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ABSTRACT 

Masonry structures are widespread globally, especially in regions with high seismic hazard. Notably, 

unreinforced masonry (URM) buildings were mainly constructed before the knowledge acquired in the 

last decades in the field of seismic engineering, therefore potentially exhibiting significant vulnerability 

to seismic events. Furthermore, in modern structures, masonry panels are frequently utilised as infills 

for framed buildings. While widely recognised to significantly influence the seismic performance, the 

contribution of masonry infills is often neglected, and this oversight may not always be in favour of 

safety. For these reasons, ensuring a reliable prediction of these structures is essential in order to protect 

human lives, minimise economic losses and preserve historical building heritage. 

Masonry is a heterogeneous material characterised by a complex structural response, strongly nonlinear 

and dependent on the properties of its constituents and their arrangement. Furthermore, when analysing 

masonry-infilled frames, the complexity even increases, as it involves the representation of the ever-

changing interaction between the frame and the infill. Therefore, the modelling of these structures 

represents a particularly challenging task.  

This PhD thesis focuses on addressing the critical issue of modelling the complex behaviour of masonry 

wall structures under earthquake loading, assessing the application of refined strategies for the analysis 

of URM and masonry-infilled frame structures while proposing a reliable yet efficient tool, which can 

be applied for accurate evaluations of the structural response of real-sized structures.  

The research work begins with a comprehensive literature review, outlining the response characteristics 

of URM and infilled-frame structures, along with a review of the more common modelling strategies. 

Subsequently, a numerical comparison between two nonlinear finite element descriptions is conducted, 

employing an advanced mesoscale and a continuum macroscale strategy, investigating the nonlinear 

response under seismic loading of masonry wall structures up to collapse. The simulation results are 

compared against experimental findings to assess the ability to represent the cyclic hysteretic response. 

Great emphasis is placed on the objectivity of the definition and calibration of the model material 

parameters, with the aim of critically assessing how the response predictions are affected by the inherent 

uncertainty of their selection. 

The research then progresses to modelling of masonry-infilled frames under horizontal actions, 

employing a sophisticated multidimensional approach, where masonry infills are represented using 

either mesoscale or continuum macroscale methods. The implemented models are assessed against 

experimental data, demonstrating their capability in capturing the complex frame-infill interaction and 

successfully replicating both global responses and local mechanisms. The objective calibration of 

material parameters is examined, accompanied by parametric analyses aimed at identifying the most 
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influential characteristics. Furthermore, the influence of openings is evaluated, offering valuable 

insights into how their presence affects the response, particularly in terms of strength and stiffness 

variations. 

Since the strategies previously employed may not be suitable for analysing real-sized structures due to 

their computational cost, an enhanced three-dimensional macroelement is proposed to provide a tool 

that combines reliability and computational efficiency. The modelling strategy is developed upon the 

groundwork laid by the original work of (Minga et al., 2020), which has already been proven to ensure 

satisfactory results while maintaining high computational efficiency. The introduced advances address 

a number of drawbacks of the original implementation, resulting in a substantial improvement in the 

accuracy of response predictions. A comprehensive validation of the enhanced macroelement is 

conducted, focusing on applications to both URM and masonry-infilled frame structures under 

monotonic, cyclic and earthquake loadings. The validation extends to the evaluation of the out-of-plane 

response, crucial for a comprehensive assessment of the seismic performance of existing masonry 

buildings. Additionally, the model's ability to account for the presence of openings in masonry-infilled 

frames is assessed by comparing its outcomes against those obtained from continuum macro-scale 

models. 

The enhanced macroelement strategy is finally applied to assess the seismic vulnerability of a real 4-

story irregular reinforced-concrete structure, originally designed without seismic provisions. The 

structure is analysed within the nonlinear dynamic analysis framework, under the application of natural 

spectrum-compatible accelerograms and considering various configurations of infills. The significant 

influence of infills on the overall response of structures is emphasised, with effects that can widely vary, 

potentially improving seismic performance but also introducing further vulnerabilities. It is highlighted 

that, for an accurate description of the response in existing RC structures, infill panels must be carefully 

considered within the seismic assessment through the adoption of a reliable modelling strategy. 

Keywords: Unreinforced Masonry – Masonry-Infilled frames - Mesoscale Modelling – Macroscale 

Modelling – Macroelement – Cyclic response – Seismic Vulnerability 
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1 

CHAPTER 1  

INTRODUCTION 

 

1.1 Research background 

Unreinforced masonry (URM) is a heterogeneous material formed by arranging block units together 

through mortar joints. This simple building technique has been widely employed worldwide for 

centuries, making masonry structures particularly widespread and characterising the majority of 

historical building heritage, in Italy and abroad. Masonry is also frequently employed in modern 

structures as secondary component, as infill panel within reinforced concrete or steel frame structures. 

Masonry material presents a composite mechanical behaviour, wherein units and mortar exhibit 

markedly distinct characteristics. Despite its relatively simple constructional technique, masonry 

exhibits a highly complex and markedly nonlinear response, even at low load levels. Cracks can 

propagate either in the mortar joints, which represents the conjunction of mortar layers and brick-mortar 

interfaces, or within the units. Furthermore, the response of masonry can significantly vary based on 

factors such as the mechanical characteristics of its constituents, the geometry of the units and their 

arrangements, environmental conditions, and workmanship. 

As a result, numerical modelling of masonry represents a challenging task. Masonry modelling 

techniques can be typically categorised into three strategies: micro-modelling, where each constituent 

is explicitly represented; meso-scale modelling, which lumps mortar layers and brick-mortar interface 

into a single interface element; and macro-scale modelling, which depicts masonry as a single 

homogeneous material. Within the macro-scale level strategy, a further distinction can be made between 

continuum finite element strategies, where the geometry is discretised by 2D or 3D elements using a 

specific masonry material law, and macroelement strategies, involving the assembly of basic 

mechanical components like beams or nonlinear springs. The more sophisticated approaches, namely 
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micro and mesoscale, despite their ability to accurately predict the actual response of masonry, are 

generally applicable only to small masonry components due to their prohibitive computational cost. On 

the contrary, macro-scale approaches, although generally more computationally efficient, may lack 

reliability. Moreover, the calibration of the macroscopic material properties from individual 

constituents is generally not straightforward, and the prediction of the final response can be significantly 

influenced by the analyst choices. 

The modelling complexity even increases when considering masonry as infill panels. As mentioned, in 

modern buildings masonry wall are frequently employed as infill elements within frame structures. 

Despite their significant influence on the overall response is widely recognised, they are often neglected 

in evaluating the primary structural system. Inspections of damage patterns after past earthquakes have 

clearly revealed that the influence of URM panels on the responses was significant, in some cases 

beneficial, enhancing the frame strength, while in others detrimental, triggering unexpected brittle 

failure. The influence of masonry infills depends on various factors, including the relative mechanical 

properties of the frame and infill, as well as the geometrical layout and distribution of the infill. To 

realistically evaluate the global performance of infilled frames under earthquake loading, it is therefore 

crucial to properly consider their presence. An accurate modelling of masonry-infilled frames 

necessitates the representation of not only the behaviour of the masonry infill and the surrounding frame 

but also the complex and ever-changing interaction at the interfaces between the two components. 

Considering the number of challenges posed, the numerical modelling of masonry represents an open 

research topic. Given the ultimate goal of protecting human lives, minimising economic losses and 

preserving cultural heritage, the development of sufficiently accurate yet efficient modelling 

techniques, together with the establishment of reliable material calibration methodologies, is essential 

for accurate predictions of the response of real structures. 

1.2 Aims and scope 

This PhD thesis tackles the challenging task of modelling the complex behaviour of brick masonry wall 

structures under earthquake loading. The dual aim of this thesis is evaluating advanced finite-element 

methodologies for analysing URM and infilled-frames structures, while also proposing a reliable and 

efficient tool for the assessment of real-scale structures. 

The initial phase of the research focuses on modelling masonry wall structures using two distinct 

strategies characterised by different levels of refinement. The first strategy involves a detailed 
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mesoscale approach proposed in (Macorini and Izzuddin, 2011) and subsequently refined in (Minga et 

al., 2018). At a lower level of refinement, a continuum finite element approach is considered, employing 

the continuum damage plasticity material law, as presented in (Chisari et al., 2020), a slight modification 

of the original model proposed in (Lee and Fenves, 1998). Considerable importance is given to the 

objective calibration of material characteristics, with the assumption of unawareness of the final 

response of the structure. Objectively calibrating the material parameters is crucial for a genuine 

assessment of the model applicability. Indeed, while a model may accurately predict the response of 

experimental outcomes, it is important to verify if the material characterisation employed aligns with 

appropriate values for the considered case. Therefore, the question to be addressed in this phase is how 

reliable these techniques are for accurately a-priori predicting the actual response of masonry wall 

structures. Additionally, considering the large dispersions of material properties inherent in masonry 

structures, the study explores how sensitive their responses are to variations within suitable parameter 

ranges. Furthermore, the investigations aim to identify the mechanical characteristics that 

predominantly influence the response within these refined methodologies. 

First, experimental tests on URM structures are simulated utilising the two modelling approaches. The 

assessment includes the evaluation of both monotonic and cyclic responses, the capability of predicting 

the actual failure mode, and the evaluation of hysteretic dissipative capacity. The focus then moves to 

the modelling of infilled-frame, employing a sophisticated multidimensional framework (Jokhio, 2012), 

wherein masonry infill is represented through either mesoscale or continuum macroscale modelling. 

The aim is to assess the employed strategies against experimental outcomes, evaluating their capability 

to predict both the global response and the local mechanisms typical of infilled frame structures while 

maintaining a focus on the objectivity of material calibration. The assessment also involves evaluating 

the mechanical characteristics that most significantly affect the numerical predictions. Furthermore, the 

impact of openings within infills is examined, as they may represent a crucial source of structural 

irregularities, largely affecting the response of infilled frames. The analyses outcomes provide valuable 

insights into the decay in strength and stiffness associated with their presence, serving as a reference 

for subsequent evaluations and analyses with the macroelement proposed in the following chapters. 

Despite their potential accuracy, the computational demand of mesoscale models generally restricts 

their application to small-scale structures. Furthermore, even in finite element macroscale modelling, 

simulating large-scale URM and infilled-frame structures under realistic dynamic loading conditions, 

often requiring an extensive number of numerical analyses, can be prohibitive. Consequently, the 

second part of the thesis focuses on providing a more efficient yet reliable macroelement strategy for 

modelling of masonry structures. 
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The macroelement model developed in (Minga et al., 2020) represents the existing foundation for the 

current study. In this approach, each single element represents a rectangular portion of a masonry 

structure. These elements consist of deformable blocks, featuring cohesive frictional interfaces at the 

borders (allowing the interaction with adjacent elements) and internal in-plane and out-of-plane 

nonlinear springs. This formulation enables the model to represent all the basic in-plane and out-of-

plane failure modes of rectangular URM walls.  However, certain drawbacks can be identified in the 

original implementation. Specifically, the cyclic constitutive law governing in-plane and out-of-plane 

springs is overly simplified, lacking consideration for stiffness and strength degradation. Additionally, 

the post-peak branch definition does not ensure mesh objectivity. Moreover, another drawback regards 

the impossibility to mechanically differentiate the material characteristics of all the boundary interfaces, 

particularly important within the modelling of infilled-frames. These drawbacks are addressed in the 

present work. Furthermore, the enhanced macroelement is in-depth evaluated by simulating several 

experimental tests, including monotonic, cyclic and dynamic responses. Finally, the potential of the 

macroelement is assessed within a practical scenario, involving the analysis of a real-size infilled-frame 

building within the nonlinear dynamic analysis framework. 

1.3 Thesis outline 

Following the opening introduction, the research work is outlined with a general overview provided 

below, including a summary of the content in each chapter.  

Throughout the work, all finite element implementations and numerical analyses are executed within 

ADAPTIC (Izzuddin, 1991), a general finite element program for nonlinear structural analysis. The 

preliminary numerical modelling is conducted through the implementation of Gmsh (Geuzaine and 

Remacle, 2009) and Matlab R2022b (MathWorks, 2022) scripts. Additionally, Matlab scripts are 

employed for the post-processing phase within the macroelement modelling, specifically for the 

visualisation of damage and deformed shapes. 

Chapter 2: Literature review 

This chapter deals with literature review relevant to the research topics, focusing on the general 

behaviour and numerical modelling of unreinforced masonry and masonry-infilled frame structures. 

Initially, the key characteristics of the nonlinear behaviour of unreinforced masonry structures are 

outlined. The focus then shifts to describing the unreinforced masonry (URM) modelling approaches 

for nonlinear analysis adopted in this research. Two finite element modelling approaches are initially 
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detailed. The first involves a mesoscale (or simplified microscale) model, as proposed by (Minga et al., 

2018), explicitly considering material heterogeneity and implemented within a partitioning framework. 

Furthermore, a continuum macroscale strategy is considered, adopting the isotropic concrete damage 

plasticity material as provide in (Chisari et al., 2020), which represents a slight modification of the 

original model of (Lee and Fenves, 1998). Subsequently, a comprehensive review is provided on 

relevant simplified discrete element strategies, as part of the present work involve the development of 

an enhanced three-dimensional macro-element, built upon the existing model of (Minga et al., 2020). 

Finally, the mechanics of masonry-infilled frames are reviewed, detailing the typical response of infilled 

frame structures under lateral loading conditions resulting from earthquake actions. Governing 

mechanisms, along with typical monotonic and cyclic behaviour, and significant influencing factors, 

are outlined. Following this, the review delves into the state-of-the-art exploration of both simplified 

and advanced modelling strategies for the analysis of this structural typology. 

Chapter 3: Mesoscale and macroscale modelling for cyclic analysis of URM structures 

This chapter investigates the nonlinear response up to collapse of unreinforced masonry wall 

components and structures under horizontal cyclic loading. Finite element descriptions formulated 

according to different scales of representation for masonry - specifically mesoscale and continuum 

macroscale, previously described - are compared. The purpose is to evaluate their capacity on the 

prediction of the hysteretic response under in-plane cyclic loading representing earthquake actions. The 

results of macro and mesoscale simulations are compared against experimental findings to assess the 

ability to represent strength and stiffness degradation and the amount of dissipated energy. Great 

emphasis is placed on the objectivity of the definition and calibration of the model material parameters 

with the aim of critically assessing how the response predictions are affected by their selection. 

Chapter 4: Advanced modelling of masonry-infilled frame structures 

This chapter focuses on the modelling of infilled reinforced concrete frames using two sophisticated 

strategies. These approaches involve representing masonry infills through either a mesoscale or a 

continuum macroscale approach, while the frame is modelled using cubic elasto-plastic 3D beam-

column elements. To ensure effective coupling between the 3D masonry representation and the 1D 

beam/column elements, a multi-dimensional partitioned strategy has been employed (Jokhio, 2012). 

Experimental tests from literature are simulated, starting with the calibration of the bare reinforced 

concrete frame and then, following an accurate and objective calibration of the material, progressing to 

the calibration of the masonry infilled-frame models. The results demonstrate, for both modelling 
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strategies, a high level of accuracy compared to experimental outcomes, providing a faithful 

representation that precisely captures both the global response, namely the capacity curve, and the local 

behaviour, including the failure mechanisms of the infill, frame, and frame-infill interfaces. 

Additionally, sensitivity analyses are conducted to identify parameters that significantly impact the 

response. Finally, an assessment is conducted on the calibrated continuum-infill model to evaluate the 

impact of openings within the infills, either door or windows of various dimensions. The outcomes of 

this investigation provide valuable insights into the structural response of infilled reinforced concrete 

frames, serving as a reference point for subsequent analyses in the following chapters with the enhanced 

macroelement. 

Chapter 5: A novel enhanced 3D macroelement for URM and infilled-frame structures modelling 

This chapter introduces an enhanced macro-element model, building upon the groundwork laid by the 

element introduced in (E. Minga et al. 2020). This element has already proven to ensure accurate results 

while maintaining high computational efficiency. The introduced amendments focus on addressing 

certain limitations of the original implementation, resulting in a substantial improvement in the accuracy 

of response predictions. Changes are focused on the constitutive law governing the phenomenological 

evaluation of both in-plane and out-of-plane macroelement springs. The previous simplified 

representation lacked the capability to account for strength and stiffness degradation. To overcome this, 

the enhanced macroelement incorporates a more sophisticated constitutive law for both in-plane and 

out-of-plane springs, through the implementation of the cyclic hysteretic model of (Tomaževič and 

Lutman, 1996), capable of realistically capturing shear strength and stiffness degradation. A significant 

change also regards to the post-peak branch definition in the skeleton curve, ensuring mesh objectivity. 

Additionally, to realistically predict the actual response of frame-infilled frames, the possibility to 

distinguish mechanical properties between external, generally weaker, and internal frame-infill 

interfaces is introduced. 

Chapter 6: Macroelement simulations of URM and masonry-infilled frame structures 

The enhanced macroelement undergoes an accurate validation against several experimental outcomes, 

encompassing both unreinforced masonry and infilled-frame structures. The structural components 

under investigation include the masonry structures subjected to in-plane loadings, as previously 

evaluated in Chapter 3. Additionally, the crucial out-of-plane response is examined, essential for a 

comprehensive assessment of the seismic performance of existing masonry buildings. Furthermore, the 

response of a 3D structure subjected to earthquake loading is analysed. Concerning infilled-frame 
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structures, the specimens investigated in Chapter 4, utilising advanced mesoscale and continuum 

macroscale modelling techniques for the infills, are revisited herein. Moreover, the model's capacity to 

account for the presence of openings in masonry-infilled frames is evaluated by comparing its outcomes 

against those obtained from continuum macro-scale models. Eventually, cyclic analyses are performed, 

revealing the enhanced model’s capability to predict the hysteretic response. The analyses conducted 

demonstrate the macroelement’s ability to accurately represent both monotonic and cyclic behaviours 

observed in URM structures and masonry-infilled frames while maintaining high computational 

efficiency, making it applicable also in the domain of real-size buildings analysis. 

Chapter 7: Seismic assessment of a real RC masonry-infilled frame building  

The concluding chapter focuses on applying the enhanced macroelement strategy to assess the seismic 

vulnerability of a real 4-story irregular RC existing building, not designed to withstand earthquake 

loading. Nonlinear dynamic analyses are conducted using a set of spectrum-compatible accelerograms. 

The assessment of the RC concrete frames includes both scenarios, neglecting and considering the 

presence of masonry infills, with various configurations. The analysis results highlight the significant 

impact of masonry infills on the final vulnerability assessment and emphasise the importance of 

properly considering them through the use of a reliable modelling strategy. 

Chapter 8: Conclusions and future work 

The final section summarises the main conclusions drawn in each chapter and highlights the main 

achievements of the thesis. Furthermore, suggestions for future work are presented, with the aim of 

extending the outcomes of the research. 

The flowchart in Figure 1 illustrates the various stages of the research, highlighting key steps. 
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Figure 1 Flowchart presenting the research methodology 

Advanced masonry modelling approaches: mesoscale and continuum macroscale 

Nonlinear cyclic analysis of brick 

masonry wall structures 
 

• Objective material calibration and sensitivity 

analysis 

• Assessment of the predictive capacity for 

failure modes and cyclic hysteretic response 

     

A novel enhanced 3D macroelement for URM and infilled frame structures modelling 
 

• Development of the enhanced macrolement model 

• In-plane and out-of-plane simulations of URM structures 

• Earthquake simulation of a 3D URM building 

• In-plane simulations of masonry-infilled frame structures 

• Evaluation of opening presence within masonry infills  

             

Multi-dimensional modelling of masonry-

infilled frames 
 

• Objective material calibration and sensitivity 

analysis 

• Assessment of the accuracy in predicting 

typical global and local responses of 

masonry-infilled frames 

• Evaluation of openings presence 

 

Seismic assessment of a real RC masonry-infilled frame building 
 

Application of the macroelement strategy on the seismic vulnerability assessment of a 4-story irregular 

masonry-infilled RC frame structure 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Introduction 

In this chapter, a literature review on the general behaviour and numerical modelling of unreinforced 

masonry (URM) and masonry-infilled frame structures is presented, with emphasis placed on the topics 

that are in-depth explored throughout the present research. 

Initially, the review provides a general description of the key characteristics of the nonlinear behaviour 

of URM structures that numerical models need to replicate. It then delves into the URM modelling 

approaches adopted in this research. Specifically, it explores a simplified microscale (or mesoscale) 

modelling, which explicitly considers material heterogeneity, and a continuum macroscale strategy, 

which treats the material as a single isotropic entity at the macroscale level. A comparative analysis of 

these two strategies will be undertaken in Chapter 3, with the aim of assessing the objective calibration 

parameters of masonry wall structures subjected to cyclic loading. Subsequently, a review regarding 

the use of simplified discrete macro-elements for masonry modelling is presented, as Chapters 5, 6, and 

7 of the present work will involve the application of a novel three-dimensional masonry macro-element. 

Following this, the focus shifts to the mechanics of masonry-infilled frames, outlining the peculiarities 

and complexities of this structural typology. The governing mechanisms, together with the typical 

monotonic and cyclic responses, and the significant influencing factors are outlined. The review then 

explores the state-of-the-art of simplified and advanced modelling strategies for the analysis of 

masonry-infilled frame structures. 
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2.2 Structural response of URM wall structures 

The majority of the existing building heritage in Italy and globally is predominantly constructed using 

masonry, often employing techniques that precede the era of construction industrialization. As a 

consequence, masonry structures exhibit a significant heterogeneity, with their characteristics 

influenced by cultural, geographical, material, workmanship, and functional factors. Therefore, each 

historical masonry construction should be viewed as a unique prototype, making it impractical to extend 

findings to apparently similar buildings. Thus, to ensure a reliable structural analysis, a detailed and 

site-specific structural survey is always necessary, along with the application of a suitable modelling 

approach. 

Masonry is a heterogeneous material consisting of an assembly of units and mortar joints. Units, which 

can be either artificial or natural elements, such as clay bricks, calcium-silicate blocks or stones, are 

arranged in a more or less regular manner and stacked upon each other. Mortar layers serve as binding 

substance, and can be lime/cement based, polymer-based or other materials. In some cases, units are 

assembled without any mortar (so-called dry-joint masonry). Countless masonry combinations can be 

generated from the geometry, origin, and arrangement of units, along with the characteristics of mortar. 

However, they all share in common a low tensile strength. Despite this, masonry has been widely used 

for thousands of years due to its durability and the simplicity of its construction technique. Masonry 

can be generally utilised for a variety of purposes; in particular, it can serve as a load-bearing element 

or be employed as an internal or perimeter dividing element, simultaneously providing thermal and 

acoustic insulation. Figure 2 illustrates various masonry arrangements, encompassing both ancient and 

more contemporary masonry practices. In the present research, the focus is on the unreinforced masonry 

(URM), i.e. masonry not including steel reinforcement. 

Masonry presents a composite mechanical behaviour, wherein units and mortar exhibit markedly 

distinct characteristics. Figure 3 presents an example of stress-strain curves from compressive tests 

performed independently on bricks, mortar and masonry specimens, as reported by (Binda et al., 1995). 

Generally, bricks and most units in historical buildings exhibit higher compressive strength than mortar. 

Moreover, as the compressive strength of units increases, they may show a progressively more brittle 

behaviour, in contrast with the more ductile nature of traditional mortars. The overall masonry may 

demonstrate strength smaller than that of the unit but greater than that of the mortar. However, different 

behaviours among the components may be possible. Furthermore, bricks and mortar generally have 

tensile strength significantly lower than their compressive strength, while the tensile strength of 

masonry as a whole is generally more related to the bond at the interface between units and mortar. 
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(a) (b) 

  
(c) (d) 

Figure 2 Example of masonry typologies: (a) dry stone wall; (b) irregular masonry with squared stone 

blocks; (c) regular clay brick-masonry wall in English bond pattern; (d) Single-layer semi-solid blocks 

masonry 

      

Figure 3 Stress-strain compressive response of brick, mortar and masonry (from Binda et al., 1995) 

 

0

2.5

5

 .5

10

12.5

15

0 2.5 5  .5 10 12.5

 
  

 
 
 

       

brick 

masonry 

mortar 



Chapter 2. Literature review 

12 

 

The measurement of material properties for each constituent within a URM assembly is generally 

achievable through relatively simple methods. However, the determination of local properties does not 

yield a direct estimation of the macroscopic nonlinear properties. This is due to the dependence of 

macroscopic properties on factors such as boundary conditions, units arrangement and geometry. As a 

result, establishing a straightforward link between individual properties and macroscale characteristics 

proves challenging. Typically, structural-scale (or macroscale) tests become necessary for a more 

comprehensive understanding of the masonry response as a whole, although at the expense of a higher 

invasiveness. 

URM components, such as piers or spandrels, may exhibit various failure modes, generally categorised 

into in-plane and out-of-plane mechanisms. An illustrative example of activation of both in-plane and 

out-of-plane failures is presented in Figure 4, depicting the damage of a masonry building following the 

earthquake of Central Italy (2016). It is noteworthy that the ultimate failure mechanism of a masonry 

component may also be given by the interaction between more failure modes. 

 

Figure 4 Damage on a URM structure after the Central Italy earthquake (2016): localised in-plane shear 

damage in the masonry piers of the upper floor and out-of-plane expulsion of the left-corner wall (Da Porto 

et al., 2016) 

Typical in-plane mechanisms for brick-masonry walls are summarised in Figure 5 and presented below. 

The occurrence of one or the other depends on the characteristics of the components, the panel 

dimensions, and the applied vertical load. 
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- Diagonal shear failure: 

This failure may occur in two distinct ways. At one side, it can affect only the mortar layers, 

leading to detachment and sliding of bed and head mortar joints, resulting in the typical stepped 

crack (illustrated in Figure 5a), which is common in regular masonry with mortar joints weaker 

than unit strength. Alternatively, the failure may involve the conjunction of mortar and brick 

when the principal tensile stress exceeds the masonry's tensile strength (Figure 5b), leading to 

a straight cracking pattern. This type is more common in irregular masonry and regular masonry 

with strong mortar joints. Diagonal failures are generally observed in squat panels and for 

intermediate values of normal stress. 

- Sliding shear failure (Figure 5c): 

Failure occurs due to shear failure of bed-joints, commonly observed in the presence of less 

resistant mortar layers. This failure may occur at low normal stresses, especially for squat 

elements. 

- Flexural failure (Figure 5d) and toe crushing (Figure 5e): 

These two failure modes are often associated and typically occur in slender elements with high 

normal stress values. Horizontal cracks develop at the top and bottom of the wall due to flexural 

bending. Rocking may induce a concentration of compressive stresses in a small area, leading 

to compression crushing. 

   
(a) (b) (c) 

 

 

 

    

                         (d)                        (e) 

Figure 5 In-plane failure modes of URM components: shear diagonal cracking – (a) stepped cracking and 

(b) straight cracking; (b) shear sliding; (c) flexural failure; (d) toe crushing 
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The seismic vulnerability assessment of masonry buildings must be conducted not only with reference 

to the in-plane seismic response of URM components but also considering the out-of-plane 

mechanisms. Out-of-plane collapses can be linked to various kinematics and may be triggered by 

inadequate or insufficient boundary conditions. Illustrative examples of out-of-plane kinematics are 

depicted in Figure 6. 

    
(a) (b) (c) (d) 

Figure 6 Example of out-of-plane kinematic motions: (a) simple wall overturning; (b) composite wall 

overturning; (c) vertical flexure; (d) horizontal flexure (ReLUIS, 2013) 

Excluding potential rigid body mechanisms resulting from insufficient boundary conditions, possible 

out-of-plane mechanisms at the scale of individual structural elements are enumerated below and 

visually depicted in Figure 7: 

- Flexural failure (Figure 7a): 

Cracks manifest along one of the primary directions of the wall due to one-way flexural 

bending. 

- Sliding shear failure (Figure 7b): 

Comparable to in-plane sliding shear, the sliding takes place in the out-of-plane direction. 

- Two-way bending failure mechanism with diagonal cracking (Figure 7c): 

Occurs when the wall is connected to other parts of the structure along all its boundaries and 

may lead to the complete expulsion of the masonry component. 
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(a) (b) (c) 

Figure 7 Out-of-plane failure modes of URM components: (a) flexural failure; (b) sliding shear failure; (c) 

two-way bending failure 

2.3 URM modelling approaches 

 Overview 

The behaviour of masonry structures is affected by several factors, as the mechanical properties of the 

constituents, the interaction among them and their spatial arrangement. Each of these characteristics has 

a distinct effect on the macroscopic behaviour of the masonry material. For these reasons achieving 

accurate prediction of the response of URM components and structures under extreme loading is a 

particularly challenging task.  

The modelling of masonry can generally follow four main computational strategies according to the 

level of accuracy desired: 

• Detailed micro-modelling (Figure 8a): units and mortar joints are represented by nonlinear 

continuum elements, while unit-mortar physical interfaces are modelled by nonlinear interface 

elements. 

• Simplified micro-modelling or mesoscale modelling (Figure 8b): expanded units are modelled 

by elastic continuum elements, while mortar joints and unit-mortar interfaces are lumped 

together in zero-thickness nonlinear interface elements. More accurate approaches also take 

into account the potential occurrence of crack surfaces within the units. 

• Finite elements macromodelling (Figure 8c): units, mortar and unit-mortar interfaces are not 

explicitly modelled since masonry is assumed as a homogeneous material employing isotropic 

or anisotropic nonlinear material models. A proper definition of the constitutive law is crucial 

within this strategy, and various choices can be considered, including phenomenological or 



Chapter 2. Literature review 

16 

micro-mechanical approaches. The geometry of the structure may be discretised by 2D or 3D 

finite elements.  

• Structural macromodels: masonry macroelements are defined by an arrangement of basic 

mechanical components, like beams or nonlinear springs, which are linked together to 

reproduce the resisting mechanisms typical of masonry components. These elements are 

widespread and used in the current engineering practice for their simplicity and computational 

efficiency.  Two main typologies of macroelement can be found in the literature: 

o 1D macroelements, typical of the equivalent frame (EF) approach (an example of this 

representation is reported in Figure 17, Chapter 2.3.4), which require an a-priori 

simplification of the actual structural geometry.  

o 2D and 3D macroelements, which offer an alternative strategy to overcome certain 

limitations, such as the possibility of modelling different geometries and, in some cases, to 

reproduce the out-of-plane behaviour, while keeping the computational efficiency high 

(examples are given by Figure 20 and Figure 21, Chapter 2.3.4). 

(a) Microscale 

 

Unit 

Mortar 

Unit-mortar  

interface 

(b) Mesoscale 

 

Expanded unit 

Mortar joint  

interface 

(c) Continuum Macroscale 

 

Homogeneous  

material 

Figure 8 Different scales of representation for finite element modelling of masonry components 
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As pointed out in (Lourenco and Gaetani, 2022), the selection of an appropriate modelling strategy is 

linked to the level of knowledge of the material properties. Besides, different application fields require 

specific modelling approaches. Cost and time of the analyses, together with user knowledge and 

expertise, are other key aspects.  

A mesoscale modelling strategy is usually associated with a simpler calibration of material properties, 

requiring straightforward tests on individual units and mortar joints. This is important when dealing 

with existing structures of historical and architectural value, where only low-invasive in-situ tests can 

be performed. On the other hand, mesoscale models or more detailed microscale models generally 

involve a significant computational cost and a time-consuming pre-processing stage, making this 

strategy not always feasible, particularly for the analysis of full-scale structures.  

As a result, microscale approaches can be generally employed for analysing small-scale problems, such 

as individual assemblages of units and mortar layers up to single structural elements (e.g., piers or 

spandrels). Mesoscale approaches can be applied for larger problems, such as analysing parts of 

buildings like façades, although applications to entire buildings have also been made by creating some 

assemblage of masonry units into a larger equivalent unit. However, the analysis of large real URM 

structures under extreme loading are typically conducted using macroscale strategies, which offer 

computational efficiency but are often characterised by more challenging material calibration, 

potentially resulting in inaccurate response predictions. 

Experimental data are essential in setting both micro and macro-modelling analyses. The investigations 

should cover information on the material response up to failure, including potential softening branch. 

Table 1 presents a synthesis of the required parameters for each approach. 
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Table 1 Synthesis of the main parameters needed for nonlinear static analysis of masonry structures 

(Lourenço and Gaetani, 2022) 

Strategy Elements Linear parameters Nonlinear parameters 

Detailed micro-modelling 

Unit (usually assumed 

isotropic) 

Young’s modulus 

Poisson’s ratio 

• Compressive and tensile 

strengths 

• Fracture energies in 

tension and compression 

• Hardening-softening 

criteria for compression 

and tension (σ-ε 

diagrams) 

Mortar (isotropic) 

Interface for bed and head 

joint 

Dummy normal and shear 

stiffness (to avoid 

interpenetration) 

• Bond tensile strength 

• Cohesion 

• Friction coefficient 

• Dilatancy coefficient 

• Tensile and shear 

softening criteria 

(evolution of stresses vs. 

crack opening and 

slipping) 

• Mode I fracture energy 

• Mode II fracture energy 

Simplified micro-

modelling 

Expanded units (usually 

assumed isotropic) 

Young’s modulus 

Poisson’s ratio 

No need as all nonlinearities 

are lumped at the interfaces 

(masonry joints and 

potential cracks in the units) 

Interface for bed and head 

joint 

Normal stiffness 

Shear stiffness 

Equal to detailed micro-

modelling but, in addition: 

• Compressive strength of 

masonry 

• Hardening-softening 

criterion for compression 

(evolution of stresses vs. 

crushing) 

• Fracture energy in 

compression 

Interface for potential 

cracks in the unit 

Dummy normal and shear 

stiffness (to avoid 

interpenetration) 

• Tensile strength of unit 

• Cohesion 

• Friction coefficient 

• Dilatancy coefficient 

• Tensile and shear 

softening criteria 

(evolution of stresses vs. 

crack opening and 

slipping) 

• Mode I fracture energy 

• Mode II fracture energy 

Macro-modelling 

Isotropic 
Young’s modulus 

Poisson’s ratio 

• Tensile and compressive 

strengths of masonry 

• Fracture energies in 

tension and compression 

• Hardening-softening 

criteria for tension and 

compression (σ-ε 

diagrams) 

Ortotropic 
Similar to isotropic but referring to both horizontal and 

vertical directions as material axes 
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As mentioned, different modelling strategies necessitate distinct types of material tests, where 

macroscale characterisation may depend on more invasive tests compared to the less invasive tests 

required by mesoscale or microscale modelling. Typical tests necessary for mesoscale modelling 

include the following for characterising mortar interfaces: shear triplet tests (Figure 9a) for joint 

cohesion and joint coefficient of friction, cross joint tests (Figure 9b) for joint tensile strength (bond 

strength), and compressive tests on masonry prisms (Figure 9c)  or, alternatively, less invasively, 

through flat-jack tests (Figure 10), for assessing compression strength. For interfaces representing brick 

failures (if they are represented), compression tests on whole units are performed to evaluate 

compression strength (Figure 9d) while splitting tests (Figure 9e) or tensile tests (Figure 9f) on whole 

units are conducted to assess tensile strength. In the case of microscale modelling, mortar must also be 

characterised for compression (through compression tests on mortar specimens) and tensile strength 

(typically through bending tests). Regarding the characterisation of macroscale models, as mentioned, 

since the link between properties of individual components and those of masonry as a whole is generally 

not straightforward, it may be necessary to conduct more invasive tests to characterize the shear-tensile 

response of the masonry, such as diagonal compression tests (Figure 11) or shear compression tests 

(Figure 12), while the compressive response may be determined through compressive tests on prisms 

or flat-jack tests. 

 

 

 
(a) (b) (c) 

  

 

(d) (e) (f) 

Figure 9 Tests on components: (a) triplet shear test; (b) cross joint test; (c) compressive test on masonry 

prism; (d) compressive test on unit; (d) splitting test on unit; (e) tensile test on unit. 
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Figure 10 Typical test set-up for two flat jacks test (image taken from Gregorczyk and Lourenço, 2000) 

 

Figure 11 In-situ diagonal compression test (image taken from Croce et al., 2018) 

 

Figure 12 In-situ shear compression test (image taken from Croce et al., 2018) 
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The following sections provide a description of the modelling strategies for URM adopted throughout 

the present research. 

 Mesoscale approach 

The 3D mesoscale description for URM structures, previously implemented in the FE software 

ADAPTIC (Izzuddin, 1991) and adopted in the present research (Macorini and Izzuddin, 2011), is based 

on the use of 20-noded elastic solid elements in combination with 16-noded zero-thickness nonlinear 

cohesive interface elements (Figure 13a). The former represent masonry units while the latter mortar 

joints and possible fracture interfaces within the units. The solid elements are expanded to fill the 

volume of the mortar joints. According to experimental observations, potential cracking paths in URM 

develop mainly in mortar joints. However, once formed, cracks can pass also through bricks and blocks. 

For this reason, brick failure surfaces are also arranged within masonry units. The behaviour of the 

brick-mortar and brick-brick interfaces determines the global nonlinear response of masonry and it is 

modelled by the refined constitutive model presented in (Minga et al., 2018), which combines plasticity 

and damage theories. A simplified multi-surface Coulomb yield criterion (Figure 13b) in the stress 

domain governs the development of permanent plastic strains. The conical surface simulates the 

behaviour in shear, corresponding to Mode II failure, and it is governed by cohesion c and friction angle 

φ. This surface is capped by two planar surfaces, which represent fracture in tension and compression. 

Stiffness and strength degradation are given through the evolution of an anisotropic damage tensor, as 

a function of the plastic work produced. The consideration of geometric nonlinearity, essential for 

evaluating the out-of-plane response, involves employing Green strains for the solid elements and a co-

rotational approach in the interface elements, where the local reference system of the zero-thickness 

interface moves together with the mid-plane of the element (Izzuddin, 2005). For further information 

the reader is referred to (Macorini and Izzuddin, 2011; Minga et al., 2018). 

 
  

(a) (b) 

Figure 13:  (a) Mesoscale modelling of brick masonry (Macorini and Izzuddin, 2011); (b) Multi-surface 

yield criterion of plastic problem 
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The 3D mesoscale description allows for the representation of any regular masonry bonding pattern, 

defined by the in-plane and through-thickness brick arrangement; it also enables modelling non-planar 

brick/block masonry components, such as arches, vaults, and domes. The main drawback of the 

mesoscale strategy is the high computational burden, which normally limits its application to small 

structures. One way to mitigate this issue is through domain partitioning, as developed in (Jokhio and 

Izzuddin, 2015, 2013). The original (monolithic) structure is divided into n partitions, each representing 

a distinct section of the overall domain, referred to as “child” partitions in accordance with Jokhio and 

Izzuddin (2013). These partitions undergo separate analyses, each one solved in a different processor. 

The so-called “parent” structure is formed by dual super-elements identified by the boundary nodes of 

the child partitions. It controls the two-way communication between the sub-domains, allowing the 

parallelisation of the analysis. An illustrative example of a decomposition strategy is depicted in Figure 

14, extracted from the research conducted by Macorini and Izzuddin (2013a) focusing on the nonlinear 

analysis of URM structures. In the figure, the original wall is partitioned into four child mesoscale 

sections. The dual super-element, denoted by the set of red nodes, serves as the parent structure. One 

side of this super-element is incorporated into the parent process, while the other side acts as a covering 

around the partitioned boundary in the child process. To further enhance computational efficiency, 

multiple levels of hierarchical partitioning can be considered, as shown in Figure 15 (Macorini and 

Izzuddin, 2013b), involving a recursive partitioning of each sub-domain. 

To define a mesoscale model, it is necessary to characterise the material parameters of both units and 

interfaces. For the units, only the elastic modulus and Poisson's ratio must be provided. Meanwhile, 

cohesive-frictional interfaces must be detailed by specifying the normal and tangential stiffnesses, along 

with the strength parameters, namely cohesion, coefficient of friction, tensile bond strength and 

compressive strength, which define the multi-surface elastic domain (Figure 13b). The  compressive 

strength for the nonlinear interfaces representing mortar joints is generally assumed equal to the whole 

masonry compressive strength, as suggested in (Lourenço and Gaetani, 2022). The post peak and cyclic 

response can be affected by other properties more difficult to quantify, i.e., fracture energies related to 

tensile, shear and crushing failure modes, and the stiffness degradation parameter (defined as the ratio 

between normal strain at which full damage in Mode I is attained under pure tension and the plastic 

strain at unloading (Minga et al., 2018). These main properties, with typical values for clay brick 

masonry (masonry typology examined in the comparison of Chapter 3), are listed in Table 2. 

 



2.3 URM modelling approaches 

23 

 

Figure 14 Partitioned approach (flat partitioning) for modelling URM components (Macorini and Izzuddin, 

2013a) 

 

Figure 15 Schematic hierarchic partitioning of the URM wall (Macorini and Izzuddin, 2013b) 
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Table 2 Typical material properties for a mesoscale modelling approach for clay brick masonry walls 

(subscripts: b: brick; j: mortar joint; n: normal direction; t: tangential direction) 

Parameter Symbol Unit 
Typical 

values 
Source 

Units elastic 

parameters 

Elastic modulus Eb N/mm2 4000÷18000 (NZSEE, 2006) 

Poisson’s coefficient νb - 0.2÷0.35 (NZSEE, 2006) 

Interfaces elastic 

parameters 

Mortar 

joints 

Normal 

stiffness 
Kn,j N/mm3 10÷250 

(Minga et al., 

2018) 

Tangential 

stiffness 
Kt,j N/mm3 5÷105 

(Minga et al., 

2018) 

Internal 

bricks 

Normal 

stiffness 
Kn,b N/mm3 10⁴ 

(Chisari et al., 

2020) 

Tangential 

stiffness 
Kt,b N/mm3 10⁴ 

(Chisari et al., 
2020) 

Interfaces mechanical 

parameters 

Mortar 

joints 

Cohesion cj N/mm2 0.13÷0.38 
(EN 1996-1-1, 

1995) 

Friction 

coefficient 
tanφj - 0.3÷0.8 (NZSEE, 2017) 

Tensile bond 

strength 
ft,j N/mm2 0÷0.1 

(Lourenço and 

Gaetani, 2022) 

Internal 

bricks 

Tensile 

strength 
ft,b N/mm2 1.4÷4.2 (NZSEE, 2017) 

Compressive strength fc N/mm2 2.6÷4.3 (MIT, 2019) 

Interfaces fracture 

energies 

Mortar 

joints 

Mode I GI,j N/mm 0.005÷0.035 
(Van der Pluijm, 

1999) 

Mode II GII,j N/mm 0.01÷0.25 
(Van der Pluijm, 

1992) 

Internal 

bricks 
Mode I GI,b N/mm 0.1 

(Chisari et al., 

2020) 

Crushing mode Gc N/mm (0.88÷5.3)·fc (Jafari et al., 2022) 

Interfaces stiffness 

degradation 

Mortar joints μj - 0.1 
(Minga et al., 

2018) 

Internal bricks μb - 0.1 
(Minga et al., 

2018) 

 Continuum finite element macroscale 

The FE continuum macroscale strategy adopted throughout the thesis is characterised by the use of the 

concrete damaged plasticity (CDP) material law (Lee and Fenves, 1998; Lubliner et al., 1989), an 

isotropic model that combines the concepts of damaged elasticity with tensile and compressive 

plasticity. A scalar isotropic damage, which comprises separate damage variables in tension (dt) and 

compression (dc), is assumed. The nonlinear response is defined through a uniaxial nonlinear 

constitutive law, with softening in tension and compression as shown in Figure 16a, where the stiffness 

recovery parameters wc and wt for compressive and tensile behaviour varying from 0 to 1 for zero and 

full stiffness recovery, are also indicated. The model makes use of the yield surface proposed by 

Lubliner et al. (1989), with the modifications put forward in (Lee and Fenves, 1998) to account for 
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different evolution of strength under tension and compression. The typical form of the yield function in 

the two-dimensional space of the principal stresses is sketched in Figure 16b.  

In the present work, the concrete damaged plasticity model developed in (Chisari et al., 2020) is 

considered, which is a slightly modified version of the one proposed in (Lee and Fenves, 1998; Lubliner 

et al., 1989). The difference between them regards the specification of the damage laws dc and dt. In the 

Lee & Fenves’s model, the parameters are directly defined by the user, as a function of inelastic 

deformation, while in Chisari’s model they are defined as functions of nominal and effective strength, 

which are, in turn, functions of state variables related to plastic strain. For further information on the 

description of the material law, the reader can refer to (Chisari et al., 2020).  

It is noteworthy that the CDP model has been originally developed for modelling the behaviour of 

concrete structures and isotropic quasi-brittle materials, but has also been widely adopted in the 

modelling of masonry structures (Cattari et al., 2021; Chisari et al., 2020; Zizi et al., 2022, 2021). Some 

anisotropic damage or plasticity-damage models have been developed but specifically for masonry 

(Berto et al., 2002; Chisari et al., 2023). 

 

 

(a) (b) 

Figure 16 (a) Typical uniaxial load cycle (tension-compression-tension) for damaged plasticity, assuming 

total stiffness recovery for crack closure (wc=1) and null recovery for crack reopening after crushing (wt=0); 

(b) typical elastic limit function for damaged plasticity model, in the two-dimensional space of principal 

stresses 

The CDP material model must be defined through many parameters (as detailed in Table 3, with typical 

values provided for clay brick masonry walls), characterising: 

- the elastic behaviour: Young’s modulus E, Poisson’s coefficient ν; 
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- the uniaxial post-elastic behaviour in tension: uniaxial tensile strength ft, fracture energy Gt, 

stiffness degradation in tension parameter μ; 

- the uniaxial post-elastic behaviour in compression: uniaxial compressive strengths fc, ratio 

between uniaxial yielding stress and maximum strength fyr, plastic strain at the peak 

compression strength kc,fmax; 

- the multi-axial cyclic behaviour: dilatancy ψ, ratio between biaxial and uniaxial compressive 

strength fb0, flow potential eccentricity ε, ratio of the second stress invariant on the tensile 

meridian to that on the compressive meridian at initial yield Kc, stiffnesses recovery parameters 

in tension wt and in compression wc. 

The calibration of the material parameters for the macroscale model is not straightforward when only 

the properties of the masonry constituents are available. In addition, some parameters that may greatly 

affect the response cannot often be explicitly and objectively quantified. These aspects will be 

investigated in Chapter 3. 

Table 3 Typical material properties for a continuum macroscale CDP modelling approach for clay brick 

masonry walls 

Parameter Symbol Unit 
Typical 

values 
Source 

Elastic modulus E N/mm2 690÷5600 (MIT, 2019) 

Poisson’s coefficient ν - 0.2 
(Lourenço and 

Gaetani, 2022) 

Dilatancy angle ψ ° 0÷35 
(Van der Pluijm, 

1993) 

Ratio between biaxial and uniaxial compressive strength fb0 - 1.16 (ABAQUS Inc, 2014) 

Flow potential eccentricity ε - 0.1 (ABAQUS Inc, 2014) 

Ratio of the second stress invariant on the tensile meridian 

to that on the compressive meridian at initial yield 
Kc - 0.66 (ABAQUS Inc, 2014) 

Global tensile strength ft N/mm2 0.075÷0.195 (MIT, 2019) 

Fracture energy Gt N/mm 0.005 ÷ 0.035 
(Van der Pluijm, 

1999) 

Parameter controlling stiffness degradation in tension μ - 0÷1 (Chisari et al., 2020) 

Maximum compression strength fc N/mm2 2.6÷4.3 (MIT, 2019) 

Ratio between uniaxial yielding stress and maximum 

strength in compression 
fyr - 0.01÷1 (Chisari et al., 2020) 

Plastic strain at maximum compressive strength  kc,fmax - 1·10-5÷1·10-2 (Chisari et al., 2020) 

Tensile stiffness recovery wt - 0 (ABAQUS Inc, 2014) 

Compressive stiffness recovery wc - 1 (ABAQUS Inc, 2014) 

 Macroelements 

The second approach within the macroscale framework is based on the use of an arrangement of basic 

mechanical components, like beams or nonlinear springs, linked together to generate macroelements. 

The material nonlinearity of macroelements is usually given by phenomenological constitutive laws 
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attributed to the specific components, by distinguishing the resistant mechanisms of masonry structures 

to be represented. These elements are widespread and used in the current engineering practice for their 

simplicity and computationally efficiency. Many modelling approaches have taken place over time, 

ranging from Equivalent Frame modelling (EF) to usage of macroelement to represent an entire panel. 

Thus, two main typologies of macroelements can be recognised in literature, roughly distinguished 

whether they are mono-dimensional or bi- or tri-dimensional. 

Within the so-called Equivalent Frame Approach (Bracchi et al., 2021; Bracchi and Penna, 2021; 

Brencich et al., 1998; Lagomarsino et al., 2013; Rinaldin et al., 2016), 1D macroelements represent 

single structural members, piers and spandrels, connected to each other through rigid offsets (Figure 

17a). Macroelements can be defined through rigid or elastic beams with lumped plasticity located on 

springs, which allows the simulation of masonry resistant mechanisms, such as shear-diagonal cracking, 

shear-sliding and axial-flexural failure modes. The main advantage is due to its simplicity and 

computational efficiency. Indeed, they can also include the possibility to represent the cyclic strength 

and stiffness degradation, as in (Rinaldin et al., 2016). However, this strategy has some clear limitations. 

Replacing a masonry portion with a frame element leads to some intrinsic inaccuracies, related to the 

imprecise simulation of interactions among macro-elements, difficulties arising from complex 

geometries characterised by irregular openings dispositions and lack of representation of the out-of-

plane response. 

 

 

 
      

(a) (b) 

Figure 17 (a) Equivalent frame discretisation (piers and spandrels macroelements are depicted in red, while 

rigid offsets are in blue) and (b) location of shear and flexural rotational springs (images taken from 

Rinaldin et al., 2016) 
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Bi- or tri-dimensional macroelements represent a reliable alternative capable of facing certain 

limitations, such as the possibility of model different geometries and to reproduce the out-of-plane 

behaviour, while keeping the computational efficiency high. Over the years, various models have been 

developed. Some of them are briefly described in the following. 

One of the first two-dimensional macroelement development was proposed by D’asdia and Viskovic 

(1995), in which the masonry portion was modelled by a plane assemblage of linear elastic frame 

elements of variable shape. The nonlinearity was represented by a nonlinear step-by-step updating of 

the geometry of the element, varying the resisting section of the wall by excluding volumes 

experiencing tensile stress. 

Foraboschi and Vanin (2013) proposed an analytical approach for the pushover analysis of masonry 

structures. Their method consists in splitting the structure into stories, and then subdividing each story 

into plane masonry panels, consistently with the geometry. The masonry panels are modelled using an 

evolutive strut-and-tie model, by means of a system of articulated struts exhibiting elastic-perfectly 

plastic response in compression and zero strength in tension. The behaviour of each panel under lateral 

loading can simulate the in-plane response until the development of failure mechanisms, such as shear 

diagonal cracking or flexural failure (Figure 18). The evolutive strut-and-tie model generates the 

capacity curve of the single panels, contributing then to the overall pushover response of the structure. 

(a) 

  

(b) 

 

 
 

Figure 18 Progressive modification of the equivalent evolutive strut-and-tie due to the (a) flexural failure 

and (b) shear failure with diagonal crack (images taken from Foraboschi and Vanin, 2013) 
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Casolo and Peña, (2007) presented a mechanistic ‘rigid body spring model’, in which masonry elements 

are discretised through ‘unit cell’, which are plane quadrilateral rigid elements, linked together with 

uncoupled normal and shear springs at each side (Figure 19). The constitutive laws of these springs are 

defined to simulate in a phenomenological way the in-plane cyclic and dynamic hysteretic response, 

specifically reproducing diagonal cracking, in-plane flexural and crushing failure modes of masonry. 

 

Figure 19 Rigid body spring model: scheme of  n irregul r m sonry  nd ‘unit cell’ defined by four rigid 

elements (image taken from Casolo and Peña, 2007) 

In (Bertolesi et al., 2016) a comparable approach was utilised to examine the in-plane response. 

Holonomic constitutive laws are adopted for the springs connecting the rigid elements, specified 

through homogenization principles. These laws are derived separately and subsequently incorporated 

into a standard commercial finite element software. The model was lately deepened in (Da Silva et al., 

2017), allowing also the out-of-plane behaviour. Both the implementations do not incorporate the 

representation of cyclic hysteretic response. 

In the model proposed by Caliò, Marletta, and Pantò (2012), the representation of masonry medium 

involves the utilisation of pinned articulated quadrilaterals with rigid edges, surrounded by interfaces 

given by uncoupled nonlinear axial and shear springs, which allow the interaction through adjacent 

elements (Figure 20a). The deformable internal block is governed by a couple of additional diagonal 

nonlinear springs. Hence, each plane macro-element exhibits three degrees-of-freedom, corresponding 

to in plane rigid-body motion, along with an additional degree-of-freedom required to characterize in-

plane shear deformability. Thus, the model is capable of simulating all in-plane failure modes, since the 

border springs govern shear sliding and axial-flexural response, while the diagonal springs enable the 

simulation of diagonal cracking failure mode. A single macroelement can be employed to represent an 

entire structural member (as illustrated in Figure 20c, which displays a basic mesh discretisation of a 

wall with openings) or a portion of it, in a more refined mesh discretisation. The macroelement model, 

firstly implemented for the representation of the in-plane behaviour only, was then enhanced 



Chapter 2. Literature review 

30 

incorporating also the out-of-plane response (Pantò et al., 2017, 2016). In the original plane model, the 

interfaces were characterised by one single row of orthogonal nonlinear springs along with a single 

additional longitudinal spring. To account for the out-of-plane response, the 3D border interface of the 

enhanced formulation considers multiple rows of orthogonal nonlinear links and additional transversal 

sliding springs, as illustrated in Figure 20b. The latter are necessary for controlling the out-of-plane 

sliding mechanisms and the torsion around the axis perpendicular to the plane of the interface. Overall, 

the upgraded three-dimensional macroelement considers three further degrees of freedom, allowing to 

comprehensively capture the out-of-plane response. 

  

 
(a) (b) (c) 

Figure 20 (a) Mechanical representation of the plane macroelement and (b) spatial macroelement; (c) basic 

discretisation of a wall with openings (images taken from Pantò et al., 2016, and Caliò et al., 2012) 

E. Minga et al. (2020) presented a three-dimensional macroelement approach for the cyclic analysis of 

unreinforced masonry structures subjected to in-plane and out-of-plane actions, used to represent large 

portions of masonry walls. The macroelement is characterised by an internal deformable block 

surrounded by four external edges, that are connected through zero-thickness cohesive-frictional 

interfaces (Figure 21a), for which the sophisticated constitutive model for the description of unified 

joint interfaces under cyclic loading proposed in (Minga et al., 2018) was employed. Hence, instead of 

considering uncoupled springs, the implementation of the sophisticated interfaces directly couples 

normal and tangential behaviour. Furthermore, the in-plane shear and the out-of-plane bending modes 

are defined through non-linear springs, governed by two independent Lagrangian parameters (Figure 

21b and Figure 21c). Therefore, all the failure modes typical of masonry buildings can be represented 

within a highly computationally efficient model. Flexural cracking, shear-sliding and toe crushing are 

represented along the macroelement interfaces, allowing them to interact together within a single 

interface joint model, while in-plane and out-of-plane diagonal cracking are phenomenologically 

depicted through the nonlinear springs associated with the deformation modes of the inner block. 
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Additionally, unlike previous macroelement strategies (e.g., Caliò et al., 2012; Pantò et al., 2016, 2017), 

the model is developed within a finite element framework. This enables flexible connectivity through 

its boundary edges with adjacent elements, such as quadratic beams or shells. 

This element will be thoroughly investigated in the present work, in Chapters 5, 6, and 7, where original 

drawbacks will be addressed, and a novel enhanced macroelement will be proposed. 

 

(a) 

 
 

(b) (c) 

Figure 21 (a) URM macroelement; (b) in-plane shear and (c) out-of-plane diagonal bending deformation 

modes of inner block 

 

 

Inner block mid-surface 
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 Safety assessment and knowledge levels 

The reliability of structural analysis is not only influenced by the link between material characteristics 

and modelling approaches, which must align with the typology of parameters known and the structure 

being analysed, but also by the quantitative level of knowledge about the structure. Masonry structures, 

particularly those constructed with irregular stone masonry, can exhibit significant heterogeneity, 

leading to variations in properties across different parts of the structure Therefore, conducting more 

experimental tests may be necessary to ensure sufficient reliability regarding the overall characteristics 

of the structure. The specific values used in the analysis must account for this inherent uncertainty, 

which varies based on the depth of knowledge of different aspects. Essentially, a less detailed 

investigation leads to conservative estimates with lower mechanical properties. 

In this context, both Eurocode 8 and the Italian code (MIT, 2019) encompass the concepts of knowledge 

levels (KL) to consider varying degrees of investigation concerning geometry, construction details and 

material properties. Additionally, they define the confidence factor (CF), which is applied to reduce the 

material strength based on the level of knowledge reached. 

The knowledge level KL serve as an indicator of the completeness of the investigation conducted, which 

in turn determines the confidence factor (CF). The factors contributing to the appropriate knowledge 

level include: (1) geometry of structural and non-structural elements (such as masonry infills, which 

can impact the structural response); (2) constructive details (including morphology of masonry and 

connections between masonry infills and the surrounding frame); (3) material characterisation. Based 

on the level of knowledge attained in each of these aspects, three knowledge levels are recognised, each 

associated with a different confidence factor: limited knowledge (KL1, with CF=1.35), normal 

knowledge (KL2, with CF=1.2) and full knowledge (KL3, with CF=1). 

Based on the knowledge level, the Italian code (MIT, 2019) provides guidelines for calculating the 

mechanical properties required for analysis. In nonlinear analysis, these values are determined by 

dividing the mean value by the confidence factor (CF). The mean values of the material parameters are 

obtained from the recommendations outlined in Table 4 of the Italian code and are based on the 

knowledge level attained. Specifically: 

• For KL1: Minimum strength and average Young’s modulus are derived from the specified 

ranges of values. 
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• For KL2: Average strength and average Young’s modulus are derived from the specified ranges 

of values. 

• For KL3: Strength and Young’s modulus are determined by combining the values 

recommended in the code with the results obtained from experimental tests, using statistical 

expressions that consider the number of experimental tests conducted. 

Table 4. Recommended masonry material characteristics according to Italian regulation (MIT, 2019)  

Masonry typology 

fc 

[MPa] 

τ0 

[MPa] 

fv0 

[MPa] 

E 

[MPa] 

G 

[MPa] 

w 

[kN/m3] 

min-max min-max min-max min-max min-max  

Irregular stone masonry (pebbles, erratic, 

irregular stones) 
1.0÷2.0 0.018÷0.032 - 690÷1050 230÷350 19 

Uncut stone masonry with 

inhomogeneous thickness of leaves 
2.0 0.035÷0.051 - 1020÷1440 340÷480 20 

Regular stone masonry with good 

bonding 
2.6÷3.8 0.056÷0.074 - 1500÷1980 500÷660 21 

Soft stone masonry (tuff, limestone, etc.) 1.4÷2.2 0.028÷0.042 - 900÷1260 400÷600 13÷16 

Regular soft stone masonry (tuff, 

limestone, etc.) 
2.0÷3.2 0.04÷0.08 0.10÷0.19 1200÷1620 400÷500  

Dressed rectangular (ashlar) stone 

masonry 
5.8÷8.2 0.09÷0.12 0.18÷0.28 2400÷3300 800÷1100 12 

Solid brick masonry with lime mortar 2.6÷4.3 0.05÷0.13 0.13÷0.27 1200÷1800 400÷600 18 

Hollow bricks (void < 40%) with cement 

mortar 
5.0÷8.0 0.08÷0.17 0.20÷0.36 3500÷5600 875÷1400 15 

2.4 Structural response of masonry-infilled frames 

 Overview 

The seismic events of the past have revealed significant structural implications arising from the presence 

of infilled frames in reinforced concrete or steel structures. The infills, serving as external claddings or 

internal partitions, heavily impact the overall response of such frames. While offering benefits in terms 

of increased base strength and hysteretic capacity, they concurrently introduce an increase in stiffness 

leading to reduced vibration periods (Asteris et al., 2011; El-Dakhakhni et al., 2003). Consequently, 

structures with infills generally face higher spectral acceleration compared to bare structures. Moreover, 

infills greatly impact on the overall economic losses. In fact, as indicated by Tiedeman (1980), 

approximately 80% of the economic costs associated with earthquakes can be attributed to damages 

sustained by infills, including harm to windows, doors, and various installations (Figure 22). 
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Figure 22 Infill d m ges  fter L’Aquil  (IT) e rthqu ke in 2  9 (Dipartimento della Protezione Civile, 

2009) 

Infilled-frames structures are particularly widespread in earthquake prone regions, particularly where 

masonry remains a common construction type due to historical and cost-related considerations. Many 

of these structures were constructed before the advent of modern seismic codes, designed to resist 

gravity loads without adequate consideration for lateral loads and lacking seismic ductile detailing (Al-

Chaar et al., 2002; Crisafulli et al., 2000).  

In current engineering practice, structural engineers often neglect the significant impact of masonry 

infills when analysing both new and existing buildings. In particular, vulnerability analysis and 

subsequent retrofitting necessitate a comprehensive assessment of the structural behaviour. 

Overlooking the presence of masonry infills may easily result in inaccurate predictions of the structural 

response in terms of lateral stiffness, strength, and ductility (Crisafulli et al., 2000). This neglect can be 

attributed to a combination of limited knowledge on the topic and the absence of practical and reliable 

methods for evaluating the complex composite behaviour of infilled-frames. Additionally, the 

mechanical characteristics of masonry infills exhibit significant variability, primarily due to 

workmanship, making them challenging to quantify with precision and reliability. 

The response of infilled frame structures is complex and markedly nonlinear due to the brittle behaviour 

of infill masonry, the ductile nonlinear behaviour of frame, the different stiffnesses of the two 

components and the ever-changing conditions of the border interfaces (Crisafulli, 1997). The overall 

strength and stiffness of these structures are typically higher than the sum of their single components 

(Klingner and Bertero, 1976). 



2.4 Structural response of masonry-infilled frames 

35 

The seismic responses of infilled frames and bare frames exhibit significant distinctions. The composite 

structure is characterised by elevated stiffness and strength in comparison to the bare counterpart. 

However, this increased stiffness results in a reduction of the fundamental vibration period, subjecting 

the infilled frame structure to higher seismic demands. Furthermore, the hysteretic dissipative capacity 

of the infilled frame is greater, with energy dissipation occurring not only through individual 

components but also through the slip resistance opposed by the border interfaces, driven by cohesive-

frictional behaviour. Nevertheless, the cyclical response of infilled frames is generally marked by rapid 

and substantial degradation in strength and stiffness. This can be attributed primarily to the brittle 

behaviour of masonry infills and the cessation of interface contributions when large displacements are 

reached. 

Over the years, numerous researchers and engineers have delved into the study of this construction type, 

debating whether the presence of infills may be beneficial or detrimental. As emphasised in (Crisafulli, 

1997), the often observed poor response of infilled frames to seismic events can be attributed to the 

irregular distribution of masonry infills. Indeed, irregular distributions of infills, whether in the 

horizontal plan or vertically, may lead to detrimental torsional vibration modes and give rise to the so-

called soft-storey mechanisms (an example of soft-story mechanism activation is given in the post-

earthquake damage depicted in Figure 23). Beyond the overall distribution within the building, the 

presence of openings - whether for windows, doors, or the passage of pipes - introduces structural 

irregularities, compromising the overall strength. This can lead to unexpected failures in frame 

elements, as the short-column phenomenon, which manifests following an increase of shear forces 

within the column at the locations of openings (typical phenomenon with ribbon windows). 

The response of Infilled Frame structures is affected by a number of variables, as highlighted by Dawe 

et al., /2001). These factors include mechanical parameters and geometric features of the components 

(such as masonry, beams, columns, and eventual connections). Constructive techniques and interface 

conditions, including bond tensile strength, cohesion, friction angle, and the possible presence of gaps, 

also have a great contribution. As per Dhanasekar et al. (1985), the overall distribution of forces within 

the frame and infill under seismic action, especially the maximum force borne by the frame, is strongly 

influenced by the relative stiffness of the components. Moreover, the research conducted by Dolsek and 

Fajfar (2008) and Zarnic et al., (2001), emphasise the critical role of the strength properties of masonry 

in significantly impacting the overall response. 
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Figure 23 Soft-story mechanism in a masonry-infilled reinforced concrete building – Syria and Turkey 

earthquake, 2023 (ReLUIS and Eucentre, 2023) 

 Monotonic response  

When subjected to monotonic loading (Figure 24a), an infilled frame structure typically undergoes four 

distinct phases (Crisafulli, 1997). Initially, the structure behaves monolithically, owing to the bond 

strength of interfaces. Maximum stresses concentrate at the four corners, with the panel's centre 

characterised by an approximately pure shear stress state (Figure 24b). As horizontal load and 

displacement increase, a gradual detachment of the infill from the frame occurs due to tensile-shear 

failure of the cohesive-frictional interfaces (Figure 24c). According to Esteva (1966), this separation 

happens between 0.01% and 0.3% of lateral drift, highly dependent on boundary interface 

characteristics. Generally the separation point does not affect the maximum strength attained, but only 

the overall stiffness decay at the first phase (Klingner and Bertero, 1976). After the separation (Figure 

24d), stresses become zero on the detached corners and increase on the compressed ones, leading to the 

formation of a compressive strut along the compressed diagonal. Therefore, the infilled frame behaves 

as a braced frame with a single diagonal active. In the compressed corners, both principal stresses are 

compressive, while in the middle, tensile stress occurs in the perpendicular direction, ranging from 7 to 

10 times lower than the compressive one (Crisafulli, 1997).  
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Figure 24 (a) Infilled frame subjected to in-plane monotonic loading; (b) principal stress distribution before 

frame-infill detachment; (c) frame-infill detachment; (d) principal stress distribution after frame-infill 

detachment and development of diagonal compressive strut (Crisafulli, 1997) 

As the lateral force increases, a further separation between infill and frame may occur, accompanied by 

masonry cracking, leading to a gradual reduction in stiffness until the maximum shear strength is 

attained. Beyond this peak, the response is primarily governed by the frame. The features of the 

softening branch depend on the failure mode of infilled frames. Weak panels typically exhibit a 

smoother strength decrease (Comitè Euro-International du Béton, 1994), whereas stronger panels tend 

to have a steeper softening branch (Schuller et al., 1994). 

The response of infilled frames is significantly influenced by the characteristics of the infill material 

but also its level of confinement. To illustrate this, Figure 25 presents several experimental load-

displacement curves extracted from a study conducted by (Mehrabi et al., 1996), where specimens of 

both bare-frames and infilled-frames were tested. The analysed infilled-frame specimens were 

characterised by different infill typologies, with specimens 2 and 8 featuring hollow brick masonry 

(denoted as “weak infill”), and specimens 3 and 9 employing solid brick masonry (denoted as “strong 

infill”). Additionally, the specimens were subjected to distinct vertical load distributions; specimens 2 

and 3 had loads applied exclusively on the top of the columns, while in specimens 8 and 9, one-third of 

the total load was applied on the top beam, with the remaining portion distributed on the columns. This 

variation in infill type and load distribution is observed to impact not only the response in terms of 
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maximum strength and stiffness but also the overall shape of the curves. Furthermore, the difference in 

the responses compared to the bare frame is evident. 

 

Figure 25 Load-displacement curves for monotonically laterally loaded specimens (Mehrabi et al., 1996) 

The typical failure modes of masonry-infilled frames are illustrated in Figure 26 and can be categorised 

into five distinct typologies (El-Dakhakhni et al., 2003): 

1. Corner Crushing Mode (Figure 26a): Involves the crushing failure in at least one of the loaded 

corners, typically associated with weak infills surrounded by a frame with strong members and 

weak joints. 

2. Sliding Shear Mode (Figure 26b): Characterised by the development of a horizontal sliding 

crack through bed joints, often related to infills featuring weak mortar bed joints and a strong 

frame. 

3. Diagonal Compression Mode (Figure 26c): Depicts the crushing failure of the infill within its 

central region, associated with slender infills, where failure results from the out-of-plane 

buckling of the infill. 

4. Diagonal Cracking Mode (Figure 26d): Represents the development of a crack along the 

compressed diagonal, usually linked to a weak frame or a frame with weak beam-column joints 

and strong members infilled with a rather strong infill. 

5. Frame Failure Mode (Figure 26e): Involves plastic hinges in the members or in the beam-

column connections, related to a weak frame or a frame with weak beam-column joints and 

strong members infilled with a rather strong infill. 
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             (a)                           (b)                    (c) 

 
  (d)                   (e) 

Figure 26 Different failure mode of masonry-infilled frames: a) corner crushing; b) shear sliding; c) 

diagonal compression; d) diagonal cracking; e) frame failure (taken from El-Dakhakhni et al., 2003) 

According to (Comitè Euro-International du Béton, 1996), only the first two infill failure modes are of 

practical importance, since the third failure mode may occur only with high and uncommon slenderness 

ratios, leading to out-of-plane buckling failure due to in-plane loading, while the diagonal cracking 

should not be considered an ultimate failure mode since the infill can still carry additional load after the 

development of cracking. Frame failure is particularly important in existing structures, often 

characterised by frame weakness (Asteris et al., 2011). The diagonal strut configuration may vary 

throughout the application of the action. Indeed, although initially the resultant force points towards the 

corner of the beam-column joint, it may then move, causing substantial increases in force magnitude on 

the members. It is finally emphasised that infilled frame response could often result from the 

combination of multiple failure modes developing subsequently or simultaneously (Crisafulli, 1997). 

 Cyclic response 

The dissipation capacity of infilled frames typically is significantly higher than that of bare frames, 

primarily attributed to the progressive cracking of the masonry infill and, notably in the initial phases, 

to the frictional resistance at the interfaces. However, hysteresis loops exhibit pronounced pinching 

effects owing to the detachment at the frame-infill borders and the opening-closure of cracks in masonry 

and reinforced concrete members. 
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Under cyclic loading conditions, infilled-frames manifest significant stiffness degradation, as depicted 

in Figure 27, taken from (Crisafulli, 1997). In this figure, the author analysed stiffness degradation 

based on findings from various researchers (Sánchez et al., 1991; Valiasis and Stylianidis, 1989; Zarnic 

and Tomazevic, 1988) who conducted tests on masonry infilled RC frames. Stiffness decay was 

assessed as the ratio of KS, secant stiffness between two consecutive peaks, to K0, the initial stiffness 

(evaluated at a drift of 0.05%, approximated as the frame-infill separation point). Despite the authors 

used different masonries, the decay curves are similar and characterised by a rapid decrease in stiffness 

at low displacements. For a story drift of 1%, the secant stiffness is approximately ten times smaller 

than the initial value. 

 

Figure 27 Stiffness degradation against storey drift; image taken from (Crisafulli, 1997) and based on the 

results of (Sánchez et al., 1991; Valiasis and Stylianidis, 1989; Zarnic and Tomazevic, 1988) 

Cyclic loading conditions can also result in a significant degradation in terms of strength. In the study 

conducted by (Stylianidis, 1988), two reversal cycles of progressively increasing displacements were 

applied to two specimens, with and without the application of vertical load. The strength loss in the 

second cycles relative to the first cycles was approximately 16% and 12% for the cases with and without 

vertical load, respectively. Figure 28 depicts the cyclic curve for one of the specimens. 

Several authors have experimentally investigated the loss of strength in infilled frames subjected to 

cyclic loading (Comitè Euro-International du Béton, 1994; Zarnic and Tomazevic, 1988). However, a 

general consensus on how to estimate strength degradation in infilled frames has not been reached, 

highlighting the need for further research to better predict the actual envelope in the softening branch 

(Crisafulli, 1997). 
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Figure 28 Shear force – storey drift experimental curve (Stylianidis, 1988) 

 Effects of openings on the behaviour of masonry-infilled frames 

Masonry infills may present openings for functional and architectural purposes, introducing a notable 

decrease in stiffness, ultimate strength, and energy dissipation capacity. The presence of openings in 

infill walls introduces considerable uncertainty in seismic assessments, contributing to structural 

irregularities that adversely affect the seismic response. Additionally, the presence of openings can 

accelerate out-of-plane phenomena, preventing the development of arching mechanisms observed in 

solid infill walls. Thus, the presence of openings in infilled framed structures should be accurately 

evaluated. 

In presence of small openings, a single diagonal compressive strut may still develop, while with larger 

openings the stress state generally becomes more complex. Typically, cracks initiate at the corners of 

the openings and propagate towards the compressed corners. The overall crack pattern is mainly 

influenced by the position and size of the openings (Mosalam et al., 1997). 

The influence of openings has been evaluated by many researchers, by furnishing several suggestions 

about the assessment of strength and stiffness reduction resulting from their presence (Asteris et al., 

2012, 2016; Decanini et al., 2014; Demetrios and Karayannis, 2007). The key parameters influencing 

the overall response are the dimensions and positions of the openings, along with the potential 

reinforcement at the edges (such as lintels or steel bars). According to (Decanini et al., 2014), the 

presence of reinforcing elements can be particularly beneficial, minimising the opening effects. Indeed, 

the impact of opening size on reduction diminishes with an increasing presence of reinforcements. 
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2.5 Modelling of Infilled-Frame structures 

Essentially, there are two main approaches for modelling of infilled-frame structures, micro-models and 

macro-models. On one hand, sophisticated micro-models, implemented through finite elements, can 

accurately represent the complex interaction among the frame, infill, and boundary interfaces. When 

correctly implemented, these models can simulate the behaviour of infilled frames with high fidelity. 

However, due to their inherent complexity, these models demand a substantial amount of information 

and, if not developed meticulously, may yield inaccurate results (Shing and Mehrabi, 2002). On the 

other hand, simplified macro-models, which are more computationally efficient, use a reduced number 

of elements to capture the global response of masonry infills without representing local complex 

phenomena. These models are formulated based on observations derived from actual experimental 

responses, recognising that, under in-plane horizontal loading, the compressive path in the masonry 

panel predominantly follows its diagonal. Macro-models are often calibrated though the employment 

of refined micro-models. Reviews of various proposed macro-models can be found in (Asteris et al., 

2011; Moretti, 2015). 

 Simplified modelling approaches  

In the early 1950s, pioneering experimental investigations into the in-plane response of infilled frame 

structures were conducted at the Building Research Station in Watford, revealing the inherent 

complexity of the issue (Thomas, 1953; Wood, 1958). Polyakov (1960) was the first to suggest 

considering the effect of infill panels through diagonal bracings. 

Subsequently, Holmes, (1961) suggested employing a pin-jointed diagonal strut composed of the same 

material as the infill, with a width equivalent (denoted as w) to 1/3 of the diagonal length of the infill 

(denoted as d), without accounting for the actual relative stiffness of the frame and infill. Following a 

series of experimental tests, Smith (1962) demonstrated that the ratio w/d typically falls between 0.10 

and 0.25. Further experimental work in the latter half of the 1960s (Smith, 1967, 1966; Smith and Carter, 

1969) led to the establishment of a relationship between the strut width and frame-infill contact length. 

This was achieved through the derivation of an equivalent width (denoted as λh), which is a function of 

the relative stiffness of the frame and infill: 

𝜆ℎ = ℎ√
𝐸𝑤𝑡𝑤 sin 2𝛳

4𝐸𝐼ℎ𝑤

4

 (1) 
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where Ew is the Young’s modulus of the masonry panel, EI is the flexural stiffness of the columns, tw is 

the thickness of the panel, h is the height of the column, hw is the height of the panel and θ is the angle 

subtended by the diagonal and the horizontal: 

𝛳 = tan−1 (
ℎ𝑤
𝐿𝑤
) (2) 

where Lw is the length of the panel. The involved parameters are depicted in Figure 29. 

 

Figure 29 Geometrical parameters characterising masonry infilled frames (Asteris et al., 2011) 

Many authors proposed several correlations to calculate the width of the equivalent strut as a function 

of diagonal length and equivalent width. Mainstone (1974) and Mainstone and Weeks (1970), on the 

basis of experimental and analytical results, proposed the relation (3), which was also included in the 

American codes (FEMA 274, 1974; FEMA 306, 1999). Liauw and Kwan (1984) also proposed a 

semiempirical expression, given by the relation (4), considering the adoption of angle θ equal to 25° 

and 50°, common values in engineering practice. Paulay and Pristley (1992) suggested to consider a 

conservative ratio w/d equal to 1/4. 

𝑤

𝑑
= 0.175 𝜆ℎ

−0.4 (3) 

𝑤

𝑑
=
0.95 sin 2𝛳

2 √𝜆ℎ
 (4) 

Single-strut models, while effective in capturing the overall response of infilled frames, often do not 

adequately capture the actual distribution of bending moments and shearing forces within the frame 
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members. To address this limitation, more sophisticated macro-models featuring multiple struts have 

been developed. 

A notable contribution in this direction was made by Thiruvengadam (1985), who introduced a model 

that integrates a moment-resisting frame with numerous pin-jointed diagonal and vertical struts. Figure 

30 illustrates the model both before and after the detachment between the frame and infill. This model, 

recognised for its comprehensive representation, was adopted for the evaluation of infilled frames with 

openings within the FEMA 356 (2000) guidelines. 

  
(a) (b) 

Figure 30 Modelling of frames through multiple struts through Thiruvengadam model (Thiruvengadam, 

1985): (a) before frame-infill separation; (b) after frame-infill separation 

Chrysostomou (1991) and Chrysostomou et al. (2002) proposed a model featuring six compression-

only diagonal struts that are active only when compressed (Figure 31), with the aim of analysing also 

the cyclic response. The off-diagonal members were strategically positioned at critical locations along 

the frame members, associated with the development of plastic hinges.  

 

Figure 31 Six-strut model for masonry infilled frames (Chrysostomou, 1991) 
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A similar model was proposed in (El-Dakhakhni, 2000; El-Dakhakhni et al., 2003), given by a six 

compression-only diagonal struts (Figure 32) for the modelling of concrete masonry steel infilled 

frames, characterised by a different evaluation of the contact lengths on columns and beams. 

 

Figure 32 Proposed concrete masonry-infilled steel frame model (El-Dakhakhni et al., 2003) (only the struts 

active in one direction are represented) 

Crisafulli and Carr (2007) proposed a four-node panel element, by considering separately its 

compressive and shear behaviour, using two compressive struts and one shear spring per direction 

respectively. This configuration allows to properly consider the strength of the masonry when failure is 

expected through shear sliding or diagonal cracking. 

 

Figure 33 Multistrut model proposed by Crisafulli and Carr (2007; only the struts and the shear spring 

active in one direction are represented) 

Crisafulli (1997) highlighted that the distribution of forces within the frame members can significantly 

vary with the macro-model considered, after comparing the monotonic response of a single-strut, two-

strut, and three-strut models, with a refined finite element model serving as a benchmark (Figure 34a). 

Despite similarities in lateral stiffness, the induced actions on the surrounding frame varied significantly 
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(Figure 34b). The single-strut model, characterised by a truss mechanism, generally led to an 

underestimation of bending moments with the respect of FEM model. In contrast, two-strut models 

tended to slightly overestimate the actions. The three-strut model provided the best approximation. 

(a)  

(b)  

Figure 34 Comparison among different strut models in (Crisafulli, 1997): (a) representations of the models 

and (b) comparison of the bending moments diagrams 

 Advanced modelling approaches 

Advanced modelling approaches are conceived to represent the local phenomena that may characterise 

the behaviour of infilled frames subjected to in-plane lateral loading, such as cracking and crushing of 

the masonry, and ever-changing contact interactions at the interfaces between frame and infill. This 

strategy necessitates the precise definition of three distinct elements: the masonry infill, the surrounding 

frame, and the border interfaces essential for simulating the contact interactions between the frame and 

infill. 

Generally, the modelling approaches applicable to unreinforced masonry structures can be extended for 

the representation of masonry infills. In a macro-scale approach, the masonry material can be 

conceptualized as an isotropic and homogeneous medium, defined by specific stress-strain relationship 

and failure criterion. Various criteria, such as the Von-Mises criterion with tension cut-off (Page, 1992) 

or the Drucker-Prager criterion (Mosalam et al., 1993), have been utilised. Masonry infills may also be 

meticulously modelled through a micro-scale approach, wherein bricks and mortar layers are 
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represented by continuum elements, separated by interface contact elements. Some examples of micro-

scale modelling of infills were provided in (Ali and Page, 1987; Mohyeddin et al., 2013; Mosalam et 

al., 1993, 1993; Page, 1992). Ultimately, the meso-scale approach (or simplified micro-scale method), 

presents a compromise in balancing accuracy and computational efficiency. This method is 

characterised by the incorporation of interface contact elements, allowing for the specific consideration 

of mortar layers and mortar-brick interfaces. This approach was extensively used for the modelling of 

masonry infills, as evidenced by studies conducted in (Chen and Liu, 2015; Dhir et al., 2021; Di Trapani 

et al., 2022; Kareem et al., 2022; Koutromanos et al., 2011; Mehrabi and Shing, 1997, 1994; Penava et 

al., 2016; Xavier, 2015). 

The modelling of the surrounding frame can be generally implemented through two approaches: 

employing beam elements, as demonstrated in studies such as (Chen and Liu, 2015; King and Pandey, 

1978; Mallick and Severn, 1967), or utilising continuum 2D or 3D elements, as illustrated in research 

conducted by (Dhir et al., 2021; Di Trapani et al., 2022; Kareem et al., 2022; Koutromanos et al., 2011; 

Mehrabi and Shing, 1997, 1994; Mohyeddin et al., 2013; Mosalam et al., 1993; Penava et al., 2016). 

Regarding the use of beam elements, capturing the inelastic response can be achieved through either 

lumped or diffuse plasticity. 

Interface elements play a crucial role in simulating interactions such as separation and sliding between 

the frame and infill. Accurately representing these local phenomena is essential for a realistic depiction 

of the overall behaviour. A first effort to model interfaces was undertaken by Mallick and Severn (1967) 

who introduced an iterative procedure for calculating contact forces within a finite element model, 

specifically addressing areas where interfaces were closed, thus where frames and infills were in 

contact. Subsequently, authors such as Dawe and Yong (1985) and King and Pandey (1978), proposed 

a tie-link connection (depicted in Figure 35a) between the frame and infill. In this configuration, the 

nodes of the panel and frame are designed to either remain connected or separate based on specific 

conditions. The connection element withstands compressive and shear forces but does not provide 

resistance against tensile forces.  

However, the typical approach for the modelling of the behaviour of frame-infill interfaces involves the 

use of interface contact elements. These elements are characterised by the development of shear and 

normal stresses between the two surfaces (as illustrated in Figure 35b). The relationship between 

traction and relative displacement can be defined using various constitutive laws, typically based on 

Coulomb theory, for which relative sliding between two bodies in contact along plane surfaces initiates 

when the shear force parallel to the plane reaches a critical value proportional to the normal force. 
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Moreover, if the interface element experiences a tensile stress exceeding the bond tensile strength, 

separation between the surfaces may occur. An important requirement for these elements is to ensure 

the impenetrability between the frame and infill. Typically, a finite yet high normal stiffness is 

prescribed, allowing for a small but negligible penetration between the bodies during the elastic phase 

(Mosalam et al., 1993). As highlighted by Crisafulli et al. (2000), there is insufficient experimental 

evidence to adequately characterise the shear bond strength and tensile bond strength of interface 

elements. 

  
(a) (b) 

Figure 35 (a) Tie-link element and (b) interface element for the modelling of panel-frame interfaces (taken 

from Crisafulli et al., 2000) 

 Evaluation of openings presence 

Real reinforced concrete infilled framed buildings could present frames without infills, frames with 

solid infills, and frames with partial infill presence due to openings, which generally have a detrimental 

impact on the overall performance. Neglecting openings can result in an unrealistic and generally unsafe 

assessment of the seismic response of infilled framed buildings. 

The openings are frequently overlooked in the analytical assessment of masonry infilled framed 

structures, primarily due to the absence of a simplified and comprehensive model capable of simulating 

their effects (Kurmi and Haldar, 2022). Indeed, although the behaviour of solid infilled frames has been 

extensively studied, those with openings have not received comparable attention. Various analytical 

methods have been proposed; however, according to Chen and Liu (2015), their effectiveness remains 

inadequately examined. 

Micro-model approaches offer a direct means to model openings, since they are directly modellable 

with their actual geometries. Among macro-model approaches, the multi-strut model proposed by 

Thiruvengadam (1985; Figure 30) explicitly accounts for openings geometry, although the evaluation 



2.5 Modelling of Infilled-Frame structures 

49 

of strut characteristics such as position and width is relatively complex (Decanini et al., 2014; Kurmi 

and Haldar, 2022). American codes, including (ASCE/SEI 41-13, 2013; ASCE/SEI 41-17, 2017; FEMA 

356, 2000), recommend this approach for the modelling of openings. 

The second macro-model approach involves the application of reductive coefficients to modify the 

width of the strut within a single equivalent strut modelling of infills. Numerous authors have proposed 

different reduction factors to assess either the decrease in strength (Nwofor, 2012; Tasnimi and 

Mohebkhah, 2011) or stiffness (Asteris et al., 2012; Imai, 1989; Mondal and Jain, 2008; Polyakov, 

1960; Sachanski, 1960) or both strength and stiffness (Al-Chaar et al., 2002; Chen and Liu, 2015; 

Decanini et al., 2014; Durrani and Luo, 1994; Mansouri et al., 2014; Mohammadi and Nikfar, 2013; 

NZSEE, 2006).  

In the presence of small openings, the diagonal compressive strut can still develop; however, with larger 

and more common openings, the strut mechanism cannot effectively develop (Durrani and Luo, 1994). 

Consequently, adopting the single-strut approach to assess infilled frames with openings may not 

accurately represent the actual stress distribution. Therefore, macro-model approaches can provide only 

an indirect means to account for the overall behaviour of the frame-infill system. 

Decanini et al. (2014) demonstrated that the reduction factor can be considered as a unique value for 

both strength and stiffness degradation. They proposed analytical expressions to assess the reduction 

factors, as functions of the area and horizontal length of openings. Distinct analytical expressions were 

provided based on whether openings are entirely surrounded by reinforcements (such as lintels and 

reinforcement bars) or only partially or not at all. Notably, they observed that in the absence of 

reinforcements, infills with openings accounting for more than 40% of the gross panel surface can be 

neglected. For openings with reinforcements, reduction factors are generally not lower than 0.4. Their 

assessment covered frames with central openings, while other authors, including Chen and Liu (2015) 

and Mansouri et al. (2014), also considered the influence of eccentric openings in their proposals of 

reduction factors. 

Mallick and Garg (1971) experimentally studied, through a series of tests on infilled steel frames, the 

influence of the opening position within the infill. They observed that the performance generally 

deteriorates when the opening is positioned closer to the compressed diagonal. Consequently, they 

recommend placing window openings in the mid-height region near the vertical edges of the panel and 

door openings in the centre of the lower half of the panel. The location of openings in the corners should 

be avoided also according to (Decanini et al., 2014; NBC-201, 1994). Kakaletsis and Karayannis (2007) 
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conducted experimental studies on the effects of the shape and location of openings in masonry infilled 

RC frames. They concluded that openings should be situated as close as possible to the edge of the 

infill, distant from the corners. Larger piers, allowing for a better distribution of cracks, result in higher 

energy dissipation, particularly through masonry infill cracking. Additionally, strong infills 

demonstrated superior performance compared to weak infills in terms of strength, stiffness, and energy 

dissipation capacity, attributed to a more effective distribution of cracking. In a numerical study, Chen 

and Liu (2015) found that under monotonic loading, the reduction effect is less pronounced when 

openings are located away from the loaded side compared to cases where openings are toward the 

compressed column. They also observed that variations in several masonry infill properties do not 

significantly affect the response, while the relative stiffness between the frame and infill has a 

noteworthy impact.  

 Macroelement modelling of infills 

An alternative approach to analyse the in-plane response of masonry infilled-frame is provided by the 

macroelement method proposed in (Caliò and Pantò, 2014). In this approach, the infilled wall is 

represented using discrete elements proposed by Calio et al. (2012), detailed in Chapter 2.3.3, while the 

reinforced concrete frame is modelled employing lumped plasticity beam-column elements, allowing 

plastic hinges to form at different positions along the beam span. The computational cost of this 

numerical approach is significantly lower compared to nonlinear finite element modelling. 

Additionally, the adopted strategy offers several advantages over simplified methods where the infill 

contribution is represented by one or more diagonal struts, whose characterisation may not be 

straightforward. Moreover, since each discrete element represents the nonlinear behaviour of the 

corresponding masonry portion, the presence of openings can be easily represented by considering their 

actual dimensions and positions within the infill, with a suitable mesh discretisation. 

The frame element interacts with the masonry panels through nonlinear links distributed along the 

interfaces of the macro-elements. Each external interface resembles those between masonry panels (see 

Figure 20a), consisting of n orthogonal and a single longitudinal nonlinear link. For evaluating the 

nonlinear behaviour of the frame element, it is assumed that plastic hinges can occur in each sub-beam 

element between two nonlinear links. 

Following the implementation presented in (Pantò et al., 2017, 2016; see Figure 20b), which enables 

the representation of the out-of-plane response within URM structures, this approach was also employed 

for modelling the out-of-plane response of infilled frame structures, as in (Pantò et al., 2018a, 2018b). 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 36 Modelling of infilled frame with and without a central door opening: (a, d) the geometrical layout; 

(b,e) model corresponding to the basic mesh; (c, f) model corresponding to a more refined mesh resolution 

(image taken from Caliò and Pantò, 2014) 

An application of macroelement utilisation for infilled frame modelling is also presented in (Minga et 

al., 2020), introduced in Chapter 2.3.3 (refer to Figure 21). In this study, an alternative feature of the 

macroelement kinematics, specifically developed to enable the interaction with frames, is tested by 

simulating an experimental in-plane monotonic pushover test. The utilisation of this macroelement 

approach within infilled frames is discussed in Chapter 5. Following this, the newly enhanced 

macroelement will undergo testing against several experimental tests related to masonry-infilled frame 

structures. 

2.6 Summary and conclusions 

This chapter has provided a comprehensive overview of the responses exhibited by Unreinforced 

Masonry (URM) and masonry-infilled frames, accompanied by an examination of the modelling 

approaches. 

The typical responses of masonry wall structures, covering both in-plane and out-of-plane failure 

modes, have been outlined. Exploring refined modelling approaches, the mesoscale strategy introduced 

in the works of Macorini and Izzuddin (2011) and Eleni Minga, Macorini, and Izzuddin (2018), and the 

continuum isotropic masonry material presented by Chisari, Macorini, and Izzuddin (2020) have been 

presented. Additionally, at a lower scale of refinement, various macroelements have been revisited, 

encompassing both mono-dimensional and bi-dimensional macroelements. The macroelement featured 

in the study by E. Minga et al. (2020) has been given particular attention, as it forms the groundwork 

for the enhanced macroelement that will be presented later. 
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Subsequently, the typical response of masonry-infilled frames has been reviewed. The complexities of 

this structural typology have been delineated, considering both monotonic and cyclic responses. In 

general, masonry-infilled frame structures exhibit a notable increase in stiffness and strength, along 

with enhanced dissipation capacity, compared to the bare frames. However, under cyclic loading 

conditions, these structures show significant stiffness and strength degradation, and are typically 

characterised by pronounced pinching effects due to detachment at frame-infill borders and crack 

opening-closure in masonry and concrete members. Moreover, the presence of irregularities, including 

openings, has proven to be strongly detrimental, potentially leading to soft-story mechanisms. In 

particular, the influence of openings in masonry infill may introduce further complexity, causing a 

decrease in stiffness, ultimate strength, and energy dissipation. 

A comprehensive review of infilled-frame modelling has been undertaken, encompassing both 

simplified (macro-models) and advanced modelling (micro-models) approaches. While micro-models 

offer a high level of fidelity, they necessitate substantial information and computational resources. On 

the other hand, macro-models, comprising single-strut and multi-strut models, offer a computationally 

efficient means to capture global responses, although without detailed attention to local responses. 

Furthermore, the evaluation of the effects of openings, which is crucial for the seismic assessment of 

real infilled frames, is generally not straightforward within the single-strut modelling strategy.  

In Chapter 4, two advanced modelling strategies will be examined for simulating the response of infilled 

frames based on the result of an experimental test. Additionally, the presence of openings will be also 

assessed. The results derived from these simulations not only provide valuable insights into the global 

and local responses of infilled frames but also serve as a benchmark for evaluating the enhanced 

macroelement approach within the infilled-frame analysis framework. The macroelement approach 

effectively addresses specific limitations associated with both micro-models and macro-models, 

demonstrating its capacity to provide an accurate representation of the actual seismic response of 

infilled frames while maintaining high computational efficiency. 
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CHAPTER 3  

MESOSCALE AND MACROSCALE MODELLING 

FOR CYCLIC ANALYSIS OF URM STRUCTURES 

 

3.1 Introduction 

Over recent years, a considerable effort has been devoted to the development of numerical models for 

the simulation of the seismic response of unreinforced masonry (URM) structures. Accurate models are 

critical for realistic assessment under earthquake loading, where the response is particularly complex 

due to masonry anisotropic nature and highly nonlinear behaviour.  

In current practice, seismic assessment of existing masonry building structures is generally conducted 

by performing nonlinear static analysis under increasing lateral loading (pushover analysis). While such 

an analysis procedure provides a satisfactory estimate of load capacity and global ductility, it does not 

explicitly allow for the distinctive hysteretic behaviour under cyclic loading conditions, which 

ultimately determines the actual seismic response up to collapse. The energy dissipated during an 

earthquake is an important parameter for refined structural design and assessment. It is considered by 

the Capacity Spectrum Method in ATC-40 (Applied Technology Council, 1996) which requires the 

evaluation of the equivalent damping factor comprising hysteretic and viscous contributions. The latter 

is obtained by equating the energy dissipated by the analysed system in a single hysteretic cycle to that 

of an equivalent linear damped system. 

Several authors investigated the accuracy provided by different macroscale modelling strategies for 

URM components and structures, where focus was placed mainly on the load-displacement 

characteristics under monotonic loading up to collapse. Extensive comparative studies were carried out 

in (Cattari et al., 2019, 2017) and (ReLUIS, 2020), where differences in the capacity curves provided 
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by different nonlinear modelling strategies were highlighted. In this previous research, URM structures 

comprising individual wall panels and a realistic 3D building were analysed by several software 

packages utilising different macroscale models for masonry, namely (i) the Equivalent Frame (EF) 

approach with different nonlinear material constitutive relationships for masonry, (ii) 2D macroelement 

models and (iii) nonlinear continuum finite element (FE) models. (Calderoni et al., 2015) investigated 

the use of the EF approach with particular attention to the influence of the geometric discretisation of 

masonry perforated walls and showed how the capacity curves significantly vary depending on the 

adopted numerical implementation of the method. (De Falco et al., 2017) studied the monotonic 

nonlinear response of masonry façade walls by varying the material properties within a probabilistic 

framework and showed how different modelling hypotheses significantly affect the probability of 

failure. In (Zizi et al., 2022), a comparison among three different material models (i.e. double Drucker 

Prager (Code_Aster, 2013; Facchini et al., 2017), total strain crack (Midas FEA, 2016; Selby and 

Vecchio, 1993) and concrete damage plasticity (ABAQUS Inc, 2014; Lee and Fenves, 1998) models) 

for 3D continuum macroscale simulation of masonry walls was carried out. In this study, numerical 

comparisons under monotonic loading were also performed to evaluate the suitability of the material 

property ranges provided by Italian building code (MIT, 2019) for various masonry types. The obtained 

numerical monotonic curves were compared against experimental results in the literature showing that 

the application of recommended masonry material properties may lead to unrealistic predictions, as 

significant discrepancies between the numerical and experimental curves were observed for material 

properties within the indicated ranges of variation. (Cattari et al., 2021) explored the potential of using 

macroscale continuum FE descriptions with a concrete damaged plasticity material model (Lee and 

Fenves, 1998) for masonry and the EF approach (Lagomarsino et al., 2013) to predict the local and 

global response of masonry panels and of a representative masonry building façade subjected to 

horizontal monotonic loading. A cross-consistent calibration procedure was also proposed, where the 

material and geometrical characteristics of the equivalent frame models were calibrated based on the 

numerical predictions provided the baseline continuum FE models. The nonlinear response of 

unreinforced masonry wall structures was investigated in (Bomben et al., 2022) using three 1D elasto-

plastic models implemented in commercial software for structural assessment. It was shown that the 

different models provide close monotonic predictions but very different responses under cyclic loading 

conditions. 

As pointed out before, most of previous numerical research investigated the monotonic behaviour of 

masonry wall structures under in-plane horizontal loading disregarding energy dissipation 

characteristics, which ultimately determine the response of real structures under earthquake loading. 

Importantly, it was found that different models for URM may lead to quite different predictions, and 
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the use of sophisticated model does not necessarily imply more accurate results. More refined models 

typically require several materials parameters, potentially not all quantifiable through standard material 

tests. Since numerical predictions are greatly affected by the specific selection of the material properties 

for URM, the sensitivity of the global response to less known material parameters should be properly 

assessed, before considering any refined model as a reference. 

In the present chapter the ability of different advanced modelling approaches to reproduce the hysteretic 

behaviour of masonry wall components and structures is investigated, by evaluating the nonlinear 

response under cyclic loading conditions including the dissipated energy. FE models based on two 

different scales of representation for masonry are compared: detailed mesoscale models (Macorini and 

Izzuddin, 2011) accounting for masonry bond explicitly by a separate representation of masonry units 

and mortar joints, and continuum macroscale models, in which masonry is assumed as a uniform and 

isotropic material, adopting a damage-plasticity constitutive model for masonry (Chisari et al., 2020). 

The accuracy guaranteed by the two alternative modelling strategies is assessed through comparisons 

against experimental tests from the literature. Emphasis is given to the definition of the material 

properties required by the two modelling approaches on the basis of the results from standard material 

tests. Extensive parametric studies are conducted by varying the most critical and uncertain parameters 

within realistic ranges, in order the evaluate their influence on the global response. Final considerations 

concerning the ease of calibration, the accuracy of the models through either standard or refined 

calibrations, and the computational cost are outlined together with possible links between material 

calibration for the adopted macroscale and mesoscale masonry models. 

3.2 Experimental tests 

The cyclic tests on brick-masonry panels under in-plane horizontal loading performed at the Joint 

Research Centre in Ispra (Anthoine et al., 1995) are herein considered. Two-wythes thick panels, built 

with alternate courses of stretchers and headers (English bond), were examined. The specimens are 

characterised by different aspect ratios: a squat panel (“Short Panel”) and a slender wall (“Tall Panel”). 

A detailed study on the masonry material properties of the actual specimens is given in (Binda et al., 

1995), where an accurate characterisation of the properties of mortar, bricks and brick-mortar joints is 

provided (Table 5). The geometric characteristics of the wall specimens are given in Table 6. 

In the physical tests, the masonry panels were subjected to an initial vertical load of 150 kN, which was 

uniformly distributed at the top of the wall by a stiff spreader beam. Subsequently, horizontal forces 
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were applied under displacement control at the top beam, which was maintained horizontal throughout 

the analysis. The applied horizontal displacement histories are reported in Figure 37.  

Table 5. Material properties for the case studies (Binda et al., 1995) 

Property Source Symbol Mean value 

Brick tensile strength (*) Bending test 
ffl,b 2.44 MPa 

ft,b 1.22 MPa 

Brick compression strength Simple compression test fc,b 26.9 MPa 

Mortar compression strength Simple compression test fc,m 3.31 MPa 

Brick secant elastic modulus (**) Simple compression test Eb 2515 MPa 

Mortar tensile strength Bending test ft,m 0.58 MPa 

Joint tensile strength Cross-tension test ft,j 0.04 MPa 

Joint cohesion Triplet shear test cj 0.23 MPa 

Joint coeff. of friction Triplet shear test tanφj 0.58  

Masonry compression strength Compression test on wallets fc,M 6.2 MPa 

Masonry secant elastic modulus (***) Compression test on wallets EM 1491  

Brick nominal dimensions hb∙ lb∙ tb 55x120x250 mm 

Bed joint nominal thickness hm 10 mm 

Mortar composition Hydraulic lime/sand = 1/3 in volume 
(*) A reductive coefficient equal to 0.5 is applied to the flexural strength obtained through bending test, in order to determine brick tensile 

strength, as suggested in the Eurocode 2 for reinforced concrete structures(EN 1992-1-1, 2004, p. 2); experimental tests performed on the solid 

clay bricks, described in  (Binda et al., 1995), proved the acceptability of the correction. 

(**) Average secant modulus obtained from compression tests on bricks in the flatwise, lengthwise, and widthwise orientations, each 

calculated within the range of 30% to 50% of their respective compressive strengths (Binda et al., 1995). 

.(***) Average secant modulus derived from compression tests conducted on 5 prisms, with each secant modulus calculated within the range 

of 30% to 60% of their corresponding compressive strengths (Binda et al., 1995). 

Table 6. Geometric features of the panels 

Parameter Unit Low panel High panel 

Height [m] 1.35 2 

Length [m] 1.00 1.00 

Thickness [m] 0.25 0.25 

Vertical stress [MPa] 0.6 0.6 

Failure mode  shear – diagonal cracking flexural 
 

The two walls exhibited distinct failure modes, as evidenced by the different experimental cracking 

patterns reported by Anthoine et al. (1995). The sketches illustrating the cracking patterns of both walls 

are presented in Figure 38, where the short wall specimen experienced a predominant diagonal shear 

cracking accompanied by joint openings at the top and bottom of the wall (Figure 38a), while the tall 

wall specimen exhibited horizontal cracking due to flexural bending and rocking cyclic behaviour 

(Figure 38b). The distinct response of the specimens is also evident in the experimental shear-

displacement curves (Figure 39). The cycle for the short wall is wider, characterised by both strength 

and stiffness degradation (Figure 39a). In contrast, the tall panel exhibits the typical flexural S-shaped 

cycle (Figure 39b) with no observed strength degradation and only a slight stiffness degradation, 
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although an enlargement of the cycle is observed towards the end of the experiment, probably attributed 

to the initiation of a diagonal cracking damage. 

 

  
 (a) (b) 

Figure 37. Imposed displacements: a) short panel; b) tall panel 

(a)     (b)  

Figure 38. Experimental damage patterns of URM panel specimens tested in (Anthoine et al., 1995): a) 

short panel; b) tall panel 

  
(a) (b) 

Figure 39 Experimental base shear vs lateral displacement cycles: (a) short panel; (b) tall panel 
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Furthermore, an entire two-storey perforated wall, which was experimentally tested by Magenes et al. 

(1995), was also investigated. The façade wall part of full scale two-storey URM building specimen 

(Figure 40) is named Wall D in (Magenes et al., 1995) and features a regular distribution of openings, 

with a thickness of 250mm. In the test, Wall D was disconnected from the rest of the building and 

loaded by vertical loads of 248.4kN and 236.8KN uniformly distributed at to the first and second floor 

level leading to a precompression of 0.5÷0.6 MPa at the base of the piers. The structure was then 

subjected to in-plane cyclic loading under displacement control with equal horizontal forces applied at 

the two floor levels. The resulting displacements at the two floors are reported Figure 41. The two-

storey wall is characterised by the same material properties of the single panels (Table 5). 

a)  b)  

Figure 40 a) Front view of the Door Wall (measurements are in cm); (b) application of the horizontal forces 

 

Figure 41 Displacements experimentally measured at the first and second floor of the Wall-D specimen 
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The progression of damage is depicted in Figure 42. Damage initiates from the spandrels on both floors 

and with joint openings at the bottom of the piers. Subsequently, it extends involving flexural damage 

also at the top of the ground-floor piers and on both sides of the lateral first-floor piers. Additionally, 

increasing damage on the spandrels and shear diagonal cracking on the ground-floor piers are observed, 

and these are correlated with the widening of the base shear versus first-floor lateral displacement cycle 

(reported in Figure 43). 

    
(a) (b) (c) (d) 

Figure 42 Progression of experimental damage pattern of Wall D: 1) end of run 4 (max. drift 0.10%); 2) 

end of run 5 (max. drift 0.20%); 3) end of run 6 (max. drift 0.30%); 4) end of run 7 (max. drift 0.40%), 

from Magenes et al. (1995) 

 

Figure 43 Experimental base shear vs. 2th floor lateral displacement cycle of Wall D 
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both interface and solid elements, along with the mechanical parameters governing the nonlinear 

interfaces, crucial for the nonlinear response of a mesoscale model, are defined through the results from 

the physical tests on masonry components (Binda et al., 1995). Moreover, the characterisation includes 

fracture energy values for the interfaces, which are treated as unknown parameters. Different 

recommendations from the literature are taken into consideration to assess the sensitivity of the wall 

response predictions to the variation in these fracture energy values. Furthermore, other uncertainties 

are taken into account, such as the potential reduction in cohesion in head mortar joints due to mortar 

shrinkage and the characterisation of fracture energies. As a result, a reference material characterisation 

and four variants are defined (as outlined in Table 8) and applied in the simulation of both short and tall 

panels. Finally, based on the panel results, an examination of the perforated wall is conducted, 

employing a single material characterisation. 

 Material characterisation 

The determination of the normal and tangential stiffnesses of the joint interfaces, respectively denoted 

as Kn,j and Kt,j, could be approached through elastic considerations by treating the mortar joint as a 

series of unit-interface-unit springs. In this way, knowing the elastic properties of brick and mortar, Kn,j 

and Kt,j would be then determinable. However, as underlined in (Lourenço and Gaetani, 2022), this 

approach ignores two important aspects. First, the mortar-unit interface is not infinitely rigid but 

possesses a certain stiffness (or deformability). Second, test on isolated mortar samples might 

overestimate the actual interface properties, since the real mortar stiffness within the masonry is 

unknown. For these reasons, stiffnesses can be evaluated as a function of the elastic properties of bricks 

and masonry at the macroscale, using relations (5) and (6): 

𝐾𝑛,𝑗 =
𝐸𝑏𝐸𝑀

(ℎ𝑏+ℎ𝑚)(𝐸𝑏 − 𝐸𝑀)
 (5) 

𝐾𝑡,𝑗 =
𝐺𝑏𝐺𝑀

(ℎ𝑏+ℎ𝑚)(𝐺𝑏 − 𝐺𝑀)
=

𝐾𝑛,𝑗

2(1 + 𝜈)
 (6) 

where Eb, Gb, and EM, GM, represent the normal and tangential elastic modulus for brick and mortar, 

respectively, hb denotes the height of the brick and hm is the thickness of the mortar layers; the subscript 

“b” refers to brick, “m” to mortar, “M” to masonry, ”j” to mortar joint, “n” to normal direction, “t” to 

tangential direction. Assuming, then, a common Poisson’s ratio (ν) for both brick and mortar and 

considering the general linear elastic isotropic relation described in (7), the tangential stiffness can be 

directly derived from the normal stiffness through (8). 
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𝐸 =  2 G(1 + 𝜈) (7) 

𝐾𝑡,𝑗 =
𝐾𝑛,𝑗

2(1 + 𝜈)
 (8) 

The elastic modulus of masonry EM and brick Eb are assumed as the initial tangent values, derived from 

the experimental stress-strain curves reported in (Binda et al., 1995). Specifically, the modulus of 

masonry is 19 0 MPa, and the modulus of brick is 4000 MPa. Additionally, a Poisson’s coefficient of 

0.2 is considered for both brick and masonry. Elastic stiffnesses of joint interfaces are then calculated 

using equations (5) and (8) and presented in Table 8, along with other material properties. For brick-

brick interfaces, a high value of 104 N/mm³ is assigned, both for the normal and tangential directions. 

Mechanical parameters of interfaces, including joint tensile strength (ft,j), joint cohesion (cj) and joint 

coefficient of friction (tan φ
j
), are experimentally provided for mortar joints and detailed in Table 5. To 

determine the brick tensile strength (ft,b), a corrective factor of 0.5 is applied to the experimental value. 

This correction is suggested in (Magenes and Calvi, 1997) to account for the indirect evaluation of brick 

tensile strength through a bending test. Finally, the compression strength is evaluated in a "macroscale" 

manner, differentiating between horizontal (fc,h) and vertical (fc,v) interfaces (thus equally considering 

mortar head joints and internal brick interfaces). For the horizontal interfaces, the compression strength 

is derived from experimental tests on masonry wallets, while the vertical strength is estimated as the 

50% of the value, to account for the orthotropic response of masonry. It is emphasised that in the present 

context, pertaining to the assessment of URM structures, the differentiation between horizontal and 

vertical interfaces does not significantly influence the overall response. However, this distinction 

becomes critical when analysing infilled frame structures (as will be shown in Chapter 4), where the 

stress state of the masonry infill differs significantly, making the specification of the horizontal 

compressive strength crucial. 

Fracture energies values (referring to mode I, mode II and crushing mode) may represent uncertain 

parameters within the material calibration. Indeed, as highlighted by Jafari et al. (2022), only a limited 

number of studies have experimentally characterised the fracture energy of mortar, unit, and masonry 

under tensile loading. Van der Pluijm (1992, 1993, 1999) experimentally studied the characterisation 

for mode I (GI,j) and mode II (GII,j) failures of mortar joints; Table 7 provides the suggested ranges he 

presented in the research. 
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Table 7. Mode I and mode II suggested fracture energies values for joint mortar interfaces (energy values 

expressed in N/mm; cj in N/mm2) 

 Mode I (GI,j) Mode II (GII,j) 

Source 
(Van der Pluijm, 

1992) 

(Van der Pluijm, 

1999) 

(Van der Pluijm, 

1993) (*) 

(Van der Pluijm, 

1999) 

Min 0.005 0.005 0.01 0.062 ∙ cj 

Max 0.02 0.035 0.25 0.147 ∙ cj 
(*) for cj between 0.1 and 1.8 N/mm2 

In the present context, to evaluate the sensitivity of the simulations based on their specification, the 

Mode I and Mode II fracture energies of mortar joint interfaces are assessed by defining a range 

variation, including a central reference value, a minimum, and a maximum. In particular, the reference 

value for GI,j is assessed as the average of the values provided in Table 7, resulting in 0.016 N/mm, 

while GII,j is determined as 10 times higher, as suggested in Jafari et al. (2022), resulting in 0.16 N/mm. 

The lower and upper range limits are derived from Table 7 by considering the minimum and maximum 

values of the energies provided. 

Regarding the crushing failure energy of masonry (Gc,j), considered as a whole, scholars such as 

Lourenço (1996) recommended the use of the parabolic curve proposed by Model Code 90 (provided 

by relation(9); Comité Euro-International du Béton 1993), originally developed for the modelling of the 

nonlinear behaviour of concrete in compression: 

𝐺𝑐,𝑗 = 15 + 0.43 ∙ 𝑓𝑐,𝑀 − 0.0036 ∙  𝑓𝑐,𝑀
2
 (9) 

where fc,M represents the compressive strength of masonry, expressed in in N/mm2, and the crushing 

energy is given in N/mm. 

For the mode I fracture energy of internal brick interfaces (GI,b), the following expression is considered, 

derived from (Lourenço and Gaetani, 2022). 

𝐺𝐼,𝑏 = 0.07 ∙ ln(1 + 0.17 𝑓𝑐,𝑏) (10) 

where fc,b is the brick compression strength.  

Finally, four variant characterisations are investigated (refer to Table 8), to address aspects that might 

introduce uncertainty within a mesoscale modelling framework: 

• Variant 1: Head-joints are defined with cohesion and bond strength set to 1/10 of the reference 

values, aiming to assess potential effects related to mortar shrinkage. 
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• Variant 2: Mode I and II fracture energies are defined with minimum values of 0.005 and 0.014 

N/mm (minimum values of Table 7). 

• Variant 3: Mode I and II fracture energies are defined with maximum values of 0.035 and 0.25 

N/mm (maximum values of Table 7). 

• Variant 4: The stiffness degradation parameter is set to 0.5 instead of 0.1 (the latter considered 

as reference value), allowing for a higher level of degradation under cyclic actions. 

All the interface mechanical parameters, including both reference and variant characterisations, are 

summarised in Table 8. 
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Table 8 Reference and variant material characterisations; the variable parameters are reported in shaded 

cells 

Parameter Symbol u.o.m. Ref. Var. 1 Var. 2 Var. 3 Var. 4 

Units 

elastic 

parameters 

Elastic modulus Eb N/mm2 4000 

Poisson’s coefficient νb - 0.2 

Interfaces 

elastic 

parameters 

Mortar 

joints 

Normal 

stiffness 
Kn,j N/mm3 60.3 

Tangential 

stiffness 
Kt,j N/mm3 25.1 

Internal 

bricks 

Normal 

stiffness 
Kn,b N/mm3 10⁴ 

Tangential 

stiffness 
Kt,b N/mm3 10⁴ 

Interfaces 

mechanical 

parameters 

Mortar 

joints 

Cohesion cj N/mm2 0.23 

0.023 
(only 

head 
joints) 

0.23 0.23 0.23 

Friction 

coefficient 
tanφj - 0.58 

Tensile 

strength 
ft,j N/mm2 0.04 

0.004 
(only 

head 
joints) 

0.04 0.04 0.04 

Internal 

bricks 

Tensile 

strength 
ft,b N/mm2 1.22 

Compressive strength 

horizontal interfaces 
fc,h N/mm2 6.2 

Compressive strength 

vertical interfaces 
fc,v N/mm2 3.1 

Interfaces 

fracture 

energies 

Mortar 

joints 

(horizontal 

and vertical) 

Mode I GI,j N/mm 0.016 0.016 0.005 0.035 0.016 

Mode II GII,j N/mm 0.16 0.16 0.014 0.25 0.16 

Internal 

bricks 
Mode I GI,b N/mm 0.12 

Crushing - horizontal 

interfaces 
Gc,h N/mm 17.5 

Crushing – vertical 

interfaces 
Gc,v N/mm 16.3 

Interfaces 

stiffness 

degradation 

Mortar joints μj - 0.1 0.1 0.1 0.1 0.5 

Internal bricks μb - 0.1 

 Numerical results 

The two masonry panels are modelled by restraining the bottom as a fixed surface, while a uniform 

compressive pressure of 0.6 MPa is applied on the top employing an elastic stiff element, which is 

supported to remain horizontal. Lateral horizontal displacements, either monotonically or cyclically 

increasing (Figure 37), are then applied to the top element. As the input data models are only text-based, 

the structural geometries (composed of bricks, mortar head-joints, mortar-bed-joints, internal brick 
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interfaces) are first defined through Gmsh scripts (Geuzaine and Remacle, 2009) and then implemented 

as ADAPTIC data file (Izzuddin, 1991). In particular, an English bond pattern is defined, characterised 

by the alternating arrangement of header and stretcher rows, resulting in a distinct sequence of mortar 

head-joints and brick-to-brick internal failure surfaces (see Figure 44). The model, including load and 

boundary conditions, as well as specifications for cohesive interfaces, is depicted in Figure 45. The 

short panel model is characterised by 7360 3-DoF nodes, while the tall panel model consists of 10560 

3-DoF nodes, resulting in 22080 DoFs and 31680 DoFs, respectively. The experimental displacements 

are transformed into equivalent accelerations by fitting them with spline curves and subsequently 

differentiated twice. These accelerations are applied to the nodes on the top beams by performing 

dynamic nonlinear analysis. This procedure is adopted throughout all the thesis, when performing cyclic 

analysis since dynamic analysis is generally more stable than displacement-controlled static analysis 

because inertial terms make the problem better conditioned even in case of loss of stiffness. 

 

Figure 44 Mesoscale modelling of two-wythe thick English bond pattern 

 

 

 

 

 

 

Mortar bed-joint 

Mortar head-joint 

Brick unit 

Brick-to-brick 

interface 



Chapter 3. Mesoscale and macroscale modelling for cyclic analysis of URM structures 

66 

 

 
 

 

 

 
(a) (b) 

Figure 45 Mesoscale representation of a panel subjected to in-plane loading: (a) brick elements, steel beam, 

and boundary conditions; (b) interface elements distinct between mortar joints (bed- and head-joint are 

identically represented) and internal brick-to-brick potential failure surfaces 

The results of the reference models subjected to monotonic and cyclic actions are depicted in Figure 46 

and Figure 47. These include shear force vs. horizontal displacement curves, tensile damage on the 

interface elements (which mirrors shear damage on the interfaces), and deformed shapes (highlighting 

the opening and sliding of interfaces between units). Overall, the results demonstrate good agreement 

in terms of cracking patterns and shear-displacement curves for both specimens. 

In the case of the short panel (Figure 46) subjected to monotonic loading, the damage pattern aligns 

with the experimental observations. Shear diagonal cracking damage is observable from the tensile 

damage of the interfaces and the deformed shape, accompanied by flexural horizontal cracks at the 

corners. The monotonic curve exhibits a good prediction of the initial elastic stiffness and the peak 

strength. However, the post-peak behaviour does not exhibit the strength softening observed in the 

experimental cycle. When subjected to cyclic actions, the model exhibits the typical X-shaped damage 

from shear diagonal cracking. The numerical cyclic curve closely approximate the experimental cycle, 

with stiffness degradation reasonably replicated. However, similar to the monotonic curve, the post-

peak behaviour does not exhibit the strength softening observed in the experimental cycle. 
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In the case of the tall panel (Figure 47) subjected to monotonic loading, the typical damage associated 

with in-plane rocking behaviour is observed, characterised by cracking zones at both the bottom and 

top. The same mechanism is observed during the cyclic analysis. The monotonic shear-displacement 

curve closely fits the envelope of the experimental cycle. Regarding the cyclic response, the typical S-

shaped cycle, indicative of flexural damage in masonry elements, is observable. However, after reaching 

a certain displacement, the numerical model experiences a loss of symmetry and begins to shift towards 

one side due to accumulated shear plastic strain at the two extremities of the model. The observed 

experimental degradation in stiffness is not replicated. One reason for this discrepancy could be 

attributed to the assumption of simplified elastic unloading-reloading in the constitutive model proposed 

by Minga et al., (2018), which, in reality, involves a certain level of hysteresis. It should also be noted 

that during the experimental test, damage within the panel was observed for large displacements, likely 

leading to the widening of the cycle. 

Monotonic and cyclic pushover analyses are subsequently conducted on the variant characterisations 

defined in Table 8. Remarkably, a low variability in global responses is observed across capacity curves, 

cyclic diagrams, failure modes, and dissipated energy. The experimental-numerical comparisons in 

terms of shear vs. displacement curves are reported in Figure 48. In the case of the short panel, the 

analysis of variant 1 (weak head-joint) terminates earlier, even though its response aligns with that of 

the reference characterisation. Employing higher but reasonable fracture energies (Variant 3) may 

facilitate the convergence of the analysis. As for the tall panel, Variant 1 and 2 (low fracture energies) 

exhibit, at approximately 10 mm of displacement, a change in the slope of the unloading stiffness, 

leading to an earlier termination of the analysis (for the other cases the analysis are completed). This 

change is attributed to the spreading of shear-tensile damage of the interfaces within the panel, which 

in the experimental test is observed for large displacements. 
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Figure 46 Short panel under in-plane cyclic loading: experimental-numerical shear force vs. horizontal 

displacement comparison, tensile damage developed in the interfaces and deformed shape at the last step 

reached in the monotonic and cyclic analysis 
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Figure 47 Tall panel under in-plane cyclic loading: experimental-numerical shear force vs. horizontal 

displacement comparison, tensile damage developed in the interfaces and deformed shape at the last step 

reached in the monotonic and cyclic analysis 
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Figure 48 Monotonic and cyclic horizontal displacement vs. shear force curves for each mesoscale variants 
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Finally, the façade with openings is examined under horizontal cyclic actions (Figure 41). Considering 

the low variability of the responses from the models of the single panels, the material characterisation 

with high fracture energy (Variant 3 of Table 8) is employed. The vertical actions are uniformly 

distributed at the two levels, denoted respectively w1 and w2. The model is fully fixed at the base. For 

the application of the horizontal action, the average of the measured experimental displacements of the 

two floors, denoted as U, is applied to a master node located between the two floors, as represented in 

Figure 49. Subsequently, through a spreader element, the corresponding total force (denoted as F in the 

image) is equally distributed to all the nodes of the two floors (ntot denotes the total number of nodes at 

the two floors), ensuring the same magnitude of force is applied to both floors, as in the experimental 

test (as described by Magenes et al., 1995). The model is hierarchically partitioned with 77 partitions 

to improve the computational efficiency, as proposed by Jokhio and Izzuddin (2015) and detailed in 

Chapter 2.3.1. In total, the model consists of 15490 3-DoF nodes and 1115 6-DoF nodes (nodes at the 

boundary partitions), amounting to a total of 156035 nodes and 471450 degrees of freedom. The 

calculation was carried within the high-performance computing facilities at Imperial College London 

and was terminated (analysis not completed) after approximately 166 hours. 

 

Figure 49 Loading applications and boundary conditions of the Wall D model 

The second-floor displacement vs. base shear cycle, along with the experimental response, is reported 

in Figure 50. A good prediction of the initial stiffness is observed, while the maximum strength appears 

to be slightly overestimated, within a 10% variation. However, there is significant strength degradation 

in the first cycles, attributed to the excessively rapid failure of the spandrels (Figure 51). It is noteworthy 

that no lintels are modelled, as there are no specifications about them in Magenes et al. (1995), although 
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they were likely present. The rapid collapse of the spandrels on the first floor leads to a cycle with 

pronounced pinching, caused by the rocking of the piers on both sides.  

This prediction does not diminish the reliability of the mesoscale modelling. Since it is a detailed model, 

when modelling large structures, it is important to appropriately consider construction details, such as 

lintels, as well as the connections between walls or between walls and floors. The model will be 

reanalysed by appropriately modelling the lintels. 

 

Figure 50 Analysis on the façade with openings 

   

(a) (b) (c) 

Figure 51. Perforated wall: a) damage on the interfaces and b) units deformations at the end of the cyclic 

analysis; c) experimental damage observed with a drift of 0.20% (Magenes et al., 1995) 

-30 -20 -10 0 10 20 30

Second floor displacement  mm 

-200

-150

-100

-50

0

50

100

150

200

 
as

e 
sh

ea
r 
fo

rc
e 

 k
 

 

Experimental

Cyclic



Chapter 3. Mesoscale and macroscale modelling for cyclic analysis of URM structures 

72 

3.4 Continuum macroscale modelling 

This section investigates the application of the continuum macroscale modelling approach (detailed in 

Chapter 2.3.2), employing the Concrete Damage Plasticity (CDP) model to represent the masonry 

medium as a nonlinear isotropic material. The material model necessitates definition through numerous 

parameters, which may not be directly correlated with available experimental material characteristics, 

which comprise the characteristics of the constituents (bricks and mortar joints) and, at the macroscale 

level, the compressive strength, but do not include an evaluation of the global tensile strength.  

To thoroughly assess the model's sensitivity to the analyst’s choice, an extensive series of analyses on 

the single panels is conducted. This involves considering a set of reference values and 14 additional 

variants, each derived by individually modifying several defining parameters of the CDP model. The 

characterisations investigated are summarised in Table 10. A justification for the selection of these 

parameters is provided later on, followed by the presentation of the principal results derived from the 

analyses. Finally, the Wall-D is analysed employing a more refined material characterisation, defined 

based on the insights gained from the single-panel analyses, and compared to results obtained adopting 

the initial reference values. 

 Material characterisation 

Concerning the stiffness properties, the elastic behaviour is characterised by the initial tangent Young’s 

modulus and a Poisson’s coefficient set at 0.2. The same elastic properties are applied to both 

compressive and tensile responses. 

Determining the tensile strength of masonry as a whole within a continuum macroscale approach, for 

which no results from experimental tests are available (i.e., shear-compression or diagonal-compression 

test), is challenging and not straightforward. As emphasised by Lourenco and Gaetani (2022), the 

compressive strength (which in the present case is experimentally evaluated) and tensile strength of 

masonry significantly differ from each other. The former is generally associated with the composite 

behaviour of brick and mortar, while the latter is more linked to joint behaviour. Consequently, it is 

considered unrealistic to establish a direct correlation between the tensile strength of masonry and its 

compressive strength. In the present context, to assess how the overall response may vary, the 

specification for the tensile strength is determined by varying its value within a reasonable range, 

including a reference value and three additional values. The reference value, in accordance with 

standard engineering practices, is determined by considering mechanical parameters suggested by the 
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Italian code (MIT, 2019). Specifically, the typology of solid brick masonry with lime mortar, a typology 

analogous to the masonry evaluated in the experimental tests, is considered, whose mechanical 

parameter ranges are provided in Table 9. Since the experimental values for the elastic modulus and 

compressive strength exceed the range limits, the average shear tensile strength with zero vertical stress 

(denoted as τ0,M) is adopted as the maximum value, set at 0.13 MPa. The evaluation of the tensile 

strength is then conducted by identifying the maximum stress occurring at the centre of the panel, 

considering 1.5 times the value of τ0,M, resulting in a global tensile strength of 0.2 MPa. 

Table 9. Suggested material characteristics by Italian regulation for Solid brick masonry with lime mortar 

(MIT, 2019). 

fc,M 

[MPa] 

τ0,M 

[MPa] 

fv0,M 

[MPa] 

EM 

[MPa] 

GM 

[MPa] 

w 

[kN/m3] 

min-max min-max min-max min-max min-max 
18 

2.6÷4.3 0.05÷0.13 0.13÷0.27 1200÷1800 400÷600 

Regarding the minimum value of the variation range, this is set by considering the experimental bond 

strength (Table 5), which is equal to 0.04 MPa. Another value evaluated within the assessed range is 

determined by considering the lower limit in Table 9 for the shear strength τ0,M, which results in a 

tensile strength of 0.08 MPa. As for the maximum value of the range, the analytical relation (11) is 

employed, as proposed by Lourenco and Gaetani (2022). This relation considers the typical behaviour 

of masonry under tension parallel to the bed-joint, characterised by failure marked by a stepped crack 

through head and bed-joints. The relation establishes the tensile strength as a function of cohesion (cj), 

overlapping length (l0) – calculated as the average of half-length unit (lb) and half-width unit (tb) due 

to the alternation of header and stretcher – and unit height (hb), resulting in a tensile strength of 0.39 

MPa. 

𝑓𝑡 =
𝑐𝑗  𝑙0

ℎ𝑏
 (11) 

Regarding the fracture energy in tension Gt, a reference value of 0.02 N/mm, as recommended in 

(Lourenço and Gaetani, 2022) for macroscale modelling, is adopted. The minimum and maximum 

fracture energy values assessed are established at 0.005 and 0.035 N/mm, respectively, derived from 

the suggestions reported in Table 7 regarding the Mode I failure, thus linking the tensile failure of the 

masonry to the mode I fracture energy of the mortar joints. 

The parameter governing stiffness degradation in tension, denoted as μ, is assessed using a reference 

value of 0.2 (taken from Chisari et al., 2020). Sensitivity analyses are conducted with values set at 0.01 

and 0.5.  
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The ratio between biaxial and uniaxial compressive strength fb0̃, flow potential eccentricity ε, and ratio 

of the second stress invariant on the tensile meridian to that on the compressive meridian at initial yield 

(Kc) are assumed as default values from (ABAQUS Inc, 2014), which are equal to 1.16, 0.1, and 0.66, 

respectively. 

The dilatancy angle, denoted as ψ, represents the tendency of certain materials to expand their volume 

when subjected to shear actions. As emphasised by Lourenco (1996), this phenomenon is directly linked 

to the magnitude of confining stress. Specifically, lower confining stress levels are generally associated 

with higher material dilation. The dilatancy angle is defined at the macroscopic level in such a way that 

its tangent is equivalent to the ratio between normal and shear displacement. Essentially, it quantifies 

the uplift of one unit over the other when subjected to shear stresses. In Figure 52, provided from (Van 

der Pluijm, 1993), the outcomes of numerous shear tests on joints in masonry with solid clay units are 

presented. The figure reports a linear regression, illustrating the relationship between the tangent of the 

dilatancy angle and the level of confining stress. Given this linear relation and the confinement level of 

the solid brick masonry panels under consideration (vertical stress equal to 0.6 MPa), the corresponding 

tangent of the dilatancy angle is approximately 0.3. For the analysis, a reference value of 20° is adopted, 

and the sensitivity of this parameter is subsequently examined by varying it within a range between 10° 

and 35°. 

 

Figure 52. T ngent of dil t ncy  ngle ψ  s   function of the norm l stress level,  d pted from Van der 

Pluijm (1993); the marked point corresponds to the confinement level of the examined masonry panels 

Stiffness recovery parameters are crucial in simulating the cyclic response, with distinction between 

compression and tension recovery arising from the different failure mechanisms involved, crushing and 

cracking. In particular, these recovery parameters account for the phenomenon of micro-crack opening 

and closure. Typically, the recovery is significantly higher when passing from tension to compression 

than vice versa. Therefore, the adopted reference values are 1 for compression stiffness recovery (wc), 

indicating full recovery upon crack closure as the load changes from tension to compression, and 0 for 
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tension stiffness recovery (wt), denoting no recovery during the transition from compression to tension 

once the concrete crushing is initiated. Additionally, two further combinations are considered, with 

values of 0.8 and 0.2, and 0.16 and 0.87. In particular, the latter combination represents a combination 

derived from the calibration URM walls conducted by Chisari et al. (2020), using inverse analyses 

through genetic algorithms. Herein, it is considered an extreme, although "anti-intuitive," case 

evaluated. 

The sensitivity assessment also involves varying the ratio between uniaxial yielding stress and 

maximum strength in compression (fyr), ranging from a standard value of 0.3 to a minimum of 0.1 and 

a maximum of 0.5.  

Finally, the plastic strain at the compression peak (kc,fmax), initially set at a central value of 0.002, 

typically found in concrete-like materials (Lourenco and Gaetani 2022), is varied from a minimum of 

0.001 to an extreme maximum of 0.003. 

In summary, material characterisations for reference and variant scenarios adopted in the analysis are 

provided in Table 10. 

Table 10. Reference characterisation and variant case studies for the panels analyses; the variable 

parameters are reported in shaded cells. 

Parameter Symbol U.o.m. 
Reference 

values 
Variants Case study 

Young’s modulus EM [MPa] 1980 - - 

Poisson’s coefficient νM [-] 0.2 - - 

Dilatancy angle ψ [°] 20 10 – 35 CDP1 - CDP2 

Ratio between biaxial and 

uniaxial compressive strength 
fb0 - 1.16 - - 

Flow potential eccentricity ε - 0.1 - - 

Ratio of the second stress 

invariant on the tensile meridian 

to that on the compressive 

meridian at initial yield 

Kc - 0.66 - - 

Global tensile strength ft,M [MPa] 0.20 0.04 - 0.08 - 0.39 
CDP3 – CDP4 – 

CDP5 

Fracture energy Gt [N/mm] 0.02 0.005 - 0.035 CDP6 – CDP7 

Stiffness degradation μ [-] 0.2 0.01 - 0.5 CDP8 – CDP9 

Maximum compression strength fc,M [MPa] 6.2 - - 

Ratio between uniaxial yielding 

stress and maximum strength in 

compression 

fyr [-] 0.3 0.1 – 0.5 
CDP10 - 

CDP11 

Plastic strain at maximum 

compressive strength  
kc,fmax [-] 0.002 0.001 – 0.003 

CDP12 - 

CDP13 

Tensile stiffness recovery wt [-] 0 wt=0.2 & wc=0.8 

wt=0.87 & wc=0.16 

CDP14 

CDP15 Compressive stiffness recovery wc [-] 1 
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 Analysis 

Monotonic and cyclic pushover analyses are conducted on the reference model and 14 variants. The 

boundary and loading conditions of the models are as described in Chapter 3.3.2. The short panel is 

characterised by 2891 3-DoF nodes, while the tall panel consists of 4178 3-DoF nodes, resulting in 

8673 DoFs and 12534 DoFs, respectively.  

Figure 53 and Figure 54 illustrate the monotonic and cyclic response obtained from the analysis of both 

short and tall panels using the reference material characterisation. While initial elastic stiffnesses are 

accurately captured, maximum strengths are overestimated for the capacity curves of both models. 

Noteworthy, the monotonic curves deviate significantly from numerical cyclic envelopes. In the cyclic 

response of the short panel (Figure 53), the initial cyclic phase is characterised by flexural damage, 

indicating damage concentration at the top and bottom of the panel, but with a shear-lateral 

displacement curve far from the typical S-shaped cycle of flexural response and, instead, characterised 

by wide hysteretic cycles. This is reflected also by the high rate of energy dissipation, as illustrated in 

Figure 55, which shows the progression of the total amount of energy (in comparison with the 

experimental progression). In a second phase, the spreading of cracks along the panel's height leads to 

substantial strength and stiffness degradation, accompanied by a decrease in the rate of dissipated 

energy. This crack spreading does not take place within the monotonic analyses. The tall panel exhibits 

a similar overall behaviour (Figure 54), notably without reproducing the typical S-shaped cycle 

experimentally observed. 

SHORT PANEL 

Reference case 

 

Monotonic 

 

Cyclic 

 

 

Figure 53. Short panel responses (reference characterisation): experimental-numerical comparison and 

tensile damage developed in the monotonic (displacement equal to 9mm) and cyclic analysis (last step) 
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TALL PANEL 

Reference case 

 

Monotonic 

 

Cyclic 

 

 

Figure 54. Tall panel responses (reference characterisation): experimental-numerical comparison and 

tensile damage developed in the monotonic (displacement equal to 14mm) and cyclic analysis (last step) 

  
(a) (b) 

Figure 55. Comparison between experimental and numerical dissipated energy: a) short panel; b) tall panel 

The variant models, implemented with the material characterisations of Table 10, exhibit a significant 

variability in global responses, in terms of capacity curves, cyclic diagrams, failure modes, and the 

amount of total energy. Notably, significantly different numerical responses arise from varying the 

global tensile strength, as can be observed in Figure 56 for the short panel and Figure 57 for the tall 

panel. The variant models, implemented with the material characterisations of Table 10, exhibit a 

significant variability in global responses, including capacity curves, cyclic diagrams, failure modes, 

and amount of total energy. Notably, significantly different numerical responses arise from varying the 

global tensile strength, as observed in Figure 56 for the short panel and Figure 57 for the tall panel. In 

the case of the short panel, for the two lower value specifications (CDP3 and CDP4 variants), a shear 

diagonal cracking failure mode is consistently observed throughout the cyclic analysis with no damage 

at the extremities. The maximum shear force from variant CDP4 is close to the experimental responses, 

while in CDP3 (where the adopted tensile strength is the bond strength), it is lower. Moreover, the 
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excessive strength degradation hinders accurate prediction of the total amount of energy, thereby 

preventing the completion of the analyses for both models. Conversely, the adoption of the highest 

tensile strength (variant CDP5) does not lead to significant changes compared to the reference case, 

neither in the monotonic nor in the cyclic response. For the tall panel, similar variations in responses 

are observed. Notably, again, the typical flexural S-shape cycles are not reproduced in any case. 

The results of all the other variant cases are depicted in Figure 58 and Figure 59. 
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Figure 56. Short panel responses for reference characterisation (𝒇𝒕=0.2MPa) and variants CDP3 

(𝒇𝒕=0.04MPa), CDP4 (𝒇𝒕=0.08MPa) and CDP5 (𝒇𝒕=0.039MPa): experimental-numerical comparison and 

tensile damage developed in the monotonic and cyclic analysis (last reached step) 

 

 

 

-10 - -6 -4 -2 0 2 4 6  10

 ori ontal displacement  mm 

-140

-120

-100

- 0

-60

-40

-20

0

20

40

60

 0

100

120

140

S
h
ea

r 
fo

rc
e 

 k
 

 

Exp

Ref

CDP3

CDP4

CDP5

-10 - -6 -4 -2 0 2 4 6  10

 ori ontal displacement  mm 

-140

-120

-100

- 0

-60

-40

-20

0

20

40

60

 0

100

120

140

S
h
ea

r 
fo

rc
e 

 k
 

 

Exp

Ref

CDP5

CDP4

CDP3



3.4 Continuum macroscale modelling 

79 

TALL PANEL 

𝑓𝑡 variants 
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Figure 57. Tall panel responses for reference characterisation (𝒇𝒕=0.2MPa) and variants CDP3 

(𝒇𝒕=0.04MPa), CDP4 (𝒇𝒕=0.08MPa) and CDP5 (𝒇𝒕=0.039MPa): experimental-numerical comparison and 

damage developed in the monotonic and cyclic analysis (last step) 
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Figure 58. Monotonic and cyclic shear force vs. horizontal displacement responses of short panel models 

(X-axis in [mm], Y-axis in [kN]) and damage patterns at the last step reached 
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Figure 59. Monotonic and cyclic shear force vs. horizontal displacement responses of tall panel models (X-

axis in [mm], Y-axis in [kN]) and damage patterns at the last step reached 

The main results from all the cyclic analyses are summarised in Table 11. Due to premature failures, 

not all the analyses have been completed. Therefore, the percentage variations of final total energy 

(ΔWtot) between variants and reference configuration, reported in Table 11, are calculated by 

considering the instant corresponding to the last reached step in the numerical analysis. The differences 

in dissipation capacity between the models are also represented through the graphs in Figure 60 

highlighting the high sensitivity of the responses to variations in the selection of the parameters. 

The difference in responses, in terms of dissipated energies and failure modes, among experiments, 

reference models, and variants, is significant. Specifically (in addition to the tensile strength variation, 

already discussed): 

• Smaller variations (even if still significant) in the dissipated energy are observed when varying 

dilatancy ψ (CDP1 and CDP2 variants), fracture energy Gt (CDP6 and CDP7 variants), and 

ratio between uniaxial yielding stress and maximum strength in compression fy,r (CDP8 and 

CDP9 variants) parameters assumed within realistic ranges.  
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• A greater variation is observed in the cyclic responses when changing the value kc,fmax from a 

low value of 0.001 (CDP12 variants), which leads to responses closer to the experimental 

curves, to the upper limit of 0.003 (CDP13 variants), despite the monotonic responses being 

similar to each other. 

•  oth variants related to the stiffness degradation parameter μ result in lower dissipated energies 

compared to the reference model (μ equal to 0.1), for different reasons. For the upper value (μ 

equal to 0.5; CDP9 variants), the high degradation leads to premature termination of the 

analysis (only 51% of the analysis is terminated for the short panel and 59% for the tall panel). 

On the other hand, for the lower value (μ equal to 0.01; CDP8 variants), the lower stiffness and 

strength degradation result in significantly narrower cycles.  

• Regarding the stiffness recovery parameters, the CDP14 variants (wt and wc equal to 0.2 and 

0.8, respectively) does not significantly affect the analysis. However, the CDP15 variants, 

characterised by non-realistic stiffness recovery parameters (wt and wc equal to 0.87 and 0.16, 

respectively), results in substantial strength and stiffness decay, along with distinctive damage 

patterns. 

Table 11. Summary of the results from sensitivity analyses; failure mode: S=shear-diagonal cracking - 

F=flexural - F→S: flexural first, and then diagonal cracking; Wtot: total amount of energy at the last step 

re ched; ΔWtot: percentage variation of total energy with respect to the reference characterisation (for each 

case the amount of total energy of the reference characterisation is calculated at the last step reached with 

the variant analysis) 

  Short panel Tall panel 

Changing  

parameter 
Case study Failure mode 

Wtot % analysis 

completed 
ΔWtot Failure mode 

Wtot % analysis 

completed 
ΔWtot 

[kN m] [kN m] 

 Experimental S 2.26   F 1.78   

 Reference F→S 4.32 100%  F→S 8.80 100%  

ψ 
CDP1 F→S 3.32 65.9% -8.5% F 7.29 97.6% -16.9% 

CDP2 F 5.50 100% 27.5% F→S 10.82 100% 22.9% 

ft,M 

CDP3 S 1.33 51.4% -45.3% S 0.52 47% 56.2% 

CDP4 S 1.94 54.1% -31.3% S 2.75 73.1% -42.3% 

CDP5 F→S 4.39 100% 1.7% F→S 7.71 100% -12.4% 

Gt 
CDP6 S 2.57 54% -8.9% F→S 8.55 100% -2.8% 

CDP7 F 3.84 100% -11.1% F 6.54 100% -25.7% 

μ 
CDP8 F→S 3.52 100% -18.4% F 4.64 100% -47.2% 

CDP9 S 1.93 51.3% -18.9% S 2.29 58.7% -30.4% 

fy,r 
CDP10 F→S 4.30 100% -0.4% F→S 8.50 100% -3.3% 

CDP11 F→S 4.78 100% 10.9% F 9.32 97% 6.6% 

kc,fmax 
CDP12 F→S 2.31 100% -46.5% F 4.86 100% -44.8% 

CDP13 F→S 6.42 100% 48.7% F→S 10.04 100% 14.1% 

wt - wc 
CDP14 F→S 4.04 100% -6.3% F 8.37 100% -4.8% 

CDP15 S 0.97 100% -77.5% S 1.99 87.2% -74.4% 
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(a)   (b) 

Figure 60 Variation of final total energies for (a) Short Panel and (b) Tall Panel. 'Min' and 'Max' represent 

the final total energies with the minimum and maximum variants of each range, respectively, while 'Ref' 

denotes the total energy with the reference models. 'Exp' indicates the experimental total energy, and 

circled indicators denote analysis not completed. (*) For the wt-wc range, the minimum and maximum 

cases are assumed as CDP13 and CDP14, respectively 

  
 

(a) (b)  

Figure 61 Progression of total energies for each analysis for (a) short panel and (b) tall panel 

Based on the results obtained for the single panels, a “refined” material characterisation, is specified for 

the analysis of the perforated wall, and provided in Table 12. Some parameters are selected with the 

objective of aligning the numerical model with the experimental hysteretic capacity. Therefore, they 

are chosen by selecting values within ranges that resulted in cyclic responses closer to the experimental 

response. These parameters include dilatancy, global tensile strength, stiffness degradation parameter, 

tensile fracture energy, and peak plastic strain in compression. Meanwhile, other parameters, such as 

the ratio between yielding and maximum strength and stiffness recovery parameters, are maintained 

with default reference values, which are considered more common. After conducting analyses to assess 
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the mesh sensitivity of the models, where it was observed that mesh discretisation has no significant 

influence on the numerical response of the single panels, the Wall-D model is discretised using a coarser 

mesh of 125mm x 125mm x 250mm. The same spreader system for applying external loads, utilised in 

the Wall-D mesoscale model, is employed (Figure 49). The Wall-D macroscale model is characterised 

by 7371 3-DoF nodes, resulting in 22113 DoFs. 

Table 12. Reference and refined characterisations for the Wall-D analysis. 

Parameter Symbol u.o.m. Reference Refined 

Young’s modulus E [MPa] 1980 1980 

Poisson’s coefficient ν [-] 0.2 0.2 

Dilatancy angle ψ [°] 20 10 

Tensile strength ft [MPa] 0.20 0.08 

Fracture energy Gt [N/mm] 0.02 0.005 

Stiffness degradation μ [-] 0.2 0.01 

Maximum compression 

strength 
fc [MPa] 6.2 6.2 

Ratio between uniaxial 

yielding stress and 

maximum strength in 

compression 

fy,r [-] 0.3 0.3 

Plastic strain in compression kc,fmax [-] 0.002 0.001 

Tensile stiffness recovery wt [-] 0 0 

Compressive stiffness 

recovery 
wc [-] 1 1 

The global responses are presented in terms of force-displacement graphs in Figure 62, for both 

reference and refined characterisations. The selection of different material parameters significantly 

modifies the overall hysteretic response. The monotonic pushover analyses result in capacity curves 

characterised by significant overestimations of the overall base strength. Specifically, the maximum 

forces exhibit an overestimation of +46% with the reference characterisation and +67% with the refined 

one, in comparison with the experimental response. The cyclic responses also exhibit substantial 

differences, but noteworthy the refined characterisation provides a better prediction of strength and 

stiffness degradation, resulting in a progression of total energy remarkably close to the experimental 

one, as illustrated in Figure 63. The damage pattern (reported in Figure 64) is only partially captured by 

the models and it is more pronounced by considering the refined characterisation. A widespread flexural 

damage at the top and bottom of the piers on the first floor is observed in both models. Moreover, the 

shear-diagonal cracking damage on the piers of the first floor and the spandrel of the first level, as 

observed experimentally, is only partially reproduced: only the left pier at the base on the reference 

model collapses through a spreading of damage along the height. 
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(a) (b) 

Figure 62. Cyclic responses of Wall D with reference (a) and refined (b) characterisation 

 

Figure 63 Dissipated energy during the cyclic analysis: comparison between experimental, reference and 

refined characterisation 
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(a1) (a2) (a3) (a4) 

    
(b1) (b2) (b3) (b4) 

    
(c1) (c2) (c3) (c4) 

Figure 64. Progression of crack pattern (tensile damage) during the cyclic analysis: a) Reference 

characterisation; b) Refined characterisation; c) Experimental; 1) end of run 4 (max. drift 0.10%); 2) end 

of run 5 (max. drift 0.20%); 3) end of run 6 (max. drift 0.30%); 4) end of run 7 (max. drift 0.40%) 

3.5 Summary and conclusions 

In this chapter, two different approaches for the modelling of URM structures have been compared. 

Given a common set of material parameters, the modelling representations have been tested on single 

panels and on an entire perforated wall, subjected to monotonic and cyclic actions. A particular focus 

has been given to the material characterisation in each of them, a-priori determined, blindly predicted 

without considering the experimental outcomes. The main observations are below summarised. 

The mesoscale approach:  

• allows for a generally straightforward calibration of the single panels: monotonic and cyclic 

responses, in terms of load-displacement diagram and progression of damage pattern, result 

close to the experimental results, without particular needs of further refinement of material 

calibration; 
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• leads to a low variability of the responses with less-known parameters changes: the responses 

of the panels do not appear significantly affected by eventual variations of uncertain parameters, 

such as, for instance, fracture energies; 

• is characterised by high computational cost making the analysis of larger structure not easy to 

be performed. 

As regards the continuum finite element macroscale modelling, the capability of the concrete damage 

plasticity model to predict the numerical in-plane seismic response of URM structures has been 

evaluated by performing several sensitivity analyses, varying many of its defining parameters. The 

analysis employing the continuum macroscale modelling shows that: 

• a “standard calibration”, as an initial attempt at material calibration, may lead to a simulation 

that is significantly distant from the experimental responses, in terms of capacity curve, load-

displacement cycles, prediction of failure modes and amount of dissipated energy; 

• the variation of not easily quantifiable parameters can substantially affect the response of the 

models; 

• a refined characterisation may allow to better predict, with reasonable approximation, the 

hysteretic behaviour of a real structure, as the façade with openings analysed; 

• the S-shaped typical flexural load-displacement diagram is hardly captured;  

• the analyses are medium time-consuming; 

• the use of this modelling approach is characterised by greater numerical robustness compared 

to mesoscale, enabling the completion of the entire cyclic analysis for panels and Wall-D. 

 

Based on the obtained results, some preliminary suggestions on possible links between the two 

representations, and with the experimental tests carried out, can be made. The material tests (Table 5) 

regarded the evaluation of single components (bending and compression test on bricks; triplet shear test 

and cross-tension tests on mortar joints), together with the evaluation of compressive strength and 

Young’s modulus of masonry (compression test on wallets). The suggestions are divided between 

elastic stiffness parameters, strength parameters and fracture energies. 

• Elastic stiffness parameters: The initial tangent elastic modulus, obtained from the experimental 

stress-strain curve of compression tests on wallets, is adopted as the elastic modulus of the 

masonry as a whole. This value is utilised in both approaches. In the macroscale approach, the 

modulus is directly employed as the elastic modulus of the isotropic concrete damage plasticity 

material. In the mesoscale approach, the elastic modulus is considered when assessing the 

elastic stiffnesses of the interfaces, which are determined by treating bricks and mortar layers 
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as connected in series (equations (5) and (8)), depending on the estimated masonry modulus, 

brick elastic modulus, unit height, and layer thickness.  

• Strength: The mechanical parameters of the interfaces (i.e. cohesion, friction coefficient and 

bond strength), obtained from triplet shear tests and cross-tension tests, enable an accurate 

prediction of the mesoscale response of the single panels, encompassing failure predictions and 

shear-displacement curves, both monotonic and cyclic. Regarding the macroscale approach, the 

specification of the tensile strength significantly influences the response, largely affecting 

failure mode predictions and overall shear-displacement curves. Given the absence of 

experimental tests at the macroscale level, determining the masonry tensile strength can be 

challenging and may be linked to the properties of the individual components. A conservative 

initial estimate, as also suggested in (Lourenço and Gaetani, 2022), is to consider the bond 

tensile strength as the global tensile strength of masonry. However, for a more accurate 

prediction, experimental tests at the macroscale level, which are more invasive and expensive, 

should be performed. A valid alternative involve employing a small-sized mesoscale model, to 

be considered as virtual test. 

• Fracture energies: In the mesoscale approach, the responses exhibit low variability from 

fracture energy specifications, allowing for the adoption of relatively high values to enhance 

analysis convergence. However, in the continuum macroscale, sensitivity is higher and a 

smaller value can lead to an earlier activation of shear-like mechanisms compared to 

considering higher fracture energies. In favour of safety, a smaller value (derived from range 

values provided in literature) may be adopted. 

In conclusion, it is emphasised that a multiscale strategy offers an opportunity to reliably employ 

macroscale models in cyclic analysis, as suggested by Chisari et al. (2020) and Pantò et al. (2022). 

Through non-invasive tests on mortar joints, coupled with compression strength evaluation (which 

could be also conducted with a moderately invasive flat-jack test), a mesoscale model can be accurately 

implemented and used as a virtual test. The mesoscale model can then be employed to calibrate 

macroscale models, leveraging its higher robustness and computational efficiency to analyse larger 

structures. 
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CHAPTER 4  

ADVANCED MODELLING OF MASONRY-INFILLED 

FRAME STRUCTURES 

 

4.1 Introduction 

This chapter focuses on modelling of infilled reinforced concrete frames using two sophisticated 

strategies for masonry-infilled frames. These approaches involve representing masonry infills through 

either a mesoscale or a continuum macroscale approach, while the frame is modelled using cubic elasto-

plastic 3D beam-column elements. The connection between the external cohesive-frictional interfaces, 

representing the mortar layer at the frame-infill boundary, is guaranteed through a multidimensional 

coupling element. This element ensures the connection between the 3-degrees-of-freedom (DOFs) 

nodes of the infill elements and the 6-DOFs nodes of the frame. 

A significant focus is placed on the detailed calibration of materials, emphasising the definition of 

mechanical parameters characterising the interfaces between the frame and infill components. This 

calibration process undergoes a thorough examination to ensure objectivity, taking into account results 

from experimental tests, and accuracy in representing actual responses, both globally and locally. 

Conclusively, an assessment is conducted on the calibrated continuum-infill model (consistent with the 

more refined mesoscale-infill model) to evaluate the impact of openings within the infills. This 

evaluation encompasses an analysis of strength and stiffness decay in response to the presence of 

openings. The outcomes of this investigation provide valuable insights into the structural response of 

infilled reinforced concrete frames under various modelling strategies, serving as a reference point for 

subsequent analyses in the following chapters with the enhanced macroelement approach. 
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4.2 Experimental tests 

The study carried out by Armin B. Mehrabi et al. (1996), focusing specifically on the experimental 

response of masonry-infilled frames, is considered as reference for evaluating the simulations with the 

various models implemented in the present work. In their study, twelve single-story, single-bay frame 

specimens underwent testing. The test specimens were chosen to be half-scale models representing the 

interior bay at the bottom story of the prototype illustrated in Figure 65. The prototype itself was a six-

storey, three-bay reinforced concrete moment-resisting frame. The height-length ratio for each bay was 

standardised at 1/1.5. The design loads complied with the specifications of the Uniform Building Code 

(UBC) (1991), with service live load and dead load equal to 2.39 kPa and 6.21 kPa respectively. 

 

Figure 65 Prototype frame, image taken from (Armin Barzegar Mehrabi 1994) 

Two distinct types of frames were tested: a "weak" frame designed solely to withstand wind loads, in 

addition to vertical loads, and a "strong" frame designed to resist strong earthquake forces. The design 

specifications for both frames followed the guidelines outlined in ACI 318-89 ("Building" 1989). In 

either case, the load resistance contributed by infill panels was ignored, as in standard design practice.  

In the present research, the focus is on the frame designed to withstand wind loads only. This specific 

frame is representative of an existing reinforced concrete frame not meeting the detail requirements of 

seismic design provisions. The frame was designed to withstand a lateral wind pressure of 1.24 kPa, 

corresponding to a basic wind speed of 44.5 m/s. Figure 66 illustrates the design details of this frame, 

featuring a typical weak column and strong beam configuration. 



4.2 Experimental tests 

93 

 

 
 

Figure 66 Weak Frame Design Details 

In addition to the frame typology, other parameters were also investigated. These included the strength 

of infill panels in relation to the bounding frame, the distribution of vertical loads, the lateral-load 

history, and the H/L aspect ratio.  

In particular, two types of infill panels were used, considering 92 mm × 92 mm × 194 mm either hollow 

or solid concrete masonry blocks, with bed and head mortar layer joints 9.5 mm thick. Additionally, 

two distinct vertical load distributions were examined: one involving vertical loads exclusively applied 

to the columns, and the other with 1/3 of the total vertical load applied to the beam and 2/3 onto the 

columns. The vertical load applied to the specimen remained constant throughout each test. 

Furthermore, two types of in-plane lateral displacement histories were chosen: monotonically 

increasing and cyclic. Finally, in the analysis of weak frames, a further panel aspect ratio of 

approximately ½ was considered. 

Some of the frame specimens underwent multiple tests. In these cases, the cracks in the frame members 

were repaired using epoxy injection, and crushed regions were restored with cement paste, comparable 

in strength to that of the original concrete. A new infill panel was reconstructed for each test, and testing 

occurred at least 28 days after the construction of the infill. 

The characteristics of each experimentally tested specimen are detailed in Table 13. The tests simulated 

in this chapter and those that will be simulated in Chapter 6, as part of the validation process of the 

enhanced macroelement, are highlighted. In the context of the present chapter, specimen 1 is considered 
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for validating the RC bare-frame model, while specimen 3 is chosen for simulating an infilled-frame 

with either mesoscale or continuum macroscale masonry-infill. 

Table 13 Characteristics of the specimens tested by Armin B. Mehrabi et al. (1996): specimens investigated 

in the present chapter are highlighted in cyan, while those additionally examined in Chapter 6 are 

highlighted in green 

Specimen 

number 
Type of frame 

Type of 

masonry units 

Panel aspect 

ratio (h/L) 
Lateral load 

Vertical load distribution [kN] 

Columns Beams 

1 Weak No infill 0.67 Monotonic 293.7 - 

2 
Weak 

(repaired after 1) 
Hollow 0.67 Monotonic 293.7 - 

3 
Weak  

(repaired after 2) 
Solid 0.67 Monotonic 293.7 - 

4 Weak Hollow 0.67 Cyclic 195.8 97.9 

5 Weak Solid 0.67 Cyclic 195.8 97.9 

6 Strong Hollow 0.67 Cyclic 195.8 97.9 

7 Strong Solid 0.67 Cyclic 195.8 97.9 

8 
Weak 

(repaired after 4) 
Hollow 0.67 Monotonic 195.8 97.9 

9 
Weak 

(repaired after 8) 
Solid 0.67 Monotonic 195.8 97.9 

10 Weak Hollow 0.48 Cyclic 195.8 97.9 

11 Weak Solid 0.48 Cyclic 195.8 97.9 

12 
Weak 

(repaired after 10) 
Solid 0.48 Cyclic - 146.85 

 

Material tests were performed on both concrete and masonry samples for each specimen. The concrete 

compression test results, performed on standard cylinders with 150 mm diameter, are outlined in Table 

14, where the outcomes for specimen 1 and specimen 3 are provided. The secant modulus is determined 

as 45% of the compressive strength. Additionally, Table 15 presents the compressive strengths of the 

3-course masonry prisms and the compressive strength of the single constituents, brick and mortar, 

specifically for specimen 3. Tensile strengths of the reinforcing bars, common to all tests, are 

summarised in Table 16. Finally, direct shear tests were conducted on mortar joints under various 

confinement levels (Table 17). The assessment involved the evaluation of maximum shear stress (τpeak) 

and residual shear stress (τres) with respect to vertical stress variations (σv). 

Table 14 Frame concrete experimental mechanical properties of specimen 1 and 3 (Mehrabi et al., 1996) 

Secant modulus (*) Compressive strength 

[MPa] [MPa] 

21930 30.9 
*At 45% of the compressive strength 
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Table 15 Infill-masonry experimental mechanical properties of specimen 3 (Mehrabi et al., 1996) 

Masonry secant 

modulus (*) 

Masonry 

compressive strength 

Masonry strain at 

peak stress 

Brick compressive 

strength 

Mortar compressive 

strength 

[MPa] [MPa] [-] [MPa] [MPa] 

9520 15.10 0.0029 15.59 16.00 
*At 45% of the compressive strength 

Table 16 Steel rebars experimental mechanical properties (Mehrabi et al., 1996) 

Bar size Type of bar Nominal diameter Yield stress Ultimate stress 

  [mm] [MPa] [MPa] 

no. 2 Plain 6.35 367.6 449.6 

no. 4 Deformed 12.7 420.7 662.1 

no. 5 Deformed 15.9 413.8 662.1 
  

Table 17 Triplet shear tests results (Mehrabi et al., 1996) 

σv τpeak τres 

[MPa] [MPa] [MPa] 

0.345 0.483 0.303 

0.517 / 0.434 

0.690 0.952 0.614 

1.035 1.283 0.917 

The base shear force vs. horizontal displacement responses of the two specimens under investigation 

are illustrated in Figure 67. A great difference is noticed in the responses of the bare and infilled frames, 

both in terms of initial stiffness and maximum strength, and even at considerable displacements, the 

residual strength of the infilled frame remains significantly higher than that of the bare frame. 

 

Figure 67 Experimental response of bare frame (Specimen 1) and infilled frame (Specimen 3) 
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4.3 Reinforced Concrete Bare Frame modelling 

The reinforced concrete bare-frame is modelled using 1D elasto-plastic beam-column elements, as 

developed by B. A. Izzuddin and Elnashai (1993a; 1993b), and implemented in ADAPTIC. These 

elements utilise a 3D cubic formulation based on Euler-Bernoulli beam theory, which accounts for the 

interaction between biaxial bending moments and axial force for a generic reinforced concrete (RC) 

cross-section. The element formulation assumes that plane sections remain flat, while shear strains are 

neglected, with the section centroid aligning with the shear centre. The element accounts for both 

material and geometric nonlinearities. 

A fibre element strategy (a generic illustration of the approach is given in Figure 68) is employed, where 

each element is defined by a specific number of Gauss integration points along its length. These points 

are characterised by the discretisation of the sections into multiple fibre elements, serving as monitoring 

areas for assessing strains and stresses, and for integrating the virtual work equation. These fibre 

elements may represent either concrete or steel bars within the sections, each governed by specific 

material relationships. 

 

Figure 68 Distributed fibre plasticity approach: Gauss points and fibre discretisation; image taken from 

(Fardis, 2009) 

The formulation proposed by B. A. Izzuddin and Elnashai (1993a; 1993b) involves the inclusion of two 

Gauss points within each element, as illustrated in Figure 69, where the local freedoms of the element 

are also depicted. This formulation adopts cubic shape functions for the transverse displacements, v(x) 

and w(x), and considers a constant centroidal axial strain criterion. The fibre approach allows for the 

consideration of material nonlinearities, enabling the representation of plasticity spread along the 

element, due to phenomena such as steel yielding, concrete crushing, and concrete cracking. 
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Furthermore, the formulation accounts for geometric nonlinearities by incorporating a co-rotational 

formulation. In this method, the element's local reference system is defined within the deformed 

configuration, allowing for the consideration of large displacement contributions. Geometric nonlinear 

effects are represented through transformations between the local and global reference systems. 

 

Figure 69 Local freedoms of elasto-plastic cubic formulation and localisation of Gauss points (Izzuddin and 

Lloyd Smith, 2000) 

The RC frame of the experimental test, specifically the Specimen 1 as illustrated in Figure 66, is 

modelled by adopting a series of elastoplastic beam elements. Each frame element is represented by 

its centreline, and rigid links are employed for the beam-column joints, while the bottom beam is fixed 

at the base. The chosen mesh discretisations for the bare frame are linked to the modelling strategies 

adopted in Sections 4.5 and 4.6; no significant variations with changes in mesh discretisation are 

observed. The initial loading comprises a vertical application of 146.9 kN on top of the columns, 

followed by a horizontal displacement applied to the top beam. The model layout is illustrated in Figure 

70a, while a 3D view of the extruded numerical model is presented in Figure 70b (the rigid links on the 

beam-column joints are modelled as elasto-plastic elements with high stiffness and strength, thus they 

are graphically represented as the other elements). 

 

 

 

 

(a) (b) 

Figure 70 Bareframe modelling: (a) geometry and external actions; (b) extruded model 3D view 

Rigid link 
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In terms of material specification, concrete is modelled employing an elastic-perfectly plastic law to 

simulate the uniaxial stress-strain compressive response, with zero tensile strength. For the steel rebars, 

an elastoplastic model that incorporates strain hardening is employed, assuming same responses in 

compression and tension. The strain hardening factor, which determines the post-yielding branch 

stiffness as a percentage of initial stiffness, is set to 0.15. Detailed material characteristics are provided 

in Table 18, equally considered for columns and beams rebars. 

Table 18 Material characteristics of the RC bare-frame model 

Concrete Steel 

Elastic modulus 

[MPa] 

Compressive strength 

[MPa] 

Elastic modulus 

[MPa] 

Yield strength 

[MPa] 

Hardening factor 

[-] 

21930 30.9 210000 400 0.15 

The shear-displacement curves, depicted in Figure 71, exhibit a close alignment between the numerical 

and experimental responses. Additionally, a similar damage pattern is observed (Figure 72), 

characterised by the formation of plastic hinges at the end sections of the columns and beam. However, 

shear cracks observed experimentally at the beam-column joints for relatively large displacements 

cannot be captured with the fibre-element used. Despite this limitation, the overall response is deemed 

satisfactory, allowing for the evaluation of the reliability of the models after the insertion of the masonry 

infill. 

 

Figure 71 Experimental-numerical comparison for the Bare-Frame model 
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(a) (b) 

Figure 72 Damage pattern: (a) numerical (strain energy contour in N mm, deformed shape with 5x 

amplification); (b) experimental (Mehrabi, 1994) 

4.4 Multi-dimensional analysis framework 

The complex interaction between the frame and infill plays a key role in the overall response of infilled 

frames subjected to horizontal loading. This interaction involves a continuous dynamic transfer of 

forces between the components and is particularly crucial in the early stages of the analysis, determining 

the infill-frame detachment and the subsequent formation of a compression diagonal strut. 

In the infilled-frame models presented in this section, the frame-infill interface is represented using 

interface elements developed by Minga et al. (2018). These elements were previously utilised in Chapter 

3 for URM mesoscale modelling and are characterised by a frictional-cohesive constitutive relationship, 

which effectively captures opening and sliding mechanisms. 

Masonry infills are modelled employing either mesoscale or continuum macroscale strategies, while 

the surrounding frame is modelled following the strategy of Section 4.3. Notably, the surrounding frame 

and the masonry infill are characterised by nodes with a different number of degrees of freedom (DoF). 

Specifically, nodes within the masonry-infill model, whether employing a mesoscale or macroscale 

approach, are characterised by 3 DoF, while nodes within the frame have 6 DoF. To connect the two 

components, the multidimensional strategy presented in G. Jokhio (2012) is employed, allowing the 

coupling of the 3D masonry model with the 1D beam/column finite elements. This approach offers an 

alternative method, mitigating computational burden, to the typical analysis of infilled frames, where 

typically structural members are modelled with the same dimensional order as the infill masonry panels, 

using continuum 2D or 3D solid finite elements. 
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Figure 73 depicts an illustration of the master-slave procedure as described in G. Jokhio (2012). The 8 

nodes located on the outer side of the frame-infill interface, considered as slave nodes, are required to 

rigidly move, thereby maintaining their relative positions. These slave nodes move accordingly to 

translations and rotations of the master node, which is either a node rigidly connected to a node within 

the frame (Figure 74a) or a frame node itself (Figure 74b). The displacement vector Ui of the generic 

slave node i, given by the translations along the x, y and z directions, as per relation (12), is determined 

by deriving it from the displacement vector Um of the master node m, encompassing translations u, v, 

w and rotations α, β, γ, as per relation (13). This is given by the matrix product involving the rotation 

matrix (14), which is a function of rotations and is derived in (Izzuddin and Elnashai, 1993), together 

with the position of the slave node (xi, yi, zi). 

𝑈𝑖 = [𝑈𝑥  𝑈𝑦 𝑈𝑧]𝑖
𝑇

 (12) 

𝑈𝑚 = [𝑢 𝑣 𝑤 𝛼 𝛽 𝛾]𝑇 (13) 

𝑈𝑖 = (
𝑢
𝑣
𝑤
) + 𝑇𝑟(𝛼, 𝛽, 𝛾) (

𝑥𝑖
𝑦𝑖
𝑧𝑖

) (14) 

 
 

(a) (b) 

Figure 73 Master-slave displacement congruence: (a) effect of translation of master node; (b) effect of 

rotation of master node (images taken from G. Jokhio, 2012) 

As mentioned, the master node can be a structural node positioned at the centre of the interface and 

connected to a node on the frame through a rigid link, following the approach presented in (Macorini 

and Izzuddin, 2014) and in (Xavier, 2015), as illustrated in Figure 74a. However, in the present study, 

an alternative approach is adopted wherein the master-slave relations are directly established between 

the interface nodes and the corresponding frame node, as depicted in Figure 74b. This direct application 

is preferred due to the observed higher numerical robustness. Notably, the numerical response of the 

two scenarios closely aligns, as evidenced in Figure 75, which presents shear-displacement curves for 

the infilled-frame models with and without the rigid link under horizontal loading. 



4.4 Multi-dimensional analysis framework 

101 

 

 

(a) (b) 

Figure 74 Multi-dimensional coupling for connecting URM components with beam-column elements: 

(a) with rigid link; (b) without rigid link 

 

Figure 75 Application of multi-dimensional coupling with and without rigid link 

The computational efficiency of these models can be further enhanced by applying a partitioned 

hierarchical strategy, as detailed in Section 2.3.2. This strategy not only tackles the computational 

burden but is also necessary to implement together the different components, surrounding frame and 

infill, characterised by different degrees of freedom.  

The two techniques, multi-dimensional coupling along with hierarchical partitioning, have been 

previously integrated together in the modelling of infilled frames in (Macorini and Izzuddin, 2014) and 

in (Xavier, Macorini, and Izzuddin, 2014). In this approach, the RC frame is considered as the primary 

parent structure, while the masonry infill is assigned to a lower partitioning rank. Furthermore, the infill 

0 0.5 1 1.5 2

 ori ontal displacement  mm 

0

40

 0

120

160

 
as

e 
sh

ea
r 
fo

rc
e 
 k

 
 

With rigid link

Without rigid link



Chapter 4. Advanced modelling of masonry-infilled frame structures 

102 

can be either modelled as a monolithic element or can undergo hierarchical partitioning itself. In the 

latter case, there is a "child-rank 0" structure, which is considered as the "parent" structure of the infill. 

This structure enables the two-way communication between the frame and infill, incorporating also the 

external frame-infill interfaces. The infill can be then recursively partitioned into multiple partitions. In 

the example depicted in Figure 76, the infill is divided into four partitions. This particular specification 

will be applied for modelling infilled frames with mesoscale infill (Chapter 4.5), thus incorporating one 

"child-rank 0" element and four additional "child-rank 1" elements. On the other hand, when dealing 

with macroscale infill (Chapter 4.6), which is computationally less demanding, the infill will be treated 

as monolithic, representing a hierarchical partitioning with only one "child-rank 0" structure. 

For illustrative purposes, the flowchart in Figure 77 outlines a scenario where the infill wall is initially 

partitioned into n child domains at the first level (rank 1). Each of these partitions is subsequently 

divided into m sub-partitions (where m may vary among the partitions), and this procedure may 

continue further at lower levels.  

 
 

 

 

 

Figure 76 Application of parallel computing procedure with dual partition super-elements to the modelling 

of infilled-frames 
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Figure 77 Flowchart for the computational processes in a parallel analysis with frame-infill multi-

dimensional coupling and 2-level hierarchic partitioning 

4.5 Mesoscale modelling 

In this section, a mesoscale approach is implemented for the model of infilled-frame corresponding to 

Specimen 3, presented in Section 4.2. The infill dimensions are 2096 x 1423 mm², comprising solid 

concrete blocks measuring 92 mm × 92 mm × 194 arranged in a running pattern. The bed and head 

mortar layer joints are 9.5 mm thick. The mesoscale representation follows the exact texture of the 

masonry. Second-order linear elastic brick elements, defined by 20 nodes, are employed in conjunction 

with cohesive-frictional interfaces, the latter adopting the model developed by (Minga et al., 2018). 

Interface elements are differentiated into mortar head-joints, mortar bed-joints, and brick-brick 

interfaces. Moreover, the external frame-infill interfaces are represented using the same cohesive-

frictional model. The connection to the external frame is established through the multi-dimensional 

coupling element as described in Section 4.4. The bare-frame model validated in Section 4.3 is adopted 

for representing the surrounding RC frame. Overall, the developed mesh comprises 300 solid elements, 

635 interface elements, and 112 beam elements, with 6560 3-DoF nodes and 109 6-DoF nodes. 

Moreover, the partitioning approach is employed by considering four rank-1 partitions representing the 

infill. The infilled-frame model is subjected to the same external actions as the bare-frame, illustrated 

in Figure 70. Figure 78 visually represents the infilled-frame model.   

Surrounding frame  
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(a) (b) 

Figure 78 Views of the infilled-frame mesoscale model: (a) extruded frame and infill brick elements, and 

(b) infill interfaces 

 Material characterisation 

An objective calibration of the mechanical characteristics of the infill and frame-infill boundary 

interfaces is carried out. The calibration details for the various parameters involved are provided below, 

with the adopted values for analysis presented in Table 19. 

• Internal interfaces stiffnesses 

These interfaces are assessed based on the tangent elastic modulus of masonry, estimated at 

14300 MPa, derived from the results of the compression test (the stress-strain experimental 

curves are provided by Mehrabi, 1994). Considering an elastic modulus of the concrete bricks 

as 20000 MPa, a Poisson’s coefficient of 0.2, and dimensions including bricks height of 92 mm 

and mortar layer thickness of 9.5 mm, the determination of joint interfaces, both normal (kn,ji) 

and tangential (kt,ji), is conducted through relations (5) and (8). High stiffnesses are set for 

brick-brick interfaces (kn,b and kt,b). 

• External frame-infill interfaces stiffnesses 

To ensure the impenetrability condition between the frame and infill, a high value should be 

assigned to the normal stiffness, allowing for a small but negligible penetration between the 

bodies during the elastic phase (Mosalam et al., 1993). The normal stiffness (kn,je) is roughly 

determined as the ratio between the elastic modulus of mortar and the thickness of the mortar 

layer; this value is then divided by 10 to prevent potential convergence issues arising from 
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excessive stiffness (the values still remain considerably high if compared to the internal 

interfaces). The tangential stiffness (kt,je) is then calculated through equation (8).  

• Shear-tensile behaviour of internal mortar joints 

The results of triplet shear tests, outlined in Table 9, allow to determine cohesion (cji) and 

friction coefficient (tan φ
ji
) of the mortar joints interfaces. Figure 79 reports the linear 

regression curves of both peak strength and residual strength registered in the tests as functions 

of vertical stress. Subsequently, cohesion is determined as the intercept of the peak regression, 

measured at 0.11 MPa. As for the friction coefficient, the average of the slopes from the two 

regressions is adopted, equal to 1.02. The tensile bond strength (ft,ji)  is estimated as the 

cohesion divided by 1.4, following the suggestion reported in (Lourenço and Gaetani, 2022). 

Moreover, the fracture energies of Mode I (GI,ji) and Mode II (GII,ji) failures are defined, 

respectively, as 0.016 N/mm and 0.16 N/mm, as specified in Chapter 3.3.1. 

• Tensile behaviour of brick-brick joints 

The tensile strength (ft,b) is calculated as a function of compressive strength of the units (fc,b) 

through relation (15), provided by Lourenco and Gaetani (2022), while the fracture energy 

(GI,b) is determined through relation (10). 

𝑓𝑡,𝑏 = 2.12 ln(1 + 0.075 𝑓𝑐,𝑏) (15) 

• Compression response of internal interfaces 

Bed-joints (fc,h) are characterised by the experimental compressive strength of masonry, while, 

to account for the orthotropic response of masonry, the vertical joints compressive strength 

(fc,v) for both mortar and internal brick interfaces is estimated as the 50% of the experimental 

compressive strength. The fracture energies, both in vertical and horizontal directions, are 

consequently determined through the Model Code 90 formulation (equation (9)). 

• External frame-infill interfaces strength parameters 

The mechanical characteristics of external frame-infill interfaces are typically weaker than the 

mortar interfaces internal to the infills and are not known with a good degree of confidence. In 

this context, these mechanical characteristics are set with low values - specifically, the bond 

strength at 0.01 MPa, cohesion at 0.014 MPa, and the friction coefficient at 0.35. The frame-

infill interfaces are configured to simulate only opening and sliding mechanisms, as they are 

modelled with high compressive strength. This feature aims to represent the high compression 

strength of columns and beams perpendicular to the fibres and to hinder excessive 

interpenetration between the infill and the frame. 
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Figure 79: Evaluation of cohesion and coefficient of friction of mortar joints from triplet shear tests results 
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Table 19 Mechanical characterisation of the infill mesoscale model (subscript specification: n=normal; 

t=tangential or tensile; ji=internal joint; je=external joint; h=horizontal interface; v=vertical; b=brick; 

c=compression/crushing) 

Parameter Symbol u.o.m.  

Units elastic parameters 

Elastic modulus Eb N/mm2 20000 

Poisson’s 

coefficient 
νb - 0.2 

Internal interfaces 

stiffness parameters 

Mortar joints 

Normal stiffness Kn,ji N/mm3 491.9 

Tangential 

stiffness 
Kt,ji N/mm3 196.8 

Bricks 

Normal stiffness Kn,b N/mm3 10⁴ 

Tangential 

stiffness 
Kt,b N/mm3 10⁴ 

External interfaces stiffness parameters 

Normal stiffness Kn,je N/mm3 2533 

Tangential 

stiffness 
Kt,je N/mm3 1055 

Internal interfaces 

strength parameters 

Mortar joints (horizontal and 

vertical) 

Cohesion cji N/mm2 0.11 

Friction 

coefficient 
tanφji - 1.02 

Bond strength ft,ji N/mm2 0.08 

Bricks Tensile strength ft,b N/mm2 1.61 

Horizontal interfaces 

(mortar bed joints) Compressive 

strength 

fc,h N/mm2 15.10 

Vertical interfaces  

(mortar head-joints and bricks) 
fc,v N/mm2 7.55 

Internal interfaces 

fracture energies 

Mortar joints (horizontal and 

vertical) 

Mode I GI,ji N/mm 0.016 

Mode II GII,ji N/mm 0.16 

Bricks Mode I GI,b N/mm 0.09 

Horizontal interfaces 

(mortar bed-joints) 
Crushing 

Gc,h N/mm 20.67 

Vertical interfaces (mortar head-

joints and bricks) 
Gc,v N/mm 18.02 

External interfaces strength parameters 

Cohesion cje N/mm2 0.014 

Friction 

coefficient 
tanφje - 0.35 

Bond strength ft,je N/mm2 0.01 

External interfaces fracture energies 
Mode I GI,je N/mm 0.01 

Mode II GII,je N/mm 0.10 

 Analysis results 

The shear-displacement response of the infilled-frame model is depicted in Figure 80, along with the 

bare-frame model response and the experimental results. The prediction of the capacity curve is 

satisfactory, showing good accuracy in estimating the initial stiffness and stiffness decay after the 

detachment of the infill. Although there is a slight overestimation of the maximum strength, it remains 

within 10%. The representation of the post-peak strength decay is well captured. Moreover, a significant 
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correspondence with the experiment is observed in the damage pattern, as illustrated in Figure 81. The 

primary diagonal crack evident in the experimental specimen is also present in the infill models, and 

the overall cracking damage reflects the experimental observations. Notably, the corner crushing 

responsible for reaching the ultimate resistance is reproduced. The damage to the frame is partially 

captured, including the damage at the top of the left-hand side column (which is also subjected to shear 

damage at large displacements) and at the bottom of the right-hand side column. However, the cracking 

observed at the centre of the top beam, possibly induced by a concentrated load exerted after a potential 

shift of the diagonal strut, is not reproduced in the model. In contrast, in the model, this effect manifests 

after the infill cracking resulting in damage at the middle of the left column. 

 

Figure 80 Shear-displacement response of bare-frame and mesoscale infilled-frame: comparison between 

experimental and numerical results 

 
 

(a) (b) 

Figure 81 (a) Deformed shape (5x amplification) at the last step reached with the contour on the frame 

indicating strain energy (values in legend expressed in N mm); (b) experimental damage pattern (Mehrabi, 

1994) 
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Distinct phases are recognised as the imposed displacement increases. Initially, the infilled-frame 

behaves "monolithically”, immediately followed by the detachment of the infill from the frame at the 

non-loaded corners (top-right and bottom-left corners) and by the onset of diagonal cracking within the 

infill. The cracks propagate throughout the infill, leading to a gradual decrease in stiffness. The applied 

force increases until reaching the maximum capacity, determined by crushing of the infill at the corner. 

Beyond this point, the strength of the infilled frame decreases, and the action is progressively transferred 

from the infill to the frame.  

The different phases are depicted in various moments throughout the analysis through different 

representations: Figure 82 illustrates the principal stresses in the brick units of the infill, while Figure 

83 and Figure 84 show the tensile and crushing damage of the interfaces, respectively. 

Following the application of the vertical loads on the columns, the stress state is primarily concentrated 

on the sides of the infill (Figure 82a). This is accompanied by damage to interfaces at the middle-top of 

the infill (Figure 83a). As the displacement increases, the detachment of the infill from the frame occurs, 

and at around 1.5mm, the initiation of diagonal cracking begins. By this moment, the diagonal 

compressive strut is already developed (Figure 82b), slightly shifted downward and partially divided 

due to the presence of the crack. The latter is clearly observable by the damage state of the interfaces 

(Figure 83b). As the cracking state spreads, the diversification of the strut into two branches becomes 

more evident (Figure 82c), with the larger one continuing to translate downward as the interfaces above 

the diagonal become more damaged (Figure 83c). The reaching of the peak strength is marked by the 

onset of crushing damage at the corner (Figure 84a), which starts from a single vertical interface element 

and then involves more and more vertical ones (Figure 84b). As the crushing occurs, the inclination of 

the strut decreases, leading to a concentration of stresses not only at the corner but also in the middle of 

the left-hand side column (Figure 83d), responsible for its damage (as observed in Figure 81a). 
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(a) (b) 

  

(c) (d) 

Figure 82 Representation of principal stresses throughout the analysis - (a) after the vertical load 

application, (b) at a horizontal displacement of 1.5mm, (c) at the peak-strength, and (d) at the last step 

(deformed shapes with 5x amplification) 
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(a) (b) 

  

(c) (d)  

Figure 83 Representation of interfaces tensile damage throughout the analysis - (a) after the vertical load 

application, (b) at a horizontal displacement of 1.5mm, (c) at the peak-strength, and (d) at the last step 

(deformed shapes with 5x amplification) 

 
 

(a) (b) 

Figure 84 Representation of interfaces crushing damage (a) at the peak-strength, and (b) at the last step 

(deformed shapes with 5x amplification) 
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 Sensitivity analysis 

Within the calibration of the mechanical properties, several parameters were selected without complete 

confidence, as is common, by considering suggested values or analytical relations from literature. 

Assuming no awareness of the experimental outcome, sensitivity analyses are conducted to evaluate 

how the response may vary based on the analyst's choices. In particular, the situations assessed are listed 

below, while all the characterisations evaluated are reported in Table 20. 

• Variant 1: Strength parameters of the external frame-infill interfaces 

Previously assessed with weak mechanical characteristics, they are also examined by adopting 

the same values as the internal mortar interfaces (defining the variant denoted as "Var 1.1") and 

by considering the average of the two scenarios ("Var 1.2"). 

• Variant 2: Stiffnesses of the external interfaces 

Further assessed considering one-tenth (resulting in stiffness values lower than the stiffnesses 

of the mortar interfaces internal to the infill; “Var 2.1”) or ten times (“Var 2.2”) the reference 

values. 

• Variant 3: Horizontal strength of masonry 

One alternative evaluation involves the estimation of a diagonal-like compressive strength 

(denoted as fc,diag) within the variant “Var 3.1”, using equation (16). This strength is determined 

by the slope (α) of the diagonal of the infill (equal to 35°), assuming a linear variation between 

the horizontal and the vertical values. The other alternative considers the vertical strength itself 

(“Var 3.2”). In both the situations, the crushing energies are determined through the Model 

Code 90 relation (9), coherently with the reference model. 

𝑓𝑐,𝑑𝑖𝑎𝑔 = 𝑓𝑐,ℎ +
𝑓𝑐,𝑣 − 𝑓𝑐,ℎ

90
𝛼 (16) 

• Variant 4: Crushing fracture energies 

Contrarily, while maintaining the same compression strengths, the assessment of crushing 

energies, both horizontal and vertical, considers two alternatives. One (“Var 4.1”) is based on 

the relation (17), recommended by Lourenco and Gaetani (2022), while the other (“Var 4.2”) 

is provided by the analytical expressions (18) and (19), which distinguish between horizontal 

and vertical interfaces. These expressions are derived from linear regressions from 

experimental test results reported in (Jafari et al., 2022). 

𝐺𝑐 = 32 𝑓𝑐 (10 + 𝑓𝑐)⁄  (17) 

𝐺𝑐,ℎ = 0.57 𝑓𝑐,ℎ + 14.7  (18) 
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𝐺𝑐,𝑣 = 2.99 𝑓𝑐,𝑣 (19) 

• Variant 5: Internal joint fracture energies 

The variants, “Var 5.1” and “Var 5.2”, are defined through the range provided for GI,ji and GII,ji 

in Table 8. 

Table 20 Variants material characterisation for mesoscale infill model. 

Variant 1 - External interfaces strength parameters 

Parameter Symbol u.o.m. Ref. Var 1.1 Var 1.2 

Cohesion cje N/mm2 0.014 0.11 0.07 

Friction coefficient tanφje - 0.35 1.02 0.86 

Bond strength ft,je N/mm2 0.010 0.08 0.05 

Variant 2 - External interfaces elastic parameters 

Parameter Symbol u.o.m. Ref. Var 2.1 Var 2.2 

Normal stiffness Kn,je N/mm3 2533 253.3 25330 

Tangential stiffness Kt,je N/mm3 1055 105.5 10550 

Variant 3 - Horizontal compressive strength (crushing energy accordingly)  

Parameter Symbol u.o.m. Ref. Var 3.1 Var 3.2 

Vertical interfaces compressive strength fc,v N/mm2 7.55 10.50 15.10 

Vertical interfaces crushing energy Gc,v N/mm 18.02 19.11 20.67 

Variant 4 - Crushing fracture energies 

Parameter Symbol u.o.m. Ref.  Var 4.1 Var 4.2  

Horizontal interfaces crushing energy Gc,h N/mm 20.67 19.25 23.31 

Vertical interfaces crushing energy Gc,v N/mm 18.04 13.77 22.57 

Variant 5 - Internal joints fracture energies 

Parameter Symbol u.o.m. Ref. Var 5.1 Var 5.2 

Mode I fracture energy GI,ji N/mm 0.016 0.005 0.035 

Mode II fracture energy GII,ji N/mm 0.16 0.014 0.25 

The numerical responses for all the situations assessed are given in Figure 85. The impact of the strength 

parameters of the external interfaces is significant. Specifically, if no distinction is made between 

internal and external interfaces, the predicted maximum strength results 35% higher. On the other hand, 

the assessment of stiffnesses of the external interfaces, shows no significant influence. A strong 

influence is also noticed, as expected, for the horizontal compression strength, particularly important in 

the context of infilled frame. If the experimental compression strength is used for the vertical interfaces 

as well, the maximum force reached is almost 30% higher. The evaluation of the crushing fracture 

energy has a minor impact on the capacity curve, although still significant, with variations within plus 

or minus 5% of the maximum strength and translations of the displacements corresponding to the peak 

strength. Finally, no variations are noticed with the variants related to the fracture energies of the 

internal joints. 
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Figure 85 Shear-displacement curves from the variant mesoscale models. 
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4.6 Continuum macroscale modelling 

In this section, the infilled-frame model is implemented using a continuum macroscale approach to 

represent the masonry infill. Second-order brick elements, characterised by the concrete damage 

plasticity law (CDP), are employed within the adoption of a 15x10 elements mesh discretisation. The 

frame-infill interfaces are represented also here using the element proposed in (Minga et al., 2018). The 

validated bare-frame model from Section 4.3 is adopted to represent the RC frame. Overall, the 

developed model includes 150 solid elements, 50 interface elements, and 92 beam elements, with a total 

of 1578 3-DoF nodes and 89 6-DoF nodes. Moreover, given the lower computational burden with 

respect to the mesoscale model, a monolithic partitioning approach is employed, by considering a single 

rank-0 element representing the infill. Figure 86 illustrates the infilled-frame model. 

  
(a) (b) 

Figure 86 Views of the infilled-frame continuum macroscale model - (a) Extruded frame and infill brick 

elements, and (b) external infill interfaces 

 Material characterