

We study the performances of the noisy gates method, and compare them with the
standard method. First, we test which of the two approaches is closer to the analytic
solution of the full Lindblad equation as in Eq. (2.15). We run the simulations on
both single and two qubit gates. In particular, we simulate repetitions of X, CR
and CNOT gates modified by the standard noise model described in section 5.1.
For the standard approach we used Qiskit’s simulator [44], while for the noisy gates
simulations we used the simulator provided by the quantum-gates package.

We compare the density matrices ρng and ρibm, obtained from the noisy gates
simulation and from the Qiskit simulation respectively, with the target density matrix
σ obtained by solving numerically the Lindblad equation with Mathematica [45]. We
treat σ as the target analytic solution of the full Lindblad equation. The comparison
is performed with the Hellinger distances Hng

σ = H(ρng, σ), Hibm
σ = H(ρibm, σ) where

the Hellinger distance is defined by

H(ρ, σ) =
1√
2

√√√√ N∑
k=1

(√
ρkk −

√
σkk
)2
, (5.35)
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with ρkk (σkk) the diagonal elements of ρ (σ). The Hellinger distance is a classical
measure of the distance between the readout probability distributions. It cannot be
interpreted as a distance between quantum states since it does not take in account
off diagonal elements of density matrices. The Hellinger distance directly compares
the concrete outputs of a real device, which are the outcomes of Z measurements,
i.e. classical bitstrings. Since in these simulations it is easy to get the full density
matrices, we also compute the fidelities, which accounts for all the entries of density
matrices, Fng

σ = F(ρng, σ) and F ibm
σ = F(ρibm, σ), where the fidelity is defined as

F(ρ, σ) =
(
Tr
√
σ1/2ρσ1/2

)2
. (5.36)

We notice that for the diagonal entries of density matrices, we could have used the
Hellinger fidelity, related to the Hellinger distance as FH = (1 −H2)2. This quantity
is not a proper mathematical distance, further motivating the use of the Hellinger
distance as a more reliable figure of merit.

5.3.1 Single qubit simulations

The X gates are obtained by setting θ = π and ϕ = 0 in Eq. (5.13); we initialize
the qubit in |0⟩ and we use the qubit noise parameters of ibmq manila. We evolve
the state of the qubit for a time T = N tg, with N = 15000. In panels (a), (b) and (c)
of Fig. 5.1 we plot the time evolution of ρ00 = ⟨0|ρ|0⟩, the population of the ground
state, obtained with the three methods. In the noiseless case, ρ00 should oscillate
between zero and one as at each tg a complete X rotation is performed; the standard
noise model modifies this behaviour: oscillations are damped due to amplitude and
phase damping, while depolarization drives probabilities towards the asymptotic value
ρ00 → 0.5.

Both the noisy gates simulation and that obtained using Qiskit qualitatively re-
produce this behaviour. In Fig. 5.1 we have also highlighted with vertical dashed
lines the characteristic times of amplitude damping and depolarization; for times
approaching these values the state is not a reliable quantum state anymore, as the
density matrix becomes completely mixed. Given this consideration, in the plots in
Fig. 5.2 we stop at N = 2000.

To quantify the accuracy of the methods, we have run 100 independent simula-
tions, each with 1000 samples, with both the noisy gates simulator and the Qiskit
simulator, computing for each simulation the Hellinger distance Hng

σ , Hibm
σ . We com-

puted the means over the 100 independent simulations, H̄ng
σ , H̄ibm

σ and their standard
deviations ∆Hng

σ , ∆Hibm
σ . These quantities are shown in panels (a), (b) and (c) of

Fig. 5.2. During the relevant time interval [0, T ] H̄ng
σ is closer to zero than H̄ibm

σ .
Results are compatible within the error bars, however the standard deviations associ-
ated to the noisy gates simulations are significantly smaller than those associated to
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Figure 5.1: Repetition of X gates. Panels (a), (b), (c) show the time evolution of the
ρ00 = ⟨0|ρ|0⟩ entry of the density matrix. The numerical solution of the Lindblad
equation is displayed in orange (a), that of the noisy gates simulation in blue (b), and
that of the Qiskit simulation in red (c). The noisy gates and Qiskit simulations are
obtained with 1000 samples, and qualitatively they reproduce the time evolution of
the Lindblad equation. Vertical dashed lines in the three panels represent the time
scales of relaxation T1 (green), T2 (yellow) and depolarization Td (grey).
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Figure 5.2: Repetition of X gates. Panel (a) shows the Hellinger distances Hng
σ , in

blue, and Hibm
σ , in red, as a function of time. Different curves are obtained from 100

independent runs of the two methods (for better readability only five are shown),
where each simulation is obtained by averaging over 1000 samples. Panel (b) shows
the mean of the Hellinger distances H̄ng

σ , and H̄ibm
σ , obtained from the 100 independent

runs, and vertical error bars show their standard deviations ∆Hng
σ , ∆Hibm

σ . Panel (c)
displays ∆Hng

σ and ∆Hibm
σ as functions of time. Panel (d) shows the relative improve-

ment of the distance H̄ng
σ with respect to H̄ibm

σ , calculated as |H̄ibm
σ −H̄ng

σ |/H̄ibm
σ . The

fact that noises drive the system towards the maximally mixed state is the reason
why the improvement decreases in time. The noisy gates and the standard approaches
lead to the same predictions when one is close to decoherence times, as the noise is
dominant over the unitary evolution. In the interesting regime [0, 2000 · tg] before
deoherence dominates, the improvement is always above 60%.
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Figure 5.3: Fidelities Fng
σ , in blue, and F ibm

σ , in red, as a function of time, for a
repetition of X gates. On panel (a), the fidelities obtained from 100 independent runs
of the two methods are pictured (for better readability only five are shown), where
each simulation is obtained by averaging over 1000 samples. On panel (b), the means
F̄ng
σ , F̄ ibm

σ of the same simulations and their standard deviations ∆Fng
σ , ∆F ibm

σ are
displayed. The inset shows the standard deviations ∆Fng

σ , ∆F ibm
σ as functions of

time.

the Qiskit simulations, as also highlighted in Fig. 5.2 (c). This means that the noisy
gates have the additional advantage that a smaller number of samples is needed to
reach a target precision. We notice that the difference between H̄ng

σ and H̄ibm
σ is of

the order ∼ 10−3 − 10−2, and this corresponds to a relative improvement, calculated
as |H̄ibm

σ − H̄ng
σ |/H̄ibm

σ , in the range from 90% to 60% as time increases. The relative
improvement is shown in Fig. 5.2 (d). The fact that noises drive the system towards
the maximally mixed state is the reason why the improvement decreases over time.
The noisy gates and the standard approaches lead to the same predictions when ap-
proaching decoherence times. Indeed after such times the strength of the noise is
dominant over the unitary evolution, or, equivalently, the Hamiltonian contribution
is negligible with respect to the Lindblad term (see Eq. (5.9)). In the interesting
regime [0, T ] our improvement is always above 60%. We repeat the same analysis
for the fidelities. Results are shown in Fig. 5.3 (a) and (b). Panel (a) shows the fi-
delities obtained from 100 independent simulations with the two methods (for better
readability only five are shown). Panel (b) shows the means F̄ng

σ , F̄ ibm
σ of the same

simulations and their standard deviations ∆Fng
σ ,∆F ibm

σ . Results on the fidelities are
in accordance with those in Fig. 5.2.
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5.3.2 Two qubits simulations

We simulate a repetition of CR gates in Eq. (5.22), choosing ϕ = 0 and θ = π.
We initialize the system in the state |10⟩ and we use the qubits noise parameters of
ibmq manila. In the three panels of Fig. 5.4 we show the time evolution of the entry
ρ22 = ⟨10|ρ|10⟩; the x-axis is normalized in terms of the CR gate time tCR. The two-
qubit state goes asymptotically towards the completely mixed state as ρ22 reaches
the asymptotic value 0.25. The probability ρ22, which in the ideal case should flip
between one and zero, is damped over time by amplitude and phase damping effects.
Vertical dashed lines signal the characteristic time scales of the noises. We plot only
the T1 and T2 values of the target qubit as representative values. Depolarization is the
dominant contribution, spoiling the quantum state already after ∼ 100 CR gates; for
this reason, in Fig. 5.5 we consider a total duration corresponding to N ∼ 100. Panels
(a), (b) and (c) of Fig. 5.5 report the Hellinger distances, showing the different results
of 100 independent simulations together with their means and standard deviations.

Within the relevant time interval [0, T ] H̄ng
σ is closer to zero than H̄ibm

σ . Notably,
the two results are not compatible within error bars: the difference between H̄ng

σ and
H̄ibm
σ is now of the order ∼ 10−1. This corresponds to a relative improvement in the

range from 90% to 88% as time increases, shown in Fig. 5.5 (d). In the interesting
regime [0, T ] our improvement is always above 88%. As noises dominate approaching
decoherence times, in Fig. 5.5 (b) the value of H̄ibm

σ approaches that of H̄ng
σ for times

close to 100 CR gate times. We report the results of the same analysis for the fidelities
in Fig. 5.6, showing accordance with the results in Fig. 5.5.

We perform a similar analysis for a repetition of CNOT gates, for an initial state
given by |10⟩ and qubits noise parameters of ibmq quito. In this simulation we imple-
ment each CNOT gate directly without expressing it as a combination of single qubit
gates and CR gates, as in IBM devices. We make this choice to solve numerically the
target Lindblad equation more easily. Effectively, at each CNOT gate time we simu-
late a circuit with an increasing number of CNOT gates, where we add measurements
at the end of the circuit. Thus, according to the standard noise model, we add the
single-qubit bitflip channel (see 5.2.3) to model measurements errors. This allows to
extend this analysis to runs on real hardware in section 5.4, that of course involve
measurements. For that same reason, we do not compute the fidelities, as the output
of the quantum device is a classical probability distributions for the bitstrings.

In the three panels of Fig. 5.7 we show the time evolution of the ρ22 = ⟨10|ρ|10⟩
entry of the density matrix. The relevant time interval is given by a total duration
of N ∼ 100 gates: depolarization spoils the quantum state after ∼ 120 CNOT gates.
Fig. 5.8 (a) shows the mean of the Hellinger distances H̄ng

σ (in blue) and H̄ibm
σ (in

red) and their standard deviations ∆Hng
σ and ∆Hibm

σ , also shown in Fig. 5.8 (b). In
the time interval [0, T ] H̄ng

σ is closer to zero than H̄ibm
σ and their difference is of the
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Figure 5.4: Repetition of CR gates. Panels (a), (b), (c) show the time evolution of
the ρ22 entry of the density matrix for the CR gate with θ = π and ϕ = 0. Colors have
the same meaning as for Fig. 5.1. Vertical dashed lines represent the time scales of
relaxation, T1 (in green) and T2 (in yellow) of the target qubit, and depolarization Td
(grey). The noisy gates simulations reproduce qualitatively better the time evolution
obtained from the direct numerical solution of the Lindblad equation.
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Figure 5.5: Repetition of CR gates. Panels (a) and (b) display the Hellinger distances
Hng
σ , in blue, and Hibm

σ , in red, as a function of time. The plots have the same meaning
as for Fig. 5.2. Panel (d) shows the relative improvement of the distance H̄ng

σ with
respect to H̄ibm

σ , calculated as |H̄ibm
σ −H̄ng

σ |/H̄ibm
σ . The fact that noises drive the system

towards the maximally mixed state is the reason why the improvement decreases in
time. The noisy gates and the standard approaches lead to the same predictions when
one is close to decoherence times, as the noise is dominant over the unitary evolution.
In the interesting regime [0, 100 · tg] our improvement is always above 88%.
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Figure 5.6: Fidelities Fng
σ , in blue, and F ibm

σ , in red, as a function of time, for a
repetition of CR gates. Panels (a) and (b) have the same meaning as for Fig. 5.3.

order ∼ 10−2. This corresponds to a relative improvement in the range from 80% to
55% as time increases. This is shown in Fig. 5.8 (c).

By looking at Figs. 5.5 (d) and 5.8 (c), we notice that the improvement in the
Hellinger distance gained by using the noisy gates approach is much higher for CR
gates with respect to CNOT gates. We clarify this fact in Fig. 5.9. Panels (a), (b)
show the time evolution of the ρ11 entry of the density matrix for the CR gates and
panels (c) and (d) show the time evolution of ρ11 for the CNOT gates. Similarly to
the convention used above, orange curves are obtained with the numerical solution
of the Lindblad equation, blue curves are obtained with the noisy gates simulations
and red curves are obtained with Qiskit simulations. The noisy gates simulations
make good predictions for both gate sequences, as the blue curves follow closely the
orange curves. On the other hand, the Qiskit simulation for the CR gates is visibly
different from the numerical solution of the Lindblad equation. This might be due
to the fact that the CR gate is a block diagonal matrix with X(θ) in the upper
block and X(−θ) in the lower block while the CNOT gate is block diagonal with
an identity in the upper block and X(θ) in the lower block. The identity in the
CNOT might lead to a lower influence of noises on the ρ00 and ρ11 entries of the
density matrix. Thus, Hellinger distances obtained with the noisy gates in different
simulations are very good and similar to each other, while the Hellinger distance
obtained with Qiskit is better for the CNOT with respect to the CR. Nevertheless,
the noisy gates approach always significantly outperforms the standard method, as
shown by the relative improvements.
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Figure 5.7: Repetition of CNOT gates. Panels (a), (b), (c) show the time evolution of
the ρ22 entry of the density matrix for the CNOT gate. Colors have the same meaning
as for Fig. 5.1. The noisy gates simulations reproduce qualitatively better the time
evolution obtained from the direct numerical solution of the Lindblad equation.
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Figure 5.8: Repetition of CNOT gates. Panel (a) and (b) displays mean of the
Hellinger distances H̄ng

σ , in blue, and H̄ibm
σ , in red, and their standard deviations as

functions of time. Panel (c) shows the relative improvement. The fact that noises
drive the system towards the maximally mixed state is again the reason why the
improvement decreases in time: the noisy gates and the standard approaches lead to
the same predictions when one is close to decoherence times, as the noise is dominant
over the unitary evolution. In the interesting regime [0, 100 · tg] our improvement is
always above 55%.
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Figure 5.9: Repetition of CNOT gates. Panels (a), (b) show the time evolution of
the ρ11 entry of the density matrix for the same sequence of CR gates in Fig. 5.5 and
panels (c), (d) show the time evolution of the ρ11 entry of the density matrix for the
sequence of CNOT gates. Colors have the same meaning as for Fig. 5.1. For the CR
gates, the Qiskit simulation of ρ11 is visibly different from the Lindblad evolution,
thus explaining the higher improvement of the noisy gates simulation in the Hellinger
distance in Fig. 5.5.
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5.4 Comparison with the behaviour of real quan-

tum computers

We inspect the performances of the noisy gates approach when trying to reproduce
the behaviour of a real quantum computer. To this purpose, we first extend the
analysis of the CNOT gates sequence in section 5.3, and then we focus on the inverse
Quantum Fourier Transform (QFT†) algorithm. When dealing with a real hardware,
we must take into account that the standard noise model we are using (see section 5.1)
might not be accurate enough in describing the device, and that different quantum
devices might behave very differently from one another. We show that, despite the
choice of a simple noise model and the instability of ibmq devices, our approach is
still able to outperform the standard one also when compared with the real hardware.

5.4.1 CNOT simulations

We run the sequence of CNOT gates of section 5.3 on ibmq quito, available on
the cloud and comprising 7 superconducting transmon qubits to get the diagonal
entries of the density matrix χ of the physical device, to be compared with the
diagonal entries of the density matrices ρng, ρibm and σ obtained for the CNOT
simulations in section 5.3. We remark again that in section 5.3, we implemented each
CNOT gate directly without expressing it as a combination of single qubit gates and
CR gates, because in this way it is easier to solve numerically the target Lindblad
equation. We create a list of circuits, each consisting of an increasing number of
CNOT gates, and measure each circuit 1000 times to obtain the output probability
distributions, thus deriving the evolution of the outcome probabilities as the number
of gates increases. As noted above, each circuit involves measurements that add
noise, explaining why in the simulations we added a single-qubit bitflip channel. The
Hellinger distance Hχ

σ = H(χ, σ) between the Lindblad evolution and the evolution
obtained with ibmq quito is shown in Fig. 5.10 (a). This distance is three to tens time
larger with respect to H̄ng

σ and H̄ibm
σ in Fig. 5.8 (a). While the standard approach and

the noisy gates approach have a certain level of agreement with the Lindblad equation,
the latter is deviating from the quantum hardware by a significantly higher level. This
is also the reason why it is not possible to appreciate the difference between the mean
Hellinger distance H̄ng

χ = H̄(ρng, χ) between the noisy gates and ibmq quito, and the
mean Hellinger distance H̄ibm

χ = H̄(ρibm, χ) between Qiskit and ibmq quito, as shown
in Fig. 5.10 (b) and Fig. 5.10 (c). Fig. 5.10 (d) shows the relative improvement with
respect to the device, calculated as |H̄ibm

χ − H̄ng
χ |/H̄ibm

χ . The relative improvement is
around 10%. The smaller relative improvement with respect to those shown in the
previous section is only to a small extent due to the fact that we do not decompose
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Figure 5.10: Repetition of CNOT gates. Panel (a) shows the Hellinger distance Hχ
σ be-

tween the Lindblad evolution and ibmq quito for the repetition of CNOT gates. Panel
(b) shows the mean Hellinger distance H̄ng

χ and the standard deviations between the
noisy gates simulation and ibmq quito. Panel (c) shows the mean Hellinger distance
H̄ibm
χ and the standard deviations between the Qiskit simulation and ibmq quito.

Panel (d) shows the relative improvement calculated as |H̄ibm
χ − H̄ng

χ |/H̄ibm
χ . The rel-

ative improvement is around 10%. The smaller relative improvement with respect
to those shown in the previous figures, is mainly due to additional noises present in
ibmq devices, i.e. crosstalks, correlated noises and coherent errors.
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CNOT gates. The main reason, as we explain when discussing the simulations of the
QFT (see below), is that additional noises are present in ibmq devices, i.e. crosstalks,
correlated noises and coherent errors [46,47]. The simple noise model that we consider
does not take such noises into account and the Lindblad solution is far from the real
quantum computer.

5.4.2 QFT simulations

The QFT† is a subroutine of many important quantum algorithms, such as the
Shor’s algorithm [48, 49] or Quantum Phase Estimation. The QFT† circuit for n
qubits is readily extendable to n+ 1 qubits, allowing to efficiently test the robustness
of the simulation approaches as the circuit’s width and depth increase. We run QFT†

for n = 2, . . . , 5 on ibm oslo and for n = 2, . . . , 8 on ibmq kolkata. These devices are
available on the cloud, comprising respectively 7 and 27 superconducting transmon
qubits. We set as input of QFT† the state |+⟩⊗n, obtained by applying a layer of
Hadamard gates on each qubit initialized in |0⟩. In this way the ideal output of QFT†

is |0⟩⊗n. Runs on real quantum computers are performed by taking 1000 shots, i.e.
measurements. The QFT† circuit is transpiled into the native gate set to run on
ibmq devices. Now, all CNOT gates inside the circuits are decomposed in terms of
single-qubit and CR gates.

The performance of different approaches in simulating the behaviour of the quan-
tum computer are measured with the Hellinger distances from the outcomes of the
real device. This allows to avoid full state tomography to reconstruct the full den-
sity matrices, which scales exponentially with the number of qubits and becomes
unfeasible for the current simulations.

We have run 100 independent simulations, each including 1000 samples, for both
methods and for each n. In Fig. 5.11 (a) we plot the average values of H̄ng

χ = H̄(ρng, χ),
H̄ibm
χ = H̄(ρibm, χ) as the number of qubits n increases from 2 to 5. The diagonal

elements of χ are the outcome probabilities of ibm oslo. Fig. 5.12 (a) displays again
the average values of H̄ng

χ = H̄(ρng, χ), H̄ibm
χ = H̄(ρibm, χ) up to 8 qubits, where

the diagonal elements of χ come from ibmq kolkata. In Fig. 5.12 (c) we compute
again Hng

χ , Hibm
χ to test the stability of ibmq kolkata in different runs. Only for

Fig. 5.12 (c) we have run a single simulation of 1000 samples, thus standard deviations
are not present. We notice that for every n and device we get H̄ng

χ < H̄ibm
χ and

∆Hng
χ < ∆Hibm

χ . The relative improvements, shown in green in Fig. 5.11 (b) and
Figs. 5.12 (b), (d), changes significantly between different devices and also for the
same device but in different runs, namely with different noise parameters, meaning
that the performances of such devices are not very stable. For example at n = 3, in
panel (b) of Fig. 5.11 the relative improvement is ∼ 25%, in panel (b) of Fig. 5.12 it
is ∼ 5% and in panel (d) of Fig. 5.12 it is ∼ 25%. The highest relative improvement
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obtained with the runs on ibm oslo is ∼ 30% and for runs on ibmq kolkata is ∼ 35%.
As a final remark, we stress that we obtain better results with respect to Qiskit,
despite the fact that we have chosen a rectangular pulse shape in the Hamiltonians
(see Eqs. (5.12) and (5.13)), while gates on real hardware are realized using Gaussian
pulses. We refer the reader to [41] for further analysis, including results for higher
numbers of qubits and for the GHZ algorithm.
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Figure 5.11: Quantum Fourier Transform. Panel (a) shows the Hellinger distances
between the noisy gate approach and ibm oslo, and between the Qiskit simulator
and ibm oslo, when executing the QFT† algorithm for n = 2, . . . , 5 qubits. Each
value is the mean of 100 independent simulations for the noisy gates, in blue, and for
the Qiskit simulations, in red. The inset shows the standard deviations as functions
of the number of qubits. Panel (b) shows the relative improvement, calculated as
|H̄ibm

χ − H̄ng
χ |/H̄ibm

χ .

5.5 Discussion

We have tested the noisy gates approach designed on IBM superconducting de-
vices. We have shown that our approach is very successful in simulating the Lindblad
dynamics, with a relative improvement between 50% and 90% and more, compared
with the standard method, see Sec. 3.1 and Sec. 3.1.1.

When compared against real quantum devices, the improvement is lower and it
fluctuates between 10% and 30%; this is largely due the underlying standard noise
model being too simple to accurately represent the dynamics of the device. This
is not a weakness of the noisy gate approach, but of the underlying standard noise
model.
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Figure 5.12: Quantum Fourier Transform. Panel (a) shows the Hellinger distances
between the noisy gate approach and ibmq kolkata, and between the Qiskit simulator
and ibmq kolkata, when executing the QFT† algorithm for n = 2, . . . , 8 qubits. Each
value is the mean of 100 independent simulations for the noisy gates, in blue, and for
the Qiskit simulations, in red. The inset shows the standard deviations as functions
of the number of qubits. Panel (b) shows the relative improvement, calculated as
|H̄ibm

χ − H̄ng
χ |/H̄ibm

χ . In panel (c) the comparison presented in (a) has been repeated
a second time on ibmq kolkata; in this case, only a single simulation of 1000 samples
is considered. Panel (d) shows the relative improvement.
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Many potential improvements can be straightforwardly implemented; most of
them require an update of the noise model, not of the simulation strategy, i.e. Alg. 3,
which is already very good. First of all, there are likely additional single-qubit er-
rors which should be taken into account, for example coherent errors induced by the
driving pulses. Secondly, the standard noise models considers only non-correlated
single-qubit errors, but correlated two-qubits errors [46, 50] can be easily accommo-
dated. Cross talk errors [47, 51] are included by adding small interactions between
adjacent qubits.

The intentional omission of correlated errors was aimed at demonstrating the
superiority of our approach in a simplified scenario, yet the analysis of the implications
of correlated noise remains crucial to advance the potential application of the noisy
gates approach in more realistic scenarios. From this perspective, it is noteworthy to
underline the following. The thesis aligns its objective with demonstrating the utility
of noisy quantum devices, coupled with scalable error mitigation techniques.

Highly non-local correlated errors prove to be significant and problematic for su-
perconducting devices [46]. In this case, the parameters and locality of operators
within the corresponding noise model would scale exponentially with the number of
qubits in the devices, posing significant challenges for classical simulation and limiting
the potential of the noisy gates approach and eventually of error mitigation.

Noise models with simplified correlations were introduced to address this issue,
such as the ”two-local Sparse Pauli Lindblad” [52]. This model considers up to two-
local interactions between connected qubits. Utilizing mitigation techniques based
on this model has demonstrated the utility of noisy quantum devices in experiments
involving up to 100 qubits [53]. Other mitigation techniques based on the same noise
model yield similar conclusions [54]. Although these results are preliminary and sub-
ject to debate they demonstrate how the most obvious complication of the standard
noise model considered in the thesis, namely the addition of two-qubit interaction
terms, is sufficient to effectively capture the behavior of noisy devices and to extract
valuable output from the imperfect hardware.

Extending the noisy gates approach to the ”two-local Sparse Pauli Lindblad”
model is relatively straightforward. It implies to consider additional Lindblad op-
erators of the form σ̂iσ̂j where σ̂α are Pauli matrices acting on connected qubits.
Depending on the specific connectivity of the device, this would increase the dimen-
sion and complicate the structure of the noisy gates. However it is reasonable to
assume that correlated errors are mainly associated to two-qubit gates and the lim-
ited connectivity of the devices do not lead to exponential increase in the noisy gates
dimensions allowing to derive their expression.

When trying to simulate with high accuracy the behaviour of a given device, the
problem would then shift to the precise estimation of the noise parameters. In [52]
the authors present a method to efficiently characterize the coupling rates of the
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”two-local Sparse Pauli Lindblad” noise model.
Once the noise model is updated and the parameters are estimated accordingly,

the expectation is to confirm the results of the analysis presented in the thesis based
on the standard noise model. The noisy gates approach enhances the accuracy in
describing the real device and consequently allows for more effective error mitigation.

The current version of the noisy gates approach relies on the Lindblad equation
that works in the Markovian limit; this is reflected in the fact that we used stochastic
equations based on white noises. The approach can be generalized to non-Markovian
dynamics by using colored noises, as in [10,16–18].

The approach is useful for other purposes that go beyond plane error analysis. As
already pointed out, according to the noisy gates approach, the shape of the pulse
in the driving Hamiltonians, (see Eq. (5.12) and Eq. (5.13)), affect the noise. In our
work we chose for simplicity a rectangular shape, but in real devices different shapes
can be used, for example Gaussian ones. A potential application of our approach is
trying to suppress errors [55,56] by optimizing the parameters of the pulse in order to
minimize the effect of the noise [57–59]; the optimization can be performed for example
by exploiting machine learning techniques, to find the best pulse parameters, which
can then be tested on real quantum hardware. This will be the subject of future
research.
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Chapter 6

Noisy gates on integrated photonic
devices

In this chapter we extend the formalism of noisy gates to second quantization
for optical elements [60, 61], and apply it to photonic integrated devices in the dual-
rail encoding. The general noisy gates derivation presented in Chapter 4 is valid for
any noisy devices. However it is not trivial to extend it to the formalism of second
quantization.

We successfully formulate the noisy versions of linear optical elements as phase
shifters and beam splitters; we also consider the effects of imperfect single-photon
sources, lossy optical guides and detectors as fictitious noisy optical elements that
act on the modes at the proper step of the circuit. We apply the approach to study
noise effects on the optimization loop of a variational quantum algorithm for a specific
optimisation problem.

6.1 Noises in dual-rail encoding optical circuits

We focus on discrete variable quantum optics [62,63], in particular on the so called
dual-rail encoding of linear optics quantum computing [64, 65], where the computa-
tional units are qubits. In this setup, optical circuits are made up of single pho-
ton sources, single-mode optical guides (also called spatial modes) in which photons
propagate, linear optical elements that modify the photons state and single photon
detectors. Thus, an optical circuit on N modes can be expressed as a unitary trans-
formation with symmetry group SU(N), followed by the detection. Since a qubit has
a SU(2) symmetry, then two spatial optical modes (dual-rail) with a single photon is
a natural implementation of a qubit.

The logical states of the qubit are encoded in Fock states of the two modes |0⟩L =
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|10⟩, |1⟩L = |01⟩ (with this notation we indicate that one of the two modes is occupied
by the photon). Thus to represent a system of M qubits, 2M modes are needed with
the addition of a certain number of ancillary modes used to implement the correct
unitary transformation.

There are two main sources of noise affecting optical devices: photon losses and
non-perfect indistinguishability of single photons [66,67].

Photon losses are particularly daunting in the dual rail encoding, since after a loss
the photon state exits from the logical computational states of the single qubit. Losses
can occur at any step of the optical circuit, from the source to optical guides, optical
elements and detectors. For each of these steps, one can associate a loss probability
p = 1 − e−∆t/T , where ∆t is a time interval and T is a characteristic loss time. The
state of a photonic mode traveling through a lossy fiber can be expressed as [68–70]

ρ̂(∆t) = p |0⟩ ⟨0| + (1 − p) |1⟩ ⟨1| (6.1)

where now |0⟩ is the state of the mode without photons and |1⟩ is the state of the
mode occupied by the photon. The actual value of p depends on the material used
for the optical circuit as well as other experimental parameters. For the forthcoming
simulations we vary p from 10−4 to 10−2.

Photons non-perfect indistinguishability occurs when photons are generated. Sin-
gle photons emitted by quantum dots [71] are indistinguishable if they have the same
properties such as wavelength, polarization, temporal and spatial extent. A quan-
tum dot sources indistinguishable photons if it emits by radiative decay only. In the
presence of any other decoherence process for the quantum dot, the sourced photons
are not perfectly indistinguishable. For this reason we simulate indistinguishabil-
ity using decoherence models for solid state devices. Typical decoherence processes
in solid state platforms are depolarization or dephasing [37, 72] (see also Sec. 5.1)
and for this reason we connect photons non-perfect indistinguishability to depolar-
ization/dephasing errors.

Photon losses and non-perfect indistinguishability lead to incoherent evolution.
Coherent errors caused by imperfect calibration of optical elements are not considered
here, as they can be accounted for using other existing techniques [73]. Further sources
of errors, such as cross-talk effects, are beyond the scope of the thesis and can be added
with further developments.

6.2 Noisy optical elements

We apply the noisy gates approach described in Chapter 4 to build the noisy
version of linear optical elements. In particular we focus on phase shifters (PS) and
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beam splitters (BS), showing how to write down their noisy version under the effect
of photon loss errors.

We recap the noiseless expression of optical elements in order to set the main
notation used in the following. A PS is an optical element that acts on a single mode
by changing the phase of the photon state. The Hamiltonian of the PS is [60,61]

ĤP = −ℏωP̂, P̂ = â†â, (6.2)

where â and â† are respectively the annihilation and creation operators of a photon
in the mode. The unitary evolution operator obtained by solving the Schrödinger
equation is ÛP = eiθP̂, where θ = ω · (t− t0) = ω · ∆t. The annihilation and creation
operators evolve accordingly as

ÛPâ
†Û†

P = eiθâ†, ÛPâÛ†
P = e−iθâ. (6.3)

A BS acts on two modes and can be defined through the Hamiltonian [60,61]

ĤB = −ℏω
2

B̂(ϕ), B̂(ϕ) = e−iϕâ0â
†
1 + eiϕâ†0â1, (6.4)

where we label the two modes with zero and one. The resulting unitary evolution
operator is ÛB = ei

θ
2
B̂(ϕ), with θ = ω∆t and, consequently, the annihilation/creation

operators evolve as

ÛBâ
†
0Û

†
B = cos (θ/2)â†0 + ie−iϕ sin (θ/2)â†1, (6.5)

ÛBâ
†
1Û

†
B = ieiϕ sin (θ/2)â†0 + cos (θ/2)â†1, (6.6)

ÛBâ0Û
†
B = cos (θ/2)â0 − ieiϕ sin (θ/2)â1, (6.7)

ÛBâ1Û
†
B = −ie−iϕ sin (θ/2)â0 + cos (θ/2)â1. (6.8)

These transformations define a unitary matrix that act on the vectors of creation
operators (â†0, â

†
1)
T or annihilation operators (â0, â1)

T . The matrix evolving creation
operators reads

ÛB =

(
cos (θ/2) ie−iϕ sin (θ/2)

ieiϕ sin (θ/2) cos (θ/2)

)
, (6.9)

while that for annihilation operators is Û †
B. This is the differentiating feature of

linear optics: an optical circuit acting on M modes is expressed as a M ×M unitary
matrix Û that evolve creation operators on the modes rather than Fock states. The
amplitudes (or probabilities) of all the possible output Fock states are computed
through a suitable expression involving permanents of matrices build up from rows
and columns of Û [74]. This makes the adaptation of the noisy gates approach not
straightforward. In the next section we start by showing an example of the cause of
the issues and then we successfully derive the expressions of noisy phase shifters and
beam splitters.
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6.2.1 Noisy phase shifter

The obvious way to model photon losses on a given mode 0 is to consider the sys-
tem in contact with an environment that absorbs photons. By following the protocol
described in Sec. 4.1.2 we have to specify the operators in Eq. (4.1): the Hamiltonian
operator is the PS Hamiltonian in Eq. (6.2) on mode 0, i.e. P̂0 = â†0â0, and the
Lindblad operator is L̂ = â0, modeling the absorption of photons from the mode.
The corresponding expression for the noisy gate reads

N̂0 = Û0e
− ϵ20

2
D̂0eiϵ0Ŝ0 , (6.10)

where Û0 = eiθP̂0 , D̂0 =
∫ t
t0

ds(â†0(s)â0(s)−â20(s)) and Ŝ0 =
∫ t
t0

dW(s)â0(s). The second
step of the noisy gates protocol requires to compute the time dependent Lindblad
operator, that reads

â†0(s) = Û†
0(s, t0)â

†
0Û0(s, t0) = e−iθ(s,t0)â†0 (6.11)

where the last equality holds because of Eq. (6.3). Thus we can write

D̂0 = ∆tâ†0â0 + (DC − iDS)â20 , Ŝ0 = (IC − iIS)â0 (6.12)

where

DC =

∫ t

t0

ds cos 2θ(s, t0) DS =

∫ t

t0

ds sin 2θ(s, t0) (6.13)

IC =

∫ t

t0

dW(s) cos θ(s, t0) IS =

∫ t

t0

dW(s) sin θ(s, t0) . (6.14)

The latter are Gaussian stochastic processes with means E
[
IC
]

= E
[
IS
]

= 0, variances
and covariances

V
[
IC
]

=

∫ t

t0

ds cos2 θ(s, t0) V
[
IS
]

=

∫ t

t0

ds sin2 θ(s, t0) (6.15)

E
[
ICIS

]
=

∫ t

t0

ds cos θ(s, t0) sin θ(s, t0) . (6.16)

When trying to calculate N̂0â
†
0N̂

†
0 it is not possible to write down the evolution of the

creation operator via the action of a linear matrix acting on it.
In order to avoid such problem we consider a larger physical system consisting of

two photon modes: mode 0 is the physical mode where the PS acts, while mode 1 is
a virtual mode that acts as a reservoir for photon losses. The idea is to model the
interaction with the environment as a fictitious BS between the two modes, tracing
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out the virtual mode. In this way, the effective action on the system is that the photon
is absorbed with some probability. Thus, we choose B̂01 = â0â

†
1 + â†0â1 as Lindblad

operator; the latter can be obtained from the expression for B̂(ϕ) in Eq. (6.4) by
setting ϕ = 0. This Lindblad operator acts as a virtual BS that can shift photons
from mode 0 to the virtual mode 1 (and viceversa).

Following Sec. 4.1, the resulting expression for the noisy PS is

N̂01 = Û0e
iϵ0Ŝ01 , (6.17)

where Û0 = eiθP̂0 and Ŝ01 =
∫ t
t0

dW(s)B̂01(s) and the deterministic term is not present
since the Lindblad operator is Hermitian.

To compute the form of the stochastic operator Ŝ01, we notice that

B̂01(s) = Û†
0(s, t0)B̂01Û0(s, t0)

= e−iθ(s,t0)P̂0 â0e
iθ(s,t0)P̂0 â†1 + e−iθ(s,t0)P̂0 â†0e

iθ(s,t0)P̂0 â1

= eiθ(s,t0)â0â
†
1 + e−iθ(s,t0)â†0â1

= cos θ(s, t0)(â0â
†
1 + â†0â1) + i sin θ(s, t0)(â0â

†
1 − â†0â1)

= cos θ(s, t0)B̂01 − sin θ(s, t0)Ĉ01

(6.18)

where in the third line we used Eq.(6.3) with the adjoint unitary evolution and we
defined Ĉ01 = i(â†0â1−â0â

†
1), which can be obtained from B̂(ϕ) in Eq.(6.4) by choosing

ϕ = π/2.
Then the stochastic operator reads

Ŝ01 = ICB̂01 − ISĈ01, (6.19)

where IC =
∫ t
t0

dW(s) cos θ(s, t0) and IS =
∫ t
t0

dW(s) sin θ(s, t0) are the same stochastic
integrals in Eq. (6.14) and their variances and covariances are those in Eq. (6.15).

Finally, since to second order in ϵ one has that eϵ(Â+B̂) = eϵÂeϵB̂, Eq. (6.17) implies
that

N̂01 = Û0e
iϵ0IC B̂01e−iϵ0ISĈ01 . (6.20)

Eq. (6.20) defines the evolution of creation and annihilation operators under the
action of a noisy PS, eventually dictating the matrix that act on vectors of creation
operators. In the case of the noisy PS we have

N̂01 =

(
eiθ 0
0 1

)
·
(

cos (ϵ0IC) i sin (ϵ0IC)
i sin (ϵ0IC) cos (ϵ0IC)

)
·
(

cos (ϵ0IS) − sin (ϵ0IS)
sin (ϵ0IS) cos (ϵ0IS)

)
, (6.21)

whereas N̂ †
01 acts on annihilation operators. In Eq. (6.21) the parameter ϵ0 is con-

nected to photon loss probability p0 on mode 0 as ϵ0 =
√

− log (1 − 2p0)/2 where
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p0 = (1− e−2∆t/T )/2 and ϵ20 = ∆t/T , with T the characteristic time of photon losses.
We choose such time dependence for p0 because by taking the average over the pro-
cesses IC and IS one has E[sin2(ϵIk)] = (1−e−2ϵ20)/2 = p0 with k = C, S. Moreover, we
are not interested in the regime in which there is more than 50% of loss probability.

By tracing out the virtual mode, we get the final expression for the noisy PS on
mode 0

N̂0 = eiθ cos (ϵ0IC) cos (ϵ0IS) (6.22)

while Eq. (6.21) is unitary on the total system of physical plus virtual modes, the final
expression for the noisy PS acting on the physical mode only is not unitary anymore.

6.2.2 Noisy beam splitter

The derivation of the noisy BS exploits the same idea of coupling the physical
modes with a virtual mode. In particular, we label modes 0 and 1 as physical modes
and mode 2 as the virtual mode. The Hamiltonian operator is that in Eq. (6.2) with
ϕ = 0, i.e. B̂01 = â0â

†
1 + â†0â1. This choice is in accordance with the standard Reck

decomposition of optical circuits, also employed in [75]. As Lindblad operators we
choose B̂02 = â0â

†
2 + â†0â2 and B̂12 = â1â

†
2 + â†1â2 modeling photon shifts from mode 0

to 2 and from mode 1 to 2 respectively. The corresponding noisy BS reads

N̂012 = Û01e
iϵ0Ŝ02+iϵ1Ŝ12 , (6.23)

where Û01 = ei
θ
2
B̂01 and Ŝj2 =

∫ t
t0

dWj(s)B̂j2(s) with j = 0, 1. In Eq. (6.23) the pa-

rameters ϵj are defined as ϵj =
√
− log (1 − 2pj)/2 as for the noisy PS. By performing

a similar calculation to Eq. (6.18) where now one uses the BS relations in Eqs. (6.5),
(6.6), (6.7) and (6.8) with the adjoint unitary evolution, the expressions for B̂j2(s)
are

B̂02(s) = cos

(
θ(s, t0)

2

)
B̂02 − sin

(
θ(s, t0)

2

)
Ĉ12, (6.24)

B̂12(s) = cos

(
θ(s, t0)

2

)
B̂12 − sin

(
θ(s, t0)

2

)
Ĉ02, (6.25)

where Ĉj2 = i(â†j â2 − âj â
†
2). The stochastic operators are

Ŝ02 = IC0B̂02 − IS0Ĉ12, (6.26)

Ŝ12 = IC1B̂12 − IS1Ĉ02, (6.27)

where ICj =
∫ t
t0

dWj(s) cos θ(s, t0) and ISj =
∫ t
t0

dWj(s) sin θ(s, t0). The latter Gaus-
sian processes have the same variances and covariances in Eq. (6.15). Finally we can
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express Eq. (6.23) as

N̂012 = Û01e
iϵ0IC0B̂02e−iϵ0IS0Ĉ12eiϵ1IC1B̂12e−iϵ1IS1Ĉ02 , (6.28)

and the corresponding action on creation operators is given by

N̂012 =

 cos θ/2 i sin θ/2 0
i sin θ/2 cos θ/2 0

0 0 1

 ·

 cos (ϵ0IC0) 0 i sin (ϵ0IC0)
0 1 0

i sin (ϵ0IC0) 0 cos (ϵ0IC0)

 ·

1 0 0
0 cos (ϵ0IS0) − sin (ϵ0IS0)
0 sin (ϵ0IS0) cos (ϵ0IS0)

 ·

1 0 0
0 cos (ϵ1IC1) i sin (ϵ1IC1)
0 i sin (ϵ1IC1) cos (ϵ1IC1)

 ·

cos (ϵ1IS1) 0 − sin (ϵ1IS1)
0 1 0

sin (ϵ1IS1) 0 cos (ϵ1IS1)

 .

(6.29)

By tracing out the virtual mode, the final non unitary expression for the noisy BS
reads

N̂01 =

(
cos θ/2 i sin θ/2
i sin θ/2 cos θ/2

)
·
(

cos (ϵ0IC0) 0
0 1

)
·(

1 0
0 cos (ϵ0IS0)

)
·
(

1 0
0 cos (ϵ1IC1)

)
·
(

cos (ϵ1IS1) 0
0 1

)
.

(6.30)

6.2.3 Other noises

As explained in section 6.1, photon generation, propagation of photons inside
optical guides and detection are also affected by errors. We now describe how to
account for such errors with the noisy gates approach.

A quantum dot undergoing decoherence processes generates non perfect indistin-
guishable photons. In the case of dual rail encoding, the only relevant property is the
photon path, i.e. through which of the optical guides, or modes, a photon is traveling.
In this setup, the only way to distinguish two photons, if we consider only incoherent
errors, is to mix the associated qubit state. This can be modelled by considering
depolarization errors arising at the sources and inherited by the photons.

To model imperfect single-photon sources we insert at the beginning of the optical
circuit a layer of fictitious optical elements to each couple of modes that simulate
single-qubit depolarizing errors. Such optical elements are built within the noisy
gates framework. The choice of focusing on single-qubit depolarizing channel can be
generalized to account for depolarization on multiple qubits.

Single-qubit depolarization has Lindblad operators X̂,Ŷ and Ẑ. We can map such
operators to operators defined in terms of creation and annihilation operators on the
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physical modes, thus acting on photons of the circuit. For example when solving the
Schrödinger equation with the BS Hamiltonian in Eq. (6.4) with ϕ = 0 and θ = π,
the corresponding unitary on the creation operators acts as an X̂ gate on a qubit in
the dual rail encoding (see Eq.(6.9)). Similarly a Ŷ operator is obtained with the
BS Hamiltionan with ϕ = π/2 and θ = π. The operator Ẑ is obtained by solving
the Schrödinger equation with the PS Hamiltonian in Eq. (6.2) with θ = π applied
to mode 1. For these reasons, to describe depolarizing errors, we can use Eq. (4.1)
without Hamiltonian operator and with Lindblad operators B̂01, Ĉ01 and P̂1. The
resulting noisy gate is

N̂
(dep)
01 = eiϵdŜ

(x)
01 eiϵdŜ

(y)
01 eiϵdŜ

(z)
01 , (6.31)

where Ŝ
(x)
01 = B̂01Wx(t, t0), Ŝ

(y)
01 = Ĉ01Wy(t, t0) and Ŝ

(z)
01 = P̂1Wz(t, t0). The corre-

sponding unitary acting on the creation operators becomes

N̂ (dep)
01 =

(
cos (ϵdWx) i sin (ϵdWx)
i sin (ϵdWx) cos (ϵdWx)

)
·
(

cos (ϵdWy) − sin (ϵdWy)
sin (ϵdWy) cos (ϵdWy)

)
·
(

1 0
0 eiϵdWz

)
.

(6.32)
Here the parameter ϵd has the same definition of the loss parameter but now it is
related to depolarizing probability pd. Moreover we stress that, despite the similarity
with the expression of noisy optical elements, the effects of Eqs. (6.31), (6.32) are
different because modes 0 and 1 are both physical modes.

In Sec. 6.2 we have dealt with optical elements affected by photon losses, however
photons are lost also while traveling through optical guides or when being measured
by detectors. To model such losses, similarly to noisy optical elements, we consider
two photon modes 0, 1, respectively the physical and virtual modes, with Lindblad
operator B̂01 but this time we use Eq. (4.1) without Hamiltonian operator. A straight-
forward calculation leads to

N̂
(loss)
01 = eiϵŜ01 , (6.33)

where Ŝ01 = B̂01W(t, t0) and ϵ =
√
− log (1 − 2p)/2 with p the loss probability inside

the optical guide or in the detector. Consequentially we have

N̂ (loss)
01 =

(
cos (ϵW) i sin (ϵW)
i sin (ϵW) cos (ϵW)

)
. (6.34)

and by tracing out the virtual mode one gets

N̂ (loss)
0 = cos (ϵW). (6.35)

6.3 Comparison with other approaches

In this section we list other methods to simulate noises in optical devices. The
latter generally differ from the standard simulations methods for the evolution of
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qubit states presented in Chapter 3.
There are two main approaches for simulating photon losses: the fixed-loss model

[76–78] and the beam splitter loss model [27, 78–80]. The former assumes that the
number of lost particles is a controlled quantity; indeed it is based on the assumption
that initially there are n photons and exactly n − l of them are lost. Based on
this assumption, losses are simulated by tracing out n − l of the n photons ρ̂′ =
Trn−l(ρ̂) and by using the fact that Trn−l(Û

⊗nρ̂Û†⊗n) = Û⊗n Trn−l(ρ̂)Û†⊗n. Thus, it
is not important whether losses occurred before or after the implemented ideal linear
transformation. This approach is limited since experimentally the number of lost
photons is random.

The beam splitter loss model, which inspired the derivation of noisy optical ele-
ments in the noisy gates approach in Sec. 6.2, is based on the idea of adding a virtual
mode to the physical modes and to model losses as a BS (see Eq. (6.9) with ϕ = 0)
with reflectance equal to the loss probability: R = p. Since the relation between
reflectance and the angle θ of a BS is cos(θ/2) =

√
1 − R and sin(θ/2) =

√
R, then

one gets (√
1 − p i

√
p

i
√

p
√

1 − p

)
, (6.36)

where the probability of losing a photon is exactly |out⟨01|10⟩
in
|2 = p. Eq. (6.36) is

equivalent to the expression for the lossy optical guides and detection derived in Sec.
6.2.3: in fact Eq. (6.34) is the stochastic version of Eq. (6.36). Indeed, for the noisy
gates approach the probability of losing a photon is |out⟨01|10⟩

in
|2 = sin2(ϵW) and by

taking the average over the Wiener process one has E[sin2(ϵW)] = (1 − e−2ϵ2)/2 = p.
The equivalence applies only to lossy optical guides and detectors. The stochastic

processes appearing in the expressions for noisy optical elements in Eqs. (6.21) and
(6.29) are not independent from the parameters, such as the angle of rotation, of
the corresponding optical elements. Therefore our approach is not reducible to the
standard beam splitter loss model. The latter is actually more closer to the second
quantization version of the standard noise gate approach described in Sec. 3.1, where
the unitary evolution and the noise one are decoupled. In our approach, by including
the noise into the gates, each noisy optical elements has its own behaviour due to
losses (even if the loss parameter p is the same for all elements). Experimentally,
the dependence of photon losses on the parameters of optical elements is small and
the general assumption is that photon loss is independent from the angles of BS and
PS [66], motivating the usage of the standard beam splitter loss model. However,
we already proved in Chapter 5 (see also [41]), that, for IBM devices, relaxing this
assumption, namely that of separating the noise and unitary evolution, provides a
more accurate simulation method.

Different approaches exist in the literature for the treatment of imperfect photon

68



sources. In [81], the authors considered a parametrized quantum dot able to simulate
the creation of pairs of entangled photon in a mixed state. Another example is
the modeling used in [75] where an imperfect quantum-dot single-photon source is
modeled by a statistical mixture of Fock states. In this work we deal with single-
photon sources thus, following the latter approach, we implemented the stochastic
unraveling of a single-qubit depolarizing Lindblad equation as shown in Eq. (6.32),
that equivalently outputs a mixed Fock state of the encoded qubits. This can be
generalized to multiple qubit depolarizing channels, taking into account multi photon
distinguishability [67].

6.4 Variational quantum algorithm simulations

In this section we test the performances of the noisy gates method adapted to
integrated photonic circuits. We build a noisy variational quantum algorithm (VQA)
[82, 83] to solve the MAX 2-CUT problem [84–86] and we study its performances in
different noise scenarios.

The computational backend used for the simulations is the SLOS backend [74]
provided by Perceval [75]. In particular we input to SLOS the final matrix of the full
optical circuit calculated by suitably composing the expression of all different optical
elements. Then, SLOS handles the calculations of permanents to get the output
probability amplitudes of the Fock states [74]. To simulate the effect of imperfect
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Figure 6.1: Schematic depiction of the simulation of a generic noisy optical circuit.
On the left in yellow, a layer of fictitious optical elements models depolarization for
each couple of modes. In the blue area, each optical element of the original circuit is
replaced with the corresponding noisy one and for lost photons during detection we
add a layer of lossy channel for each mode, shown here in yellow on the right.

photon sources, we add to the optical circuit a layer of fictitious optical elements
modeling depolarization, see Eq. (6.32), for each couple of modes. To simulate photon
losses, each optical element of the original circuit is replaced with the corresponding
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noisy one, see Eqs. (6.22) and (6.30), and for losses at detection we add a layer of
lossy channel to each mode as in Eq. (6.35). The corresponding noisy optical circuit
is schematically depicted in Fig. 6.1.

We focus on the VQA algorithm applied to the MAX 2-CUT problem. The
MAX 2-CUT problem is a well known optimization problem that requires to find
a cut dividing the vertices of a graph in two complementary subsets, such that the
number of edges crossed by the cut is maximized. Given a graph G = (V,E), with
V = {1, . . . , N} and E = {⟨i, j⟩} the sets of vertices i and edges ⟨i, j⟩, the goal is to
maximize the following cost function

ĤC =
∑
⟨i,j⟩

1

2
(1 − ẐiẐj). (6.37)

We focus on a square graph with four nodes

V = {1, 2, 3, 4} E = {⟨1, 2⟩ ⟨2, 3⟩ ⟨3, 4⟩ ⟨4, 1⟩} . (6.38)

Finding the optimal cut is equivalent to minimizing the following cost Hamiltonian

ĤC =
∑
⟨i,j⟩

ẐiẐj; (6.39)

for which the optimal, or exact, energy is E0 = −4, corresponding to cuts giving
V1 = {1, 3} and V2 = {2, 4} as complementary subsets of V . This is the target energy
of the optimization of the VQA.

We use a specific ansatz Ûansatz(θ) for the optimization loop of VQA, which is
shown in Fig. 6.2. The output of each simulation is a density matrix ρ̂. The cost

function for the optimization is the energy calculated as E = Tr
(
ρ̂(θ)ĤC

)
, where

ρ̂(θ) = |ψ(θ)⟩ ⟨ψ(θ)| and |ψ(θ)⟩ = Ûansatz(θ) |0⟩⊗4. We choose a number of samples
Nsamples = 500 and random initial parameters. The classical optimizer method used
to update the parameters is the gradient-free method COBYLA [87].

We study the convergence of the optimization in the noiseless case, in the pres-
ence of depolarization with p = 10−4, 10−3, 10−2, in the presence of losses with
p = 10−4, 10−3, 10−2 and under the combined action of depolarization and losses
for p = 10−4, 10−3, 10−2. We restrict the analysis to such orders of magnitude of the
error probability, because for p < 10−4 the effects of noises on the optimization are
negligible and for p > 10−2 results might not be reliable since our approach is based
on a perturbative expansion, as explained in Sec. 4.1.

The results of simulations are displayed in Fig. 6.3. The noiseless optimization,
shown in blue, converges to the optimal value with high precision, validating the
ansatz. Panels (a) and (b) show the simulations with the effects of depolarization
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only: as expected, the higher the error probability, the higher the deviation from the
exact energy. Notably, when p = 10−4, the estimate of E has a ∼ 1% relative error.
In panels (c) and (d) we show the effets of photon losses. The ansatz seem to be
more resilient to this type of noise: for p = 10−4 and p = 10−3 the relative error
is below 0.1% and for p = 10−2 the relative error is below 1%. The combination of
photon losses and depolarization, shown in panels (e) and (f), has the effect of further
decreasing the accuracy of the optimization as all relative errors are above 1%.
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Figure 6.2: Optical circuit ansatz for the VQA solving the MAX 2-CUT on a square
graph.

Table 6.1 reports the approximation ratios, defined as R = Ef/E0 where Ef is the
final energy of the optimization, for different type of noises and for different orders
of magnitude of the error probabilities. The best approximation ratios are obtained
with the simulations considering photon losses only.

The choice of an appropriate ansatz is a critical factor in determining the VQA
performance [82]. The motivation behind opting for a carefully balanced ansatz lies
in avoiding excessive expressivity, which can potentially lead to challenges during the
classical optimization process. An ansatz with overly complex representations may
be able to effectively capture the features of the problem’s Hamiltonian. However,
this increased expressivity could introduce a large number of parameters and intricate
interactions. As a consequence, the gradients of cost function may vanish exponen-
tially during classical optimization [88]. This phenomenon hinders the optimization
process, making it difficult to converge efficiently and find satisfactory solutions. In
the circuit model of quantum computing, several ansatz designs have been developed
to construct parameterized quantum circuits tailored to different tasks and applica-
tions [82]. We finally mention that in [89] we have performed further simulations of
optical circuits realizing the X gate in both the gate based (GBQC) and measure-
ment based quantum computing (MBQC) framework, as well as the optical circuit
preparing the Bell state in the presence of noises.
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Figure 6.3: Panels (a), (c), and (e) show the optimization of the variational energy
as a function of the number of optimization steps obtained with the simulations.
Each curve is obtained by simulating the variational ansatz starting from random
parameters. For visualization purposes, all panels start from the 50th optimization
step. In each (a), (c) and (e) panels the red line is the exact energy E0 = −4, the blue
curve is the optimization in the noiseless case (which is the same curve in all plots),
the orange, green and grey curves are obtained with an error probability of 10−4, 10−3,
10−2 respectively. Figures (b), (d), and (f) show the relative errors |(E0 − E)/E0| as
a function of the training steps. Colors of the curves have the same meaning of the
upper panels. A 0.1% relative error threshold is here highlighted with a red shaded
region for better visualization.
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p = 10−4 p = 10−3 p = 10−2

Depolarization 0.9927 0.9846 0.9831
Photon Loss 0.999998 0.999985 0.997180
Dep and Loss 0.9875 0.9808 0.7835

Table 6.1: Values of the approximation ratio for different types of noises and for
increasing order of magnitude of the error probability.

6.5 Discussion

We have extended the noisy gates approach derived in Chapter 4 to simulate
noisy optical circuits, within the second quantization framework (see sections 6.2 and
6.2.3), which is used to perform classical simulations in the dual rail encoding for
linear optics quantum computing.

We have shown that the simulations are suitable to describe variational problems
in the presence of noises. The next target is to extend the analysis to the Quantum
Approximate Optimization Algorithm (QAOA) [90] for the max K-cut problem de-
veloped in [86] in order to understand the practical applicability of a noisy algorithm
on optical circuits.

Differently from Chapter 5, we did not compare our simulations with the output
of optical devices available in the cloud, for example the one recently provided by
Quandela [91]. This will be the subject of further investigations.

Finally the developed techniques can be used to mitigate more effectively noises
on photonic circuits where the practical application of error mitigation is currently
less explored with respect to solid state devices.
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Chapter 7

Quantum algorithm to simulate
open systems

In this chapter we apply the unitary unraveling introduced in Sec. 3.1.4 devising a
quantum algorithm to simulate open quantum system evolution. We show how linear-
ity and most importantly unitarity of Eq. (3.34) allow to drive the system evolution
on a quantum computer.

The proposed algorithm presents two advancements. First and most notably, we
show that it is always possible to drive the open system dynamics via a repetition of
unitary gates applied to a set of n system qubits and a single ancillary bath qubit,
representing the environment. This marks a significant reduction in the total width,
i.e. total number of circuit qubits, with respect to similar approaches [92–97] where
the ancilla overhead is at best polynomial in the system size n. Second, building
upon the results of the noisy gates approach, the algorithm reproduces a perturbative
approximation of the full Lindblad equation as in Eq. (3.6). This approximation
allows to reach a target accuracy while reducing the depth of the circuit as a smaller
number of total steps is needed.

7.1 Approximate solution of the unitary unravel-

ing

In this section we first define a suitable finite representation of the bath operators
dB̂k(t) and dB̂†

k(t) and then we derive the approximate expression of the unitary
evolution in Eq. (3.37).
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7.1.1 Finite representation of the bath operators

As already pointed out, the unravelling in Eq. (3.34) acts on the full system-
environment space and it is linear: for a given state at time t, the state at time t+∆t
is obtained as

|Ψ(t+ ∆t)⟩ = N̂g(∆t) |Ψ(t)⟩ , (7.1)

where N̂g(∆t) is also a unitary operator. Unitarity makes N̂g(∆t) implementable on a
quantum computer. To do so, as explained in Sec. 3.1.4, one must find a suitable finite
representation for the operators dB̂k(t) and dB̂†

k(t), which are, in principle, operators
acting on the infinite dimensional Hilbert space of the thermal baths representing
the environment. We proceed as follows. Given a time interval over which we are
interested in evaluating the dynamics, we divide it in time steps ∆t assuming that
during each step the system interacts only with a small portion of the bath, and
being the bath of infinite dimension, the portion with which the system is interacting
changes at each time step. Effectively we couple the system to a single ancillary qubit
initialized in the ground state, representing a part of the bath, evolve the full system-
bath qubit state for ∆t and then reset the bath qubit to its ground state as if in the
following time step the system is interacting with another portion of the bath. This
idea leads to the following choice for the finite representation of the bath operators

dB̂k(t) = σ̂−
EdWk(t), dB̂†

k(t) = σ̂+
EdWk(t), (7.2)

where σ̂−
E = |0⟩E ⟨1|E, σ̂+

E = |1⟩E ⟨0|E and dWk(t) are classical Wiener processes.
These definitions have to be complemented with the following prescriptions

1. Substitute EQ[ · ] with EC[TrE(ρ̂in · )], where EC [ · ] is the average over classical
stochastic processes dWk(t) and ρ̂in = |0⟩E⟨0|E is the ground state of the bath
qubit;

2. At each time step ∆t the state is factorized as |Ψ⟩ = |ψ⟩S |0⟩E;

3. The density matrix of the system has to be computed as ρ̂S = EC [TrE(|Ψ⟩ ⟨Ψ|)].

In this way, not only the statistical properties of quantum Wiener increments in
Eq. (3.33) are satisfied but also, ρ̂S = EC [TrE(|Ψ⟩ ⟨Ψ|)] is a solution of the Lindblad
equation in Eq. (3.36). Prescription two follows directly from the fact that in the
finite dimensional representation the bath qubit has to be reset after each time step
to preserve Markovianity; the first and the third prescriptions are due to the necessity
to average over classical stochastic processes. To check the equivalence with the
Lindblad equation, we substitute the finite representation of the bath operators in
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Eq. (7.2) inside the first line of Eq. (3.36) and we apply the third prescription to get

dρ̂S =EC

[
− i

ℏ
[ĤS, ρ̂S]dt− γ

2
{L̂†L̂, ρ̂S}dt+

√
γL̂dW TrE

(
σ̂+
E |Ψ⟩ ⟨Ψ|

)
−√

γL̂†dW TrE
(
σ̂−
E |Ψ⟩ ⟨Ψ|

)
+
√
γ TrE

(
|Ψ⟩ ⟨Ψ| σ̂−

E

)
L̂†dW

−√
γ TrE

(
|Ψ⟩ ⟨Ψ| σ̂+

E

)
L̂dW + γL̂TrE

(
|Ψ⟩ ⟨Ψ| σ̂−

E σ̂
+
E

)
L̂†dt

− γL̂TrE
(
|Ψ⟩ ⟨Ψ| σ̂+

E σ̂
+
E

)
L̂dt− γL̂† TrE

(
|Ψ⟩ ⟨Ψ| σ̂−

E σ̂
−
E

)
L̂†dt

+ γL̂† TrE
(
|Ψ⟩ ⟨Ψ| σ̂+

E σ̂
−
E

)
L̂dt

]
.

(7.3)

By using the fact that (σ̂±
E)2 = 0, P̂0 = |0⟩E ⟨0|E = σ̂−

E σ̂
+
E and P̂1 = |1⟩E ⟨1|E = σ̂+

E σ̂
−
E

and that EC [dW ] = 0, Eq. (7.3) becomes

dρ̂S = − i

ℏ
[ĤS, ρ̂S]dt− γ

2
{L̂†L̂, ρ̂S}dt

+ γL̂TrE
(
|Ψ⟩ ⟨Ψ| P̂0

)
L̂†dt+ γL̂† TrE

(
|Ψ⟩ ⟨Ψ| P̂1

)
L̂dt .

(7.4)

This is the Lindblad equation. Indeed, since we are assuming that |Ψ⟩ = |ψ⟩S |0⟩E is

always valid, the P̂1 term contribution is zero and

TrE
(
|Ψ⟩ ⟨Ψ| P̂0

)
= |ψ⟩S ⟨ψ|S ⟨0|E P̂0 |0⟩E = |ψ⟩S ⟨ψ|S = ρ̂S . (7.5)

We mention that in principle it is possible to introduce non-Markovian effects by
relaxing the second prescription, without resetting the bath qubit after each time
step.

7.1.2 Derivation

Given the finite representation of the bath operators, we derive the approximate
expression for the unitary evolution N̂g(∆t).

The derivation uses the small noise expansion [20] method introduced in Chapter
4, adapted and generalized to the rules of quantum Itô calculus, see Sec. 3.1.4 and
also [19,22]. For simplicity the following derivation is performed by using the generic
expression for dB̂t and dB̂†

t ; the same results apply when substituting their finite
expression in Eq. (7.2) and by applying the three prescriptions in Sec. 7.1.1.

We consider the QSDE in Eq. (3.34) with one single Lindblad operator, the gen-
eralization to 22n − 1 Lindblad operators being straightforward

d|Ψt⟩ =

[
− i

ℏ
Ĥdt+ ϵ

(
L̂dB̂†

t − L̂†dB̂t

)
− ϵ2

2
L̂†L̂dt

]
|Ψt⟩ , (7.6)
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and we set ϵ :=
√
γ. We assume the following perturbative expansion up to order ϵ2

|Ψt⟩ =
∣∣Ψ0

t

〉
+ ϵ
∣∣Ψ1

t

〉
+ ϵ2

∣∣Ψ2
t

〉
+ O(ϵ3) . (7.7)

Substituting this expression into Eq. (7.6) and equating terms with the same power
of ϵ, we obtain the following system of QSDEs

d
∣∣Ψ0

t

〉
= − i

ℏ
Ĥ
∣∣Ψ0

t

〉
dt

d
∣∣Ψ1

t

〉
= − i

ℏ
Ĥ
∣∣Ψ1

t

〉
dt+

(
L̂dB̂†

t − L̂†dB̂t

) ∣∣Ψ0
t

〉
d
∣∣Ψ2

t

〉
= − i

ℏ
Ĥ
∣∣Ψ2

t

〉
dt+

(
L̂dB̂†

t − L̂†dB̂t

) ∣∣Ψ1
t

〉
− 1

2
L̂†L̂

∣∣Ψ0
t

〉
ds,

which has to be solved with the initial conditions |Ψ0
0⟩ = |Ψ0⟩. The zero-th order

differential equation is the deterministic equation given by the system Hamiltonian
evolution, with solution |Ψ0

t ⟩ = Û(t− t0) |Ψt0⟩. The solution of the first order QSDE
is ∣∣Ψ1

t

〉
= Û(t− t0)Ŝ(t− t0) |Ψt0⟩ , (7.8)

where we introduced the stochastic term Ŝ(t−t0) :=
∫ t
t0

(L̂(s−t0)dB̂†
s− L̂†(s−t0)dB̂s)

with L̂(s− t0) = Û †(s− t0)L̂Û(s− t0). The solution to the second order QSDE is∣∣Ψ2
t

〉
= −Û(t−t0)

∫ t

t0

[1

2
L̂†(s−t0)L̂(s−t0)ds−(L̂(s−t0)dB̂†

s−L̂†(s−t0)dB̂s)Ŝ(s−t0)
]
|Ψt0⟩ .

(7.9)
Then, up to order ϵ2, |Ψt+∆t⟩ = N̂g(∆t) |Ψt⟩+O(ϵ3), where the evolution operator is

N̂g(∆t) = Û(∆t)N̂(∆t), with

N̂(∆t) = 1 + ϵŜ(∆t) − ϵ2

2

∫ t+∆t

t

L̂†(s− t)L̂(s− t)ds

+ ϵ2
∫ t+∆t

t

(
L̂(s− t)dB̂†

s − L̂†(s− t)dB̂s

)
Ŝ(s− t).

(7.10)

To simplify this expression, we make use of the following equality, which is the gen-
eralization of Eq. (4.9) to the rules of quantum Itô calculus [19, 20]∫ t

t0

(
L̂(s−t0)dB̂†

s−L̂†(s−t0)dB̂s

)
Ŝ(s−t0) =

1

2

[
Ŝ2(t−t0)+

∫ t

t0

dsL̂†(s−t0)L̂(s−t0)−Ĉ(t−t0)
]
,

(7.11)
where Ĉ(t− t0) = 1

2

∫ t
t0

[
Ŝ(s− t0), L̂(s− t)dB̂†

s − L̂†(s− t)dB̂s

]
. By substituting this

expression into Eq. (7.10), we have to order ϵ2

N̂(∆t) = 1 + ϵŜ(∆t) +
ϵ2

2
Ŝ(∆t)2 − ϵ2Ĉ(∆t) (7.12)
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We can drop the term ϵ2Ĉ(∆t), which in principle contributes to order ϵ2 to the final
density matrix, because it is a nested Itô integral of non anticipating functions [19,20]
(see also Sec. 4.1.1), and hence its stochastic average is zero.

Generalizing to the case of multiple Lindblad operators L̂k, reinserting the coef-
ficients γk and approximating the series expansion in Ŝ to an exponential, the final
expression for N̂g(∆t) is

N̂g(∆t) ≃ Û(∆t) exp

(∑
k

√
γkŜk(∆t)

)
≃ Û(∆t)

∏
k

exp
(√

γkŜk(∆t)
)
, (7.13)

where Û(∆t) is the closed system evolution operator and the stochastic terms Ŝk(∆t)
read

Ŝk(∆t) =

∫ t+∆t

t

(
L̂k(s− t)dB̂†

k(s) − L̂†
k(s− t)dB̂k(s)

)
, (7.14)

where L̂k(s− t) = Û †(s− t)L̂kÛ(s− t) are the Lindblad operators in the interaction
picture. Eq. (7.13) is equivalent to the following approximate density matrix of the
system

ρ̂S(t+ ∆t) = TrE(N̂(∆t)ρ̂S(t)N̂ †(∆t)) =

Û(∆t)

(
ρ̂S(t) +

∫ t+∆t

t

dsLD(s)ρ̂S(t)

)
Û †(∆t)

(7.15)

where

LD(s)ρ̂S(t)=
∑
k

γk
(
L̂k(s)ρ̂S(t)L̂†

k(s) −
1

2

{
L̂†
k(s)L̂k(s), ρ̂S(t)

})
. (7.16)

Notably, this is the same approximate expression in Eq. (3.6).
We remark that the second approximation in Eq. (7.13) is legitimate since on
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average

EC
[
TrE

(∏
k

e
√
γkŜk(∆t)ρ̂S(0) |0⟩ ⟨0|

∏
j

e
√
γj Ŝ

†
j (∆t)

)]
=

EC
[
TrE

(∏
k

(
1 +

√
γkŜk(∆t) +

1

2
γkŜ

2
k(∆t)

)
ρ̂S(0) |0⟩ ⟨0|

∏
j

(
1 +

√
γjŜ

†
j (∆t) +

1

2
γjŜ

†2
j (∆t)

))]
=

EC
[
TrE

((
1 +

∑
k

√
γkŜk(∆t) +

1

2

∑
k

γkŜ
2
k(∆t) +

∑
k<k′

√
γk
√
γk′Ŝk(∆t)Ŝk′(∆t)

)
ρ̂S(0) |0⟩ ⟨0|

(1 +
∑
j

√
γjŜ

†
j (∆t) +

1

2

∑
j

γjŜ
2†
j (∆t) +

∑
j<j′

√
γj
√
γj′Ŝ

†
j (∆t)Ŝ

†
j′(∆t))

)]
=

ρ̂S(t) +

∫ t+∆t

t

dsLD(s)ρ̂S(t)

,

(7.17)
where LD(s)ρ̂S(t) is the same term in Eq. (7.16) and we use the fact that

EC
[
TrE

(√
γk
√
γk′Ŝk(∆t)Ŝk′(∆t)ρ̂S(0) |0⟩ ⟨0|

)]
= EC

[
TrE

(√
γk
√
γk′ ρ̂S(0) |0⟩ ⟨0| Ŝk(∆t)Ŝk′(∆t)

)]
= 0.

(7.18)

since Wiener processes associated to different k are statistically independent. Thus,

instead of computing exp
(∑

k

√
γkŜk(∆t)

)
, we compute a matrix for each Lindblad

operator and then multiply them as
∏

k exp
(√

γkŜk(∆t)
)

. Each matrix exp
(√

γkŜk(∆t)
)

has dimension 2 × max(dU , dL) with dU and dL the dimensions of the unitary evo-
lution and of the Lindblad operators respectively. The factor ”2” accounts for the
bath qubit while the second term is a consequence of the fact that each Ŝk(∆t)
contains L̂k(s − t) = Û †(s − t)L̂kÛ(s − t). Remarkably, all matrices in the prod-
uct are implemented by using the same unique ancillary bath qubit that, according
to the second prescription, has to be reset after the application of all operators in∏

k exp
(√

γkŜk(∆t)
)

.

Inserting the finite representation (7.2) of the bath operators inside the stochastic
terms in Eq. (7.14) they become

Ŝk(∆t) =

∫ t+∆t

t

(
L̂k(s− t)σ̂+

E − L̂†
k(s− t)σ̂−

E

)
dWk(s). (7.19)

For convenience we define Ĵk(s− t) ≡ L̂k(s− t)σ̂+
E − L̂†

k(s− t)σ̂−
E . The real [Ŝk(∆t)]

R
ij

and imaginary part [Ŝk(∆t)]
I
ij of the entries of the operators Ŝk(∆t) in Eq. (7.19)
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are Itô integrals of deterministic functions [Ŝk(∆t)]
λ
ij =

∫ t+∆t

t
dWk(s)[Ĵk(s − t)]λij for

λ = R, I, that represent Gaussian stochastic processes with means zero

E
[
[Ŝk(∆t)]

λ
ij

]
= 0 (7.20)

and variances and covariances

V
[
[Ŝk(∆t)]

λ
ij

]
=

∫ t+∆t

t

ds([Ĵk(s− t)]λij)
2 (7.21)

E
[
[Ŝk(∆t)]

λ
ij[Ŝk(∆t)]

λ′

i′j′

]
=

∫ t+∆t

t

ds[Ĵk(s− t)]λij[Ĵk(s− t)]λ
′

i′j′ (7.22)

Once all the variances and covariances are computed, the stochastic processes can
be sampled to get a single realization of the evolution operator N̂g(∆t). Finally by

averaging over all the realizations of the final state |Ψ(t+ ∆t)⟩ = N̂g(∆t) |Ψ(t)⟩, in
accordance with the prescriptions, one obtains the final density matrix in Eq. (7.15).

7.2 The quantum algorithm

In this section we describe the quantum algorithm driving the open system evolu-
tion and we upper bound the error associated to the approximate solution, evaluating
the resources needed to reach a target accuracy.

7.2.1 Implementation

The approximate expression of the unitary evolution of system qubits plus the
ancillary qubit in Eq. (7.13) is not directly implementable on a quantum computer
when Û is the unitary of a full many body system and for noises acting long range
over many qubits. In this setup, the dimension 2 × max(dU , dL) of N̂g(∆t) scales
exponentially with the number of system qubits n, as both dL and dU do. This
makes the computation of such matrices, and the consequent characterization of their
stochastic processes, unfeasible computationally as the system size n increases. To
avoid this problem, from now on we assume that the noises have a defined m locality,
meaning that dL is at most m < n and m is independent on n. To further reduce
the dimension of the gates to be computed, we decompose the ideal many body
system evolution into the native gates Ûσ of a given device and apply Eq. (7.13) to
each Ûσ. In this case calculations are straightforward since Ûσ act on a very limited
number of system qubits and L̂ have a fixed dimension. This results in the algorithmic
implementation of the approach, presented in Alg. 4.
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Algorithm 4

Input: A Lindblad equation and a certain number ng of native gates of the quantum

device {Û (1), ..., Û (ng)}.
Protocol:

1. For each Û (σ) compute N̂(σ) by using equation (7.13) in its finite representation,
getting {N̂(1), ..., N̂(ng)}

2. Trotterize the unitary evolution of the system in ∆τ time steps as Û(T, 0) ≃∏Nstep

j Ûj(∆τ) where T = Nstep∆τ .

3. Decompose the quantum circuit corresponding to
∏Nstep

j Ûj(∆τ) into the native
gates.

4. Substitute each gate in the circuit with the corresponding N̂(σ)(∆t) where ∆t =
∆τ/Ngates and Ngates is the total number of native gates in the trotter step.

5. Apply all the trotter steps making sure to reset the ancilla qubit after the
application of each N̂(σ).

6. Repeat the resulting circuit by sampling the stochastic processes inside N̂(σ) for
each measurement shot.

Output: Compute the final probabilities by taking the average over all circuit real-
izations.

In general the operators N̂(σ) obtained after step 1 are not anymore native gates
but they are further decomposed into native gates when the circuit runs. The choice
of time step ∆t in the fourth step of Alg. 4 is made such that the time step ∆τ is
reached after the Ngates, i.e. ∆τ = Ngates∆t.

7.2.2 Resources estimation

We now estimate the resources needed for the implementation of Alg. 4. To do so,
we compute an upper bound on the approximation error between the approximate
density matrix in Eq. (7.13) and the full solution of the Lindblad equation (see also
Eq. (2.15))

ρ̂S(t+ ∆t) = Û(∆t)T
[
e
∫ t+∆t
t dsLD(s)

]
ρ̂S(t)Û †(∆t) . (7.23)

The approximation error is quantified by

εa =

∥∥∥∥T
[
e
∫ t+∆t
t dsLD(s)

]
− (1 +

∫ t+∆t

t

dsLD(s))

∥∥∥∥
1→1

(7.24)
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where we use the 1 → 1 superoperator norm ∥E∥1→1 ≡ sup∥Ô∥
1
=1

∥∥∥E(Ô)
∥∥∥
1

[92, 98]

where
∥∥∥Ô∥∥∥

1
≡ Tr

(√
Ô†Ô

)
and E( · ) is a generic superoperator. We quantify this

error by assuming m-locality, for which the Lindbladian can be expressed as LD(s) =∑K
j Lj(s) where each Lj(s) acts non trivially on a subset of m < n qubits. Each

Lj(s) has a maximum number 22m − 1 of Lindblad operators. For simplicity we
assume that all noise parameters γk have the same order of magnitude γk = γ. By
using the fact that γ∆t ≪ 1, thus

∫ t+∆t

t
ds∥LD(s)∥1→1 < 1 and the inequalities

∥E1 + E2∥1→1 ≤ ∥E1∥1→1 + ∥E2∥1→1, ∥E1E2∥1→1 ≤ ∥E1∥1→1∥E2∥1→1 the approximation
error is upper bounded as

εa =

∥∥∥∥T
[
e
∫ t+∆t
t dsLD(s)

]
−
(

1 +

∫ t+∆t

t

dsLD(s)
)∥∥∥∥

1→1

=

∥∥∥∥∥
∞∑
k=2

1

k!

∫ t+∆t

t

· · ·
∫ t+∆t

t

dt1 . . .dtkT
[
LD(t1) . . .LD(tk)

]∥∥∥∥∥
1→1

≤
∞∑
k=2

1

k!

∥∥∥∥∫ t+∆t

t

· · ·
∫ t+∆t

t

dt1 . . .dtkT
[
LD(t1) . . .LD(tk)

]∥∥∥∥
1→1

=
∞∑
k=2

1

k!

∥∥∥∥∥T

[(∫ t+∆t

t

dsLD(s)
)k]∥∥∥∥∥

1→1

≤
∞∑
k=2

1

k!

(∫ t+∆t

t

ds∥LD(s)∥1→1

)k
≤ 1

2

(∫ t+∆t

t

ds∥LD(s)∥1→1

)2 ∞∑
k=0

1

k!

(∫ t+∆t

t

ds∥LD(s)∥1→1

)k
=

1

2

(∫ t+∆t

t

ds∥LD(s)∥1→1

)2
e
∫ t+∆t
t ds∥LD(s)∥1→1 ≤ e

2

(∫ t+∆t

t

ds∥LD(s)∥1→1

)2
,

(7.25)
where e is the Euler number.

Since LD(s) is m-local, then ∥LD(s)∥1→1 ≤ K maxj ∥Lj(s)∥1→1, and ∥Lj(s)∥1→1
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can be expressed as

∥Lj(s)∥1→1 = sup
∥Ô∥

1
=1

∥∥∥∥∥
22m−1∑
k=1

γ
(

(L̂k,j(s)ÔL̂
†
k,j(s) −

1

2
{L̂†

k,j(s)L̂k,j(s), Ô}
)∥∥∥∥∥

1

≤ γ

22m−1∑
k=1

(
sup

∥Ô∥
1
=1

∥∥∥L̂k,j(s)ÔL̂†
k,j(s)

∥∥∥
1

+
1

2
sup

∥Ô∥
1
=1

∥∥∥{L̂†
k,j(s)L̂k,j(s), Ô}

∥∥∥
1

)

≤ 2γ
22m−1∑
k=1

sup
∥Ô∥

1
=1

∥∥∥Ô∥∥∥
1

∥∥∥L̂†
k,j(s)

∥∥∥
∞

∥∥∥L̂k,j(s)∥∥∥
∞

≤ 2γ
22m−1∑
k=1

∥∥∥L̂†
k,j(s)

∥∥∥
∞

∥∥∥L̂k,j(s)∥∥∥
∞

= 2γ
22m−1∑
k=1

∥∥∥L̂k,j(s)∥∥∥2
∞

≤ 2γ(22m − 1) max
k

(∥∥∥L̂k,j(s)∥∥∥2
∞

)
= 2γ(22m − 1) max

k

(∥∥∥L̂k,j∥∥∥2
∞

)
,

(7.26)

where we use the inequalities
∥∥∥ÂB̂∥∥∥

1
≤
∥∥∥Â∥∥∥

1

∥∥∥B̂∥∥∥
∞

,
∥∥∥ÂB̂∥∥∥

1
≤
∥∥∥Â∥∥∥

∞

∥∥∥B̂∥∥∥
1

and∥∥∥Â∥∥∥
∞

= sup∥|ψ⟩∥=1

∥∥∥Â |ψ⟩
∥∥∥ = sup∥|ψ⟩∥=1

√
⟨ψ| Â†Â |ψ⟩. Moreover we exploit the fact

that
∥∥∥L̂k,j(s)∥∥∥2

∞
= sup∥|ψ⟩∥=1 ⟨ψ| Û †(s, t)L̂†

k,jL̂k,jÛ(s, t) |ψ⟩ = sup∥|ψ′⟩∥=1 ⟨ψ′| L̂†
k,jL̂k,j |ψ′⟩ =∥∥∥L̂k,j∥∥∥2

∞
. Finally by inserting Eq. (7.26) in Eq. (7.25) one finds

εa ≤ 2e
(
K(22m − 1) max

k

∥∥∥L̂k,j∥∥∥2
∞
γ∆t

)2
. (7.27)

where K(22m − 1) is the total number of Lindblad operators. This number scales
polynomially with n. Indeed K in general takes the value n!/m!(n − m)!, that for
m-local Lindbladians and for n going to infinity, scales as

K ∼ nm

m!em
, (7.28)

where we use the Stirling formula.
Given Alg. 4, each N̂ (σ) contributes to the single trotter step error with εa. Then

if in the trotter step there are Ngates and, according to the m-locality condition, the
total number of Lindblad operators is ∼ nm, the single trotter step error is bounded
by εstep ≤ Ngatesεa. Consequently, the global approximation error associated to a total

evolution time T is εglobal ≤ Nstepεstep ≤ NstepNgatesεa ∼ T 2

Nstep
Ngatesn

2mγ2. Notably,

this bound is polynomial in the system qubits number n.
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Alg. 4 is based on the perturbative expression in Eq. (7.13), that, in principle,
is valid when noises are small perturbations of the system unitary evolution. In
this setup ∆t is not restricted to be infinitesimal and our approach provides the
approximate solution of the Lindblad equation in Eq. (7.15) which is more accurate
in the non infinitesimal interval ∆t than the more immediate and most commonly
employed approximation given by ρ̂S(t+ ∆t) = ρ̂S(t) +

(
− i

ℏ [ĤS, ρ̂S(t)] +LDρ̂S(t)
)
∆t,

which is a first order approximation in ∆t. This fact implies a huge advancement in
terms of quantum resources. Given a target accuracy, the total number of time steps
to reach a final evolution time T is greatly reduced, effectively reducing the total
depth of the circuit. Since εtot ≤ NstepNgatesεa ∼ T 2

Nstep
Ngatesn

2mγ2 then less Nstep are

needed leading to a bigger ∆t as long as γ∆t≪ 1. This is also confirmed by Fig. 7.1
(a).

When approaching the strong coupling regime, the perturbative expression is not
valid anymore. However, the approach does not break down as long as the value
of ∆t is suitably decreased, becoming infinitesimal. In fact, in this limit Eq. (7.15)
reduces to ρ̂S(t+∆t) = ρ̂S(t)+

(
− i

ℏ [ĤS, ρ̂S(t)]+LDρ̂S(t)
)
∆t and the stochastic terms

in Eq. (7.14) become Ŝk(∆t) =
√
γ
k
ĴkWk(∆t). The Wiener processes Wk(∆t) have

variances ∆t, and for this reason in this regime the algorithm resembles a stochastic
implementation of the algorithm proposed in [94, 95]. The significant difference is
that in our case the system-environment interaction is mediated by a single ancillary
qubit regardless of the total number of the system Lindblad operators.

Regarding the width of the resulting circuit, in general Alg. 4 needs a single
environmental qubit, thus a constant ancilla overhead of order O(1). State of the
art implementations [92–97] have ancilla overheads proportional to the number of
Lindblad operators, which is generally of order O(22n − 1) where n is the number
of system qubits. For m-local Lindbladians, the order reduces to O(nm), while for
algorithms based on the vectorization of the density matrix, the ancilla overhead is of
order O(n). This constitutes a huge advancement for our protocol: the total number
of qubits to run the simulation is reduced polynomially and at most exponentially.

Our approach needs to evaluate multiple circuits due to the sampling of the
stochastic processes. This leads to a sampling error on the evaluation of observables

η = O(
√
Nstepγ∆t/Nr) (7.29)

where Nr is the total number of realizations of the classical stochastic processes, γ
is the system-environment coupling constant (for simplicity γk = γ for all k) and
Nstep∆t = T is the time duration of the evolution. η is independent on n and it
scales with the square root of the depth of the circuit d ∼ O(Nstep∆t). This does
not increase drastically the computational resources with respect to deterministic
methods. This fact is checked in Fig. 7.1 (b).
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Figure 7.1: Evolution of a single spin under external magnetic field and in contact
with a thermal bath with coupling constant γ = 0.1 kHz, for a total time T = 30µs.
Panel (a) displays in blue the trace distance T (QN)(T ) between the exact solution of
the Lindblad equation and the quantum noise (QN) approximation in Eq. (7.15) as
a function of γ∆t and in red the trace distance T (SA)(T ) between the exact solution
of the Lindblad equation and the standard approximation (SA). As one can see, to

reach the same precision of QN, the SA needs N
(SA)
step ∼ 105 against N

(QN)
step ∼ 101,

implying that the resulting depth for SA is four orders magnitude larger than for
QN. The blue dashed line reports the theoretical upper bound for QN computed in
Sec. 7.2.2, while the red dashed line is the theoretical upper bound for SA, computed
by using the formula of [94]. Panel (b) plots in blue the trace distance T (QN)

sampled =

T (χ̂(T ), ρ̂
(QN)
sampled(T )) with fixed ∆t = 10−6 where ρ̂

(QN)
sampled(T ) is obtained by simulating

Alg. 4 for an increasing number Nr of realizations. Each point is the mean over 100
independent simulations, and the vertical bars show the standard deviations of the
means. The orange dashed line is the sampling error η = O(

√
γNstep∆t/Nr). By

taking larger Nr one can reach the same precision of the rightmost point of the blue
curve in (a); this requires a very large number of samples, but it is a consequence of
the simple toy model we are considering, as explained in the main text.
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Fig. 7.1 reports the results of the simulations of a single spin under external
magnetic field. The system Hamiltonian is HS = ℏΩ

2
X̂ with Ω = π/6 MHZ and the

Lindblad operators are L̂1 = σ̂+, L̂2 = σ̂− and L̂3 = Ẑ driven by the same fixed noise
parameter γ = 0.1 KHZ. The isolated dynamics of the system can be implemented
by a single-qubit x-rotation R̂x(θ) in time steps ∆t where θ = Ω∆t. We fix the total
evolution time T = 30µs and we vary the value of ∆t. In Fig. 7.1 (a) the solid blue
line is the trace distance [2] T (QN) = T (χ̂(T ), ρ̂(QN)(T )) between ρ̂(QN)(T ), which
is the density matrix obtained with the approximate expression in Eq. (7.15), and
χ̂(T ), which is the analytic solution of the full Lindblad equation. The global upper
bound coming from Eq. (7.27) is reported with the blue dashed line. The values of
T (QN) are always below the upper bound, confirming its validity. The solid red line
displays the behaviour of T (SA) = T (χ̂(T ), ρ̂(SA)(T )) where ρ̂(SA)(T ) is obtained using
the approximation ρ̂S(t+∆t) = ρ̂S(t)+

(
− i

ℏ [ĤS, ρ̂S(t)]+LDρ̂S(t)
)
∆t. The associated

upper bound, computed using the formulas in [94], is displayed with the red dashed
line. Notably, for γ∆t ∼ 10−4, T (QN) ∼ 10−7 while T (SA) ∼ 10−1. This means that
to reach the same precision of our approach a standard approximation method would
need γ∆t ∼ 10−8. Even for this simple example, ∆t has to be reduced by four orders
of magnitude and consequently the depth of the resulting circuit is greatly reduced,
as N

(SA)
step ∼ 105 against N

(QN)
step ∼ 101.

In Fig. 7.1 (b) we focus on the same toy model with fixed ∆t = 10−6 and we
simulate Alg. 4 for different number of realizations Nr. The solid blue line is the
trace distance T (QN)

sampled = T (χ̂(T ), ρ̂
(QN)
sampled(T )) as a function of Nr. Each point is the

mean over 100 independent simulations and vertical bars are the standard deviations
of the means. The orange dashed line is the sampling error η in Eq. (7.29). The

behaviour of T (QN)
sampled follows with good agreement the behaviour of η. By taking

larger Nr one can reach the same precision of the corresponding point in Fig. 7.1
(a), which is the rightmost point of the solid blue curve (for that point ∆t = 10−6).
This requires a huge number of samples, but it is a consequence of the simple toy
model here considered for which the approximation error is very small. For systems
with higher n, since the approximation error scales as ∼ n2m, a limited number of
realizations Nr is required to reach the accuracy set by the approximation error.

7.3 Discussion

We have presented an algorithm based on the unitary unraveling of the Lindblad
equation tailored for the efficient simulation of open quantum systems on quantum
devices. The system evolution is driven with the addition of a single ancillary qubit,
independently of the system size. This substantially reduces the total number of cir-
cuit qubits. The reproduced perturbative solution of the Lindblad equation, for small
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environment coupling constants, permits a larger time step ∆t while maintaining the
desired accuracy, thereby reducing the total number of steps, i.e. the depth of the
circuit. The algorithm does not break down in the strong coupling regime. In this
case the approximation converges to the first order solution in ∆t, thus maintaining
the same performances of other proposals but keeping the advantage of using a single
bath qubit.

The algorithm can be tested on real quantum computers paired with error mit-
igation to reduce the impact of the inherent noise of the devices. The possibility
of introducing non-Markovian effects can be explored by relaxing the prescription of
resetting the bath qubit after each time step.
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Chapter 8

Fundamental decoherence of a
transmon qubit

The aim of this chapter is to quantify the limit set by collapse models on the
performance of a superconducting transmon qubit, one of the most advanced and
promising building block for a quantum processing unit. The CSL model (more
generally, collapse models [13]) is an alternative formulation of quantum mechanics
developed in order to solve the tension between the quantum superposition principle
and the wave packet reduction postulate. At the core of the model there is a classical
noise, suitably coupled to the wave function of particles accounting for its collapse,
which now becomes part of the dynamics, not a separate postulate. The CSL state
vector reduction of quantum states becomes more effective as the difference in mass
density of the states in superposition increases [99]. In this way the model is consistent
with quantum mechanics in the microscopic regime, where the standard theory gives
extremely accurate predictions, at the same time justifying why macroscopic objects
are always localized in space.

We start by reviewing the key elements of the Bardeen-Cooper-Schrieffer (BCS)
theory of superconductors needed for the subsequent analysis, highlighting the role
played by the excited states of a superconductor, the quasiparticles. Then we discuss
how to treat CSL noise in the BCS formalism, outlining the key elements needed to
compute CSL effects on transmon qubits. We compute the reduction rate of CSL,
i.e. the rate at which CSL localizes a superposition of the computational basis states
of transmon qubits. We estimate that this effect is at date negligibly small to be de-
tected. We then characterize the effects of the CSL dissipation on transmon devices.
We show how the CSL noise perturbs the superconducting materials in transmon
qubits, by generating additional quasiparticles. These excited states accumulate over
time in the devices’ volume leading to a non equilibrium steady state quasiparticle
density larger than the thermal one. Notably, it is a well known fact that the re-
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laxation rate of transmon qubits depends linearly on the quasiparticle density, and
that the latter has unexplained high values at operating temperatures of transmon
qubits. Many physical processes contribute to such excess of quasiparticles, which
already makes an experimental test to detect CSL very challenging. Still, the es-
tablished dependence of the relaxation rate on the quasiparticle density allows for a
direct comparison with experimental data. In particular, we exclude CSL to be the
leading contribution to quasiparticle generation.

8.1 Theoretical background

8.1.1 BCS theory

This section recaps the key concepts and quantities of the microscopic theory of
conventional superconductors, the BCS theory. Some metals display distinctive phys-
ical features below a critical temperature Tc: it is energetically favoured for electrons
to attract and to bind in pairs, called Cooper pairs. The attraction is mediated by
phonons, and the two electrons in a Cooper pair have opposite momenta and spins.
Since the total spin of a Cooper pair is zero, different pairs behave coherently similarly
to (but not exactly as) boson condensates.

The BCS Hamiltonian of the system of electrons is given by [100,101]

ĤBCS =
∑
kσ

ξkĉ
†
kσ ĉkσ +

∑
kk′

Ukk′ ĉ†k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑ , (8.1)

where ξk = ℏ2k2/2m − ϵF is the energy measured with respect to the Fermi energy
ϵF , and Ukk′ are the matrix elements of the interaction potential. The first term in
Eq. (8.1) is the kinetic energy while the second term is the potential energy, coupling
Cooper pairs of different momenta k and k′.

The BCS Hamiltonian contains terms with four fermionic operators that are diffi-
cult to work with. Its expression is simplified through the mean field procedure. One
defines

ak = ⟨ĉ†k↑ĉ
†
−k↓⟩ , (8.2)

and assumes that the fluctuations (ĉ†k↑ĉ
†
−k↓− ak) are negligible. Then by substituting

ĉ†k↑ĉ
†
−k↓ = ak +

(
ĉ†k↑ĉ

†
−k↓ − ak

)
, (8.3)

(and its conjugate) in the BCS Hamiltonian and by keeping terms up to first order
in the fluctuations, one obtains the Bogoliubov Hamiltonian [102]

ĤB =
∑
kσ

ξkĉ
†
kσ ĉkσ +

∑
kk′

Ukk′ [ak′ ĉ†k↑ĉ
†
k↓ + akĉk′↓ĉk′↑ − akak′ ] . (8.4)
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By defining ∆k =
∑

k′ Ukk′ak′ , which are called the superconducting gap parameters,
the Hamiltionian becomes

ĤB =
∑
kσ

ξkĉ
†
kσ ĉkσ −

∑
k

∆k[ĉ†k↑ĉ
†
−k↓ + ĉ−k↓ĉk↑ + ak] . (8.5)

The ground state of a superconductor is given by the BCS ground state [102]

|ψS⟩ =
∏
k

(uk + eiϕvkĉ
†
k↑ĉ

†
−k↓) |0⟩ , (8.6)

where |0⟩ is the vacuum state of the electrons, ϕ is the phase of the superconductor
and the real coefficients uk and vk satisfy the normalization conditions u2k+v2k = 1. In
particular, v2k (u2k) is the probability that a Cooper pair of momentum k is occupied
(unoccupied). The excited states of a superconductor are found with the Bogoliubov
transformation, that diagonalizes the Hamiltonian in Eq. (8.4) by introducing new
canonical fermionic operators γ̂kσ

γ̂k↑ = ukĉk↑ − vke
iϕĉ†−k↓ γ̂−k↓ = vke

iϕĉ†k↑ + ukĉ−k↓

γ̂†k↑ = ukĉ
†
k↑ − vke

−iϕĉ−k↓ γ̂†−k↓ = vke
−iϕĉk↑ + ukĉ

†
−k↓ .

(8.7)

The inverse Bogoliubov transformation is given by

ĉk↑ = ukγ̂k↑ + vke
iϕγ̂†−k↓ ĉ−k↓ = ukγ̂−k↓ − vke

iϕγ̂†k↑

ĉ†k↑ = ukγ̂
†
k↑ + vke

−iϕγ̂−k↓ ĉ†−k↓ = ukγ̂
†
−k↓ − vke

−iϕγ̂k↑ .
(8.8)

Substituting Eqs. (8.8) in the Bogoliubov Hamiltonian in Eq. (8.5) one finds

ĤB =
∑
k

[
ξk(u2k − v2k) + 2∆kukvk

][
γ̂†k↑γ̂k↑ + γ̂†−k↓γ̂−k↓

]
+
∑
k

[
2ξkukvk − ∆k(u2k − v2k)

][
γ̂†k↑γ̂

†
−k↓ + γ̂−k↓γ̂k↑

]
+
∑
k

[
2ξkv

2
k − 2∆kukvk + ∆kak

]
.

(8.9)

This expression contains undesired terms of the type γ̂γ̂ and γ̂†γ̂† so their coefficients
are set to zero [101,102]

2ξkukvk − ∆k(u2k − v2k) = 0 . (8.10)

This condition together with the normalization condition u2k + v2k = 1 gives

u2k =
1

2

(
1 +

ξk
Ek

)
v2k =

1

2

(
1 − ξk

Ek

)
(8.11)
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where Ek are given by

Ek = ξk(u2k − v2k) + 2∆kukvk =
√
ξ2k + ∆2

k . (8.12)

One can see that, as k varies from values well below the Fermi surface to values well
above it, v2k goes from one to zero (and analogously u2k goes from zero to one), i.e.
Cooper pairs of momentum k well below the Fermi surface are occupied in the ground
state with probability one. As the momentum of the Cooper pairs increases above
the Fermi surface, the occupation probability decreases to 0.

The Bogoliubov Hamiltionian in diagonal form is

ĤB =
∑
k

Ek

[
γ̂†k↑γ̂k↑ + γ̂†−k↓γ̂−k↓

]
+WS , (8.13)

with Ek =
√
ξ2k + ∆2

k the energy associated to excitations, and WS =
∑

k

[
2ξkv

2
k −

2∆kukvk + ∆kak
]

an energy shift.
The BCS ground state is the vacuum state of the operators γ̂kσ, i.e. γ̂kσ |ΨS⟩ = 0.

Acting with γ̂†kσ on the BCS ground state gives an excited state, called quasiparticle.

The excited states in terms of ĉ†kσ read

|ψ1⟩ = γ̂†k↑ |ψS⟩ = ĉ†k↑
∏
l̸=k

(ul + vlĉ
†
l↑ĉ

†
−l↓) |0⟩ (8.14)

|ψ2⟩ = γ̂†−k↓ |ψS⟩ = ĉ†−k↓

∏
l̸=k

(ul + vlc
†
l↑c

†
−l↓) |0⟩ , (8.15)

meaning that for given momentum k there is an electron with probability one and
the other state of the pair is empty. Quasiparticles are then interpreted as fermions
created by γ̂†kσ in one-to-one correspondence with the ĉ†kσ.

At a temperature of absolute zero a superconductor sits in its ground state with-
out any excitations. For a non vanishing temperature T , some quasiparticle will be
thermally excited, and they will be distributed according to some occupation func-
tion f(E, T ), E being the energy of quasiparticles. For a superconductor at thermal
equilibrium it is generally assumed that the occupation function is a Fermi-Dirac
distribution

fFD(E, T ) =
1

eE/kBT + 1
. (8.16)

The normalized quasiparticle density xqp, i.e. the ratio between the number of
quasiparticles and the number of Cooper pairs, quantifies the number of excitations
in a superconducting device. Its expression is given by

xqp =

∫ ∞

∆

f(E)ρ(E)dE , (8.17)
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where ρ(E) is the normalized superconducting density of states

ρ(E) =
E√

E2 − ∆2
. (8.18)

Notably, the superconducting density of states in Eq. (8.18) contains a single gap
parameter ∆ which is independent of k. Indeed, in general the superconducting gap
parameters should be different for different values of k

∆k =
∑
k′

Ukk′ak′ =
∑
k′

Ukk′⟨ĉ†k′↑ĉ
†
−k′↓⟩

=
∑
k′

Ukk′uk′vk′⟨1 − γ̂†k′↑γ̂k′↑ − γ̂†−k′↓γ̂−k′↓⟩

=
∑
k′

Ukk′uk′vk′(1 − f(Ek′)) .

(8.19)

By substituting the expression of uk and vk in Eq. (8.11) one finds the self consistent
equations

∆k = −1

2

∑
k′

Ukk′
∆k′

Ek′
(1 − f(Ek′)) . (8.20)

The BCS assumption is that Ukk′ = −V is a negative constant (leading to an attrac-
tive interaction) for all k such that |ξk| < ℏωD, and Ukk′ = 0 otherwise. In this way
one has

∆k =

{
∆ for |ξk| < ℏωD
0 for |ξk| > ℏωD ,

(8.21)

where ∆ is the superconducting gap. Its meaning has a direct interpretation when
looking at the quasiparticle energies Ek as function of ξk in Eq. (8.12). They have
a minimum at ξk = 0 and the value of the excitation energy at this point is ∆, the
minimum energy amount needed to generate an excited state.

∆ is a function of temperature T , but at sufficiently low temperatures (we will
make this assumption hereafter) its value is ∆(T ) ≈ ∆(0) = 1.76kBTc, where Tc is
the critical temperature and kB is the Boltzmann constant. This assumption is well
justified for small enough temperatures T . Indeed the self consistent equation for the
gap (see Eq. (8.20)) becomes

∆ =
V

2

∑
k′

∆

Ek′
(1 − 2f(Ek′)) , (8.22)
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simplifying the common ∆ factor we are left with

1 =
V

2

∑
k′

1

Ek′
(1 − 2f(Ek′))

1 = g(ϵF )V

(∫ ℏωD

∆

dE√
E2 − ∆2

−
∫ ℏωD

∆

dEρ(E)
1

E
2f(E)

)
1 ≈ g(ϵF )V

(
ln

2ℏωD
∆

− xqp

)
,

(8.23)

where in the third line we switched to an integration over the quasiparticle energies
E and g(ϵF ) is the density of states for electrons of one spin orientation calculated at
the Fermi energy. Eq. (8.23) can be solved for the gap

∆ = 2ℏωDe−1/g(ϵF )V−xqp = ∆(0)e−xqp ≈ ∆(0)(1 − xqp) (8.24)

where ∆(0) = 2ℏωDe−1/g(ϵF ) = 1.76kBTc is the superconducting gap without quasipar-
ticles, so at absolute zero. The gap depends on the normalized quasiparticle density
and therefore on the occupation function of quasiparticles. However for small occu-
pation function, i.e. for small enough temperatures, it is reasonable to approximate
∆ = ∆(0).

Making the assumptions that f(E) is a Fermi-Dirac distribution and that xqp is
small, so that most of the excited states are close to the gap, one can find the following
expression for xqp [103]

xqp =
√

2πkBT/∆e
−∆/kBT . (8.25)

Inserting in this equation a realistic experimental value for transmon qubits of T =
20mK and the parameters of aluminum (a typical superconductor used in transmon
qubits), the quasiparticle density should be exponentially suppressed: xqp ∼ 10−52

[104]. Notably, experiments on superconducting qubits and superconducting res-
onators show significanlty higher density values, xexpqp ∼ 10−9 − 10−6 [105]. Thermal
equilibrium is not able to explain such an excess of quasiparticles, that are termed
non-equilibrium quasiparticles.

8.1.2 CSL model in the BCS framework

The CSL model is an alternative formulation of quantum mechanics devised to
solve the problem of the quantum-to-classical transition in quantum theory. CSL
provides a unified description for the Schrödinger evolution, which is linear and de-
terministic, and the non-linear and stochastic dynamics giving wave packet reduction.
This is done by modifying the Schrödinger equation, adding stochastic and non-linear
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terms that implement the collapse of the wave function. The modification is consis-
tent with quantum mechanics in the microscopic regime, where the standard theory
gives extremely accurate predictions, at the same time justifying why macroscopic ob-
jects are always localized in space. The strength and spatial extension of the collapse
(which is white in time) are dictated respectively by two parameters of the theory, λ
and rc. Theoretical arguments suggest that rc ∼ 10−7 m [13,106] and λ in the range
∼ 10−8−10−16s−1 [13,107]. From now on, to fix a possible value we set λ = 10−10s−1.

The CSL model is usually formulated in position space. The collapse of the wave
function is described by a non-linear and stochastic interaction with a classical noise
through the Itô equation

d |ψ⟩ =

[
− i

ℏ
Ĥdt+

√
λ

m0

∫
d3x
(
M̂(x) − ⟨M̂(x)⟩

)
dWt(x)

− λ

2m2
0

∫
d3x d3y

(
M̂(x) − ⟨M̂(x)⟩

)
G(x− y)×

(
M̂(y) − ⟨M̂(y)⟩

)
dt

]
|ψ⟩

(8.26)

where m0 is the nucleon mass, ⟨ · ⟩ denotes the expectation value on the state |ψ⟩ and
M̂(x) is the mass density operator defined by

M̂(x) =
∑
j

mj â
†
j(x)âj(x) . (8.27)

The operators â†j(x) and âj(x) are the creation and annihilation operators at position
x of a particle of type j with mass mj. In our case we will have a single m given by
the mass of electrons. The G(x− y) in (8.26) are Gaussian functions of the form

G(x− y) =
1

(4πr2c )
3/2
e
− 1

4r2c
(x−y)2

, (8.28)

that characterize the statistical properties of the noise Wt(x). Indeed, by call-
ing ξt(x) = dWt(x)/dt, one has that E[ξt(x)] = 0, and the two point correlator
E[ξt(x), ξs(y)] = G(x − y)δ(t − s) where E[·] denotes the stochastic average. These
properties together with the mass proportionality of M̂ guarantee respectively local-
ization in space and the amplification mechanism: the collapse rate of a body of N
constituents gets amplified linearly in N . It is generally difficult to work directly with
Eq. (8.26), mainly because of its non-linearity. Since we are interested in expectation
values we can use the simplified linear, but still stochastic, dynamic given by

iℏ
d |ψ(t)⟩
dt

= (Ĥ + ĤCSL) |ψ(t)⟩ , (8.29)

94



where Ĥ is the Hamiltonian of the system (ĤB in Eq. (8.13) in the present case) and
ĤCSL is the CSL contribution

ĤCSL = −ℏ
√
λ

m0

∫
d3x ξt(x)M̂(x) . (8.30)

This Hamiltonian, expressed in position space and in the Stratonovich form, is related
to the second term in equation (8.26). Eq. (8.29) is linear because it does not contain
⟨M̂(x)⟩. These simplifications are possible because of the equivalence of Eqs. (8.26)
and (8.30) at the statistical level: non-linear effects are washed away when expectation
values are computed. We mention that expressing Eq. (8.30) in its Itô form one gets
an equation of the form as in Eq. (3.22).

In order to compute expectation values for superconductors we switch from po-
sition to momentum variables. The term in Eq. (8.30) is Fourier transformed in a
normalization volume V (to avoid any divergences) and the position representation
of the field operators is related to the momentum operators via

â(x, s) =
1√
V

∑
k

eikxĉks (8.31)

â†(x, s) =
1√
V

∑
k

e−ikxĉ†ks . (8.32)

By performing such Fourier transform to momentum space, ĤCSL takes the following
expression

ĤCSL = −mℏ
√
λ

m0V

∑
k1k2,s

W̃k1−k2(t) G̃k1−k2 ĉ
†
k1s
ĉk2s . (8.33)

The stochastic processes W̃k(t) have expectation values and two-point correlators
given by

E[W̃k1(t)] = 0 (8.34)

E[W̃k1(t)W̃k2(s)] = V δ(k1+k2)δ(t− s) , (8.35)

and they are weighted by the Gaussian function

G̃k = (4πr2c )
3/4e−

r2ck
2

2 . (8.36)

Eq. (8.33) shows that the CSL noise scatters electrons, effectively acting as a
kick which injects energy to the system. We want to quantify the main effect of those
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kicks on the BCS ground state of a superconductor, which amounts to the breaking of
Cooper pairs into quasiparticles. To do so, we use perturbation theory: the diagonal
Bogoliubov Hamiltonian ĤB is the free term and the CSL Hamiltonian (8.33) is a
perturbation.

The transition probability from an initial state |i⟩ to a final state |f⟩ is given by

Pfi = E[|Tfi|2] = E[| ⟨f | ÛI(t, ti) |i⟩ |2] , (8.37)

where Tfi is the transition amplitude from |i⟩ to a state |f⟩ and ÛI(t, ti) is the time
evolution operator in the interaction picture

ÛI(t, ti) = e
i
ℏ ĤBtÛ(t, ti)e

− i
ℏ ĤBt . (8.38)

The operator ÛI(t, ti) is expanded the Dyson series, which at first order reads

Û(t, ti) = 1 +

∫ t

ti

ds Ĥ
(I)
CSL(s) . (8.39)

where Ĥ
(I)
CSL(t) = e

i
ℏ ĤBtĤCSLe

− i
ℏ ĤBt is the Hamiltonian in Eq. (8.33) in the interaction

picture. The second order term of the Dyson series is not shown because to order λ
it gives zero contribution in the transition probability Eq. (8.51).

Using the inverse Bogoliubov transformation [see Eq. (8.8)], we can transform the
CSL Hamiltonian in terms of the operators γ̂ks and then find its expression in the
interaction picture, that reads

Ĥ
(I)
CSL = −ℏ

√
λm

m0V

∑
k1k2

G̃k1−k2×[
W̃k1−k2(t)L(k1, k2)e

i
ℏ (Ek1

−Ek2
)tγ̂†k1↑γ̂k2↑

+ W̃k2−k1(t)L(k1, k2)e
i
ℏ (Ek2

−Ek1
)tγ̂†−k2↓γ̂−k1↓

+ W̃k2−k1(t)M(k1, k2)e
−iϕe−

i
ℏ (Ek1

+Ek2
)tγ̂k2↑γ̂−k1↓

+ W̃k1−k2(t)M(k1, k2)e
iϕe

i
ℏ (Ek1

+Ek2
)tγ̂†k1↑γ̂

†
−k2↓

]
.

(8.40)

The first two terms in the square brackets are associated to quasiparticle scattering:
a quasiparticle of momentum k1 is annihilated and another one of momentum k2 is
created. The third term is associated to quasiparticle recombination: two quasipar-
ticles of different momenta are annihilated. The fourth term is the inverse process,
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i.e. quasiparticle generation: two quasiparticle of different momenta are created. The
functions M and L, usually called coherence factors, are given by

L(k1, k2) = (uk1uk2 − vk1vk2) (8.41)

M(k1, k2) = (uk1vk2 + vk1uk2) . (8.42)

Substituting Eqs. (8.11) we have that:

L2(E1, E2) =
1

2

(
1 − ∆2 − ξ1ξ2

E1E2

)
(8.43)

M2(E1, E2) =
1

2

(
1 +

∆2 − ξ1ξ2
E1E2

)
, (8.44)

where according to Eq. (8.12), ξk =
√
E2

k − ∆2
k.

8.2 Effects of CSL on transmon qubits

In this section we evaluate the two main effects of CSL on transmon qubits: the
reduction rate of a superposition of the computational basis and the steady state
quasiparticle density due to CSL dissipation.

8.2.1 CSL reduction rate

As anticipated, the direct effect of CSL on superconducting qubits is to destroy
their superposition states. We estimate the CSL reduction rate of the computational
basis states, labeled by |0⟩ and |1⟩, of a transmon qubit. To estimate the reduction
rate, we use a qualitative microscopic description of |0⟩ and |1⟩, keeping in mind that
the CSL collapse mechanism is sensitive only to superposition in space of different
masses.

A transmon qubit is an electrical circuit consisting of a superconducting island
(usually made of aluminum) of volume V ∼ 102µm3 linked to a superconducting
reservoir (of approximately the same size) through an insulating barrier of width
d ∼ 1 − 102 nm [108], forming a Josephson junction. By applying a gate voltage,
Cooper pairs can tunnel through the Josephson junction from the reservoir into the
island and viceversa. The size of the transmon circuit allows to treat the number of
excess Cooper pairs in the island as a quantum number, and the tunneling of a single
Cooper pair can be controlled by manipulating the gate voltage.

The states |0⟩ and |1⟩ are characterized by the number of excess Cooper pairs
that have tunneled from the reservoir into the island. In fact, for transmon qubits
|0⟩ and |1⟩ are not exactly eigenstates of the number of extra Cooper pairs operator,
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but rather both |0⟩ and |1⟩ are superposition of states with different number of extra
Cooper pairs on the island. Nevertheless, for our estimation we can assume that, for
a typical device, the difference in the number of pairs of the two computational basis
states is of the order of 4 [109]. We can then effectively identify |0⟩ as the state with
four Cooper pairs on one side of the Josephson junction, the reservoir, and |1⟩ as the
state with four Cooper pairs on the other side of the junction, the island. We can
think of these four Cooper pairs as two groups of four electrons. The two groups are
separated by the BCS coherence length ξc (a measure of the average distance between
the two electrons in a Cooper pair) which for aluminum, the superconducting material
used for transmon circuits, is ∼ 10−6 m [101]. The reduction rate is computed with
the formula [107]

ΓR = λn2N

(
me

m0

)2

(8.45)

for n particles within a radius smaller than the correlation length rc, N groups of
particles separated by more than the correlation length rc, and with me the mass of
electrons. In our effective model, if we substitute n = 4 and N = 2 into Eq.(8.45),
meaning that we are considering a configuration with four electrons packed within
a distance smaller than rc in each of the N = 2 groups of electrons separated by a
distance ξc > rc, the reduction rate is Γ = 32λ(me/m0)

2 ≈ 10−16s−1. We chose the
value for n that gives the highest value for ΓR, to estimate the strongest theoretical
CSL effect. Nevertheless, the CSL reduction rate is negligibly weak, as the lifetime
of a single qubit would be of the orders of billions of years. Even a large quantum
computer composed by millions or even billions of such qubits, would be safe against
the localization of superposition dictated by collapse models.

8.2.2 CSL steady state quasiparticle density

CSL is ineffective in directly suppressing superposition states of superconducting
qubits, mainly because too few electrons are involved in the superposition, which
moreover have a very small mass. However, CSL impacts decoherence of supercon-
ducting qubits also indirectly. As discussed in section 8.1.2, the CSL noise couples to
the Cooper pairs inside a superconductor, generating its excited states, the quasipar-
ticles. Notably, quasiparticles contribute to the relaxation rate of transmon qubits,
and such contribution is proportional to their density [103]. In this section we quan-
tify the steady state quasiparticle density due to CSL, to infer a limit on the coherence
time of transmon qubits.

We start by computing the transition probability in Eq. (8.37) with |i⟩ = |ψS⟩,
by using the time evolution operator expanded to first order as in Eq. (8.39), where
the perturbation is the CSL Hamiltonian in Eq. (8.40). By recalling that |ψS⟩ is

98



the vacuum state for the operators γ̂ks, only the fourth term of the Hamiltonian in
Eq. (8.40) gives a non vanishing contribution when acting on |ψS⟩. This produces
a transition to a final state different from |ψS⟩, which contains quasiparticles. Thus,
the main effect of the CSL noise on a superconductor initially in its ground state, to
first order in perturbation theory, is the generation of quasiparticles. In particular,
the only final states which give non zero contribution to the expectation value in Eq.
(8.37) are those of the form

|f⟩ = γ̂†q↑γ̂
†
−p↓ |ψS⟩ , (8.46)

where q and p are fixed. Choosing |f⟩ as in Eq. (8.46), the zero order term of the
Dyson series is zero when inserted into Eq. (8.37). The first order contribution of the
Dyson series is

T (1)
qp = − i

ℏ

∫ t

ti

dt1 ⟨ψS| γ̂−p↓γ̂q↑Ĥ
(I)
CSL(t1) |ψS⟩ , (8.47)

and by substituting Eq. (8.40) for the interacting Hamiltonian we find

T (1)
qp =

i
√
λm

m0V

∫ t

ti

dt1
∑
k1k2

G̃k1−k2W̃k1−k2(t1)M(k1, k2)×

eiϕe
i
ℏ (Ek1

+Ek2
)t1 ⟨ψS| γ̂−p↓γ̂q↑γ̂†k1↑γ̂

†
−k2↓ |ψS⟩ .

(8.48)

The expectation value in the last line is simplified using the anticommutation rules

⟨ψS| γ̂−p↓γ̂q↑γ̂†k1↑γ̂
†
−k2↓ |ψS⟩ = δk1,qδk2,p , (8.49)

leading to

T (1)
qp =

i
√
γm

m0V

∫ t

ti

dt1 G̃q−pW̃q−p(t1)M(q, p)eiϕe
i
ℏ (Eq+Ep)t1 . (8.50)

This is the transition amplitude to a specific final state with fixed momenta p and
q. The transition probability from the BCS ground state to a state as in Eq. (8.46)
is computed by using Eq. (8.37). In doing so, one has to compute the two-point

correlator between the noise and its complex conjugate. Using the fact that W̃ ∗
k(t) =

W̃−k(t) and Eq. (8.35), one has that

Pqp =
λm2

m2
0V

G̃2
q−pM

2(q, p) t , (8.51)

where we assumed that t0 = 0 and we performed integration over t1. This probability
grows linearly with time. By dividing Eq. (8.51) by t, we obtain the transition rate
for two quasiparticles with given momentum p and q to be generated by the CSL
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noise. Given this rate, we can compute the steady state quasiparticle density due to
CSL, ultimately assessing the fundamental limits imposed by CSL on superconducting
devices. In order to do so, we have to consider how intrinsic thermal processes and
the CSL generation of quasiparticles contribute to the evolution of the occupation
function f(E) of quasiparticles. In this regime f(E) redistributes over time to a steady
state different from a thermal state, that enters Eq. (8.17) to give a different steady
state quasiparticle density due to CSL. Thus, we consider a superconductor starting at
thermal equilibrium and we neglect all sources of environmental noise other than CSL.
To account for intrinsic thermal effects, we consider the electron-phonon interaction
only, since it is dominant over the electron-electron interaction. The electron-phonon
interaction comprises three main physical processes: quasiparticle scattering (both by
emission and absorption of a phonon), quasiparticle recombination (by the emission
of a phonon) and quasiparticle generation (by the absorption of a phonon).

The kinetic equation for the quasiparticle occupation function describes how f(E)
redistributes over time because of the above processes. It contains the rates of the
electron-phonon processes, and a generation rate given by an external source [110,111]

df(E)

dt
= γext

g (E) +
γ0
∆3

∫ ∞

E

dE ′S(E,E ′)[(f̄(E))f(E ′)(N(E ′ − E) + 1)

− f(E)f̄(E ′)N(E ′ − E)]

+
γ0
∆3

∫ E

∆

dE ′S(E,E ′)[(f̄(E))f(E ′)N(E − E ′) − f(E)f̄(E ′)(N(E − E ′) + 1)]

+
γ0
∆3

∫ ∞

∆

dE ′G(E,E ′)[(f̄(E))f̄(E ′)N(E + E ′) − f(E)f(E ′)(N(E + E ′) + 1)] ,

(8.52)

where S(E,E ′) = (E−E ′)2ρ(E ′)L2(E,E ′), G(E,E ′) = (E+E ′)2ρ(E ′)M2(E,E ′) and
the rate γ0 is a characteristic electron-phonon rate and it is a constant for a given
material (for aluminum 1/γ0 = τ0 = 438ns [110]). The factor N(Ω) is the occupation
function of phonons, which is taken to follow a Bose-Einstein distribution

N(Ω) =
1

eΩ/kBTph − 1
, (8.53)

for a phonon bath at temperature Tph. Phonons are assumed to be in equilibrium
at the refrigerator temperature and thus N(Ω) does not change in time. The rate
γext
g (E) is the generation rate per unit time due to external sources, for our purposes

due to CSL. The second and third terms in Eq.(8.52) are associated to thermal quasi-
particle scattering, and the fourth term to thermal quasiparticle recombination and
generation.
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We start from the transition probability in Eq.(8.51), integrating over one mo-
mentum variable p

γCSL

g (Eq) =
λ(4πrc)

3/2m2

m2
0(2π)3

∫
d3pe−r

2
c (p−q)2M2(p, q)f̄(Ep)

=
λm2(4π)3/2rc
m2

02(2π)2

∫
dp
p

q

(
e−r

2
c (p−q)2 − e−r

2
c (p+q)

2

)
M2(p, q)f̄(Ep) ,

(8.54)

where in the second line we expressed the integral in polar coordinates. With the
substitutions q =

√
2m/ℏ(

√
E2 − ∆2 + ϵF )1/2 and p =

√
2m/ℏ(

√
E ′2 − ∆2 + ϵF )1/2

one obtains

γCSL

g (E) =
m2λrc

2
√
πm2

0

√
2m

ℏ
1√√

E − ∆2 + ϵF∫ ∞

∆

dE ′
(
e−

2mr2c
ℏ2 (

√√
E−∆2+ϵF )−

√√
E′−∆2+ϵF ))2

− e−
2mr2c
ℏ2 (

√√
E−∆2+ϵF )+

√√
E′−∆2+ϵF ))2

)
× ρ(E ′)M2(E,E ′)f̄(E ′) .

(8.55)

The above expression is simplified by expanding the squares in the exponential and
collecting the common factors

γCSL

g (E) =
m2λrc

2
√
πm2

0

√
2m

ℏ
1√√

E2 − ∆2 + ϵF
e−

2mr2c
ℏ2

√
E2−∆2

e−
4mr2c ϵF

ℏ2

∫ ∞

∆

dE ′e−
2mr2c
ℏ2

√
E2

1−∆2

(
e

2mr2c
ℏ2 2(

√
(
√
E2−∆2+ϵF )(

√
E′2−∆2+ϵF )

− e−
2mr2c
ℏ2 2(

√
(
√
E2−∆2+ϵF )(

√
E′2−∆2+ϵF )

)
× ρ(E ′)M2(E,E ′)f̄(E ′) .

(8.56)

By defining TCSL through kBTCSL = ℏ2/(2mr2c ), and making the substitution x = E/∆
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and y = E ′/∆, we get

γCSL

g (x) =
m2λrc

2
√
πm2

0

√
2m∆

ℏ
1√

s(x) + β
e
− ∆

kBTCSL
s(x)

e
− 2TF

TCSL

∫ ∞

1

dy e
− ∆

kBTCSL
s(y)

ρ(y)M2(x, y)f̄(∆y))(
e

2∆
kBTCSL

(
√

(s(x)+β)(s(y)+β) − e
− 2∆

kBTCSL
(
√

(s(x)+β)(s(y)+β)

)
,

(8.57)

where we called s(x) =
√
x2 − 1. We can further simplify this expression by neglecting

the negative term in the last line because it is exponentially suppressed. We can finally
write

γCSL

g (x) =
m2λrc

2
√
πm2

0

√
2m∆

ℏ
1√

s(x) + β
e
− ∆

kBTCSL
s(x)

e
− 2TF

TCSL

∫ ∞

1

dy e
− ∆

kBTCSL
s(y)

e
2∆

kBTCSL
(
√

(s(x)+β)(s(y)+β)

× ρ(y)
1

2

(
1 −

√
x2 − 1

√
y2 − 1

xy
+

1

xy

)
f̄(∆y) ,

(8.58)

We solve numerically Eq. (8.52) with γext
g = γCSL

g and λ = 10−10s−1. Figure
8.1 shows the evolved occupation function obtained numerically (blue solid line) for a
starting equilibrium temperature of 20 mK, which is a typical operational temperature
of transmon qubits. The steady state deviates strongly from the starting Fermi Dirac
distribution in Eq. (8.16) with T = 20 mK, not shown in the figure because too small.
Interestingly, the evolved occupation function can not be approximated by a thermal
distribution at some effective temperature.

Finally, the steady state quasiparticle density xCSLqp generated by CSL is obtained
by using Eq. (8.17) with f(E) given by the evolved quasiparticle occupation function
computed with the simulation. xCSLqp turns out to be ∼ 10−18.
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Figure 8.1: Log plot of the quasiparticle occupation function obtained by solving
Eq.(8.52) numerically for a starting equilibrium temperature of 20 mK. The evolved
occupation function deviates significantly from the initial thermal distribution fFD,
here not shown because too small.

This value for the quasiparticle density is ∼ 9 orders of magnitude lower than the
lowest reported experimental value of xqp = 10−9 [105], meaning that environmen-
tal noise sources are dominant with the current technological implementation of the
transmon qubits. Nevertheless we can use the CSL quasiparticle density to get the
limit on the coherence time of transmon qubits set by CSL.

Indeed, for a transmon qubit, the contribution to the relaxation rate due to quasi-
particles depends linearly on the normalized quasiparticle density xqp [110,112–114]

Γ1 =

√
2ωq∆

π2ℏ
xqp (8.59)

where ωq is the frequency of the qubit (in [112] ωq = 2π × 3.48 GHz).
Given the obtained value of xCSLqp ∼ 10−18, we have ΓCSL1 ≈ 10−6s−1. This is

∼ 10 orders of magnitude larger than the CSL reduction rate estimated in section
8.2.1, showing that CSL dissipation is way stronger than the direct collapse process.
Note that TCSL1 = 1/ΓCSL1 ≈ 106s is anyhow 10 orders of magnitude larger than the
T1 = 100 µs of current transmon qubits, showing that CSL dissipation would not
influence effectively the performance of a single qubit. In [115] we have investigated
the implications of this limitation on a noisy quantum computer comprising many
transmon qubits, and we further explored the possibility of testing CSL models with
superconducting devices. Detection of CSL effects is currently beyond the experi-
mental sensitivity of superconducting devices, for which other environmental sources
are dominant. Experimental test of CSL models may be possible in the future as the
technology develops [116], given the importance that superconducting devices have
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for quantum computing. In particular, in [115] we show that when a superconducting
sample is sufficiently shielded against environmental noises, CSL quasiparticles tun-
neling through the Josephson junction could be detected at the current refrigerators
temperature.

8.3 Discussion

We showed how the CSL model affects superconducting transmon qubits. In
particular, the intrinsic localization of superpositions dictated by collapse models
leaves the superposition of basis states of transmon qubits intact for very long times.
However CSL contributes to decoherence also in an indirect way: dissipation induced
by the CSL noise perturbs the superconducting material and leads to the generation
of quasiparticles. These accumulate over time inside the volume of the device leading
to relaxation at a rate proportional to their density. We estimated the steady state
quasiparticle density due to CSL by adding the CSL generation rate of quasiparticles
to the kinetic equation for the quasiparticle occupation function. We solved the
kinetic equation numerically to find its steady state solution. With this calculation
we obtained a lower quasiparticle density than the experimental one, so we conclude
that other environmental noise sources are currently giving the dominant contribution
to the experimental excess of quasiparticles.
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Chapter 9

Summary and outlook

Quantum computers are currently limited by noises and error mitigation strate-
gies will play an increasingly crucial role in suppressing their impact. Research is
already moving in this direction showing potential for fruitful outcomes [53]. Still,
major advancements are needed to improve the capabilities of error mitigation tech-
niques to realize quantum advantage. In particular, all efforts must be directed into
the modeling, characterization and accurate simulations of the effects of noises on
quantum computation.

Alignin to this long term goal, the thesis introduced a novel method, the noisy
gates approach, for classically simulating the noisy behavior of quantum circuits. The
noisy gates approach is shown to surpass other existing methods by offering the most
efficient and accurate noisy simulator. By combining environmental effects and gate
evolution, it provides a more faithful representation of the interplay between these
two competing dynamics. Moreover, computational costs are reduced not only by
evolving state vectors instead of density matrices, but also by minimizing the total
number of matrix vector multiplications. The improved performance of the noisy
gates was shown for superconducting devices and the approach proved to be very
versatile, as it was successfully extended to simulate noisy optical circuits within the
dual rail framework.

Error analysis is not the only application inspired by the noisy gates approach.
The quantum generalization of noisy gates was exploited to introduce an efficient
quantum algorithm for simulating open quantum systems.

In the final part of the thesis, the impact of fundamental noises on superconducting
transmon qubits was evaluated, specifically focusing on the effects of the CSL collapse
model. The direct effect of reducing superpositions of transmon qubits is found to be
negligible, while the indirect manifestation of CSL as dissipation-induced decoherence
though stronger than loss of coherence is hindered by other excited states generation
mechanisms.
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The next milestone to be achieved is to show possible improvements on the quality
of error mitigation by using the noisy gates approach. A first application is to pair the
noisy gates approach with machine learning techniques to perform more effectively
Zero Noise Extrapolation (ZNE) [117]. ZNE is an error mitigation strategy that
requires to build a curve of noisy expectation values from the same quantum circuit
affected by an increasing level of noise and to extrapolate to the zero noise limit.
The limiting factor of ZNE is the uncertainty related to the way extrapolation is
performed. The noisy gates approach could be exploited to reduce this problem
as follows. Assume that a complete underlying noise model of a given device is
available such that simulating this noise model with the noisy gates emulates with
high accuracy the real quantum hardware. First, simulate classically with the noisy
gates method a set of test circuits changing the level of noises to get a training set
of extrapolation curves. This allows to vary the noise parameters from the zero noise
values so that the full extrapolation curves are available, including the zero noise
limit. Then, train a neural network to learn all the features, i.e. symmetries, of the
extrapolation curves in the training set. Such features are likely to be present also
on unseen data coming from quantum circuits run on real devices for which the zero
noise limit is not available. This allows for a more effective extrapolation.

Another error mitigation technique, Probabilistic Error Cancellation (PEC) [52,
117], can benefit from the noisy gates approach. PEC is a stochastic technique that
requires to act after ideal gates in a circuit with additional gates realizing on average
the inverse (which is not in general a quantum operation) of the quantum operations of
the standard noise gate separation method, i.e. the noise term in Eq. (3.3). Adapting
PEC to the noisy gates approach would allow to invert the noise channel in Eq. (3.6),
that contains more terms to first order in the noise parameters and it is thus more
expressive.

Finally, following the research line presented in [54] it is possible to use a tensor
network structure to classically simulate an inverting circuit that counteracts the
effects of noises and allows to extract useful output from the quantum computer.
This technique is very similar to standard PEC, but the inverting circuit is simulated
classically and in post processing. The fact that the noisy gates approach is more
accurate and uses less computational resources implies that employing it in a tensor
network structure allows to build an inverting circuit which is not only more effective
but also easier to simulate.

In summary, the noisy gates approach emerges as a key contribution for quantum
computation, providing a robust and efficient simulation method that advances our
understanding of noisy quantum circuits and opens new avenues for effective error
mitigation and, eventually, for practical quantum applications.
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Sébastien Boissier, et al. A general-purpose single-photon-based quantum com-
puting platform, 2023. arXiv:2306.00874.

[92] Ryan Sweke, Ilya Sinayskiy, Denis Bernard, and Francesco Petruccione. Univer-
sal simulation of markovian open quantum systems. Phys. Rev. A, 91:062308,
Jun 2015. URL: https://link.aps.org/doi/10.1103/PhysRevA.91.062308,
doi:10.1103/PhysRevA.91.062308.

[93] Wibe A. de Jong, Mekena Metcalf, James Mulligan, Mateusz P loskoń,
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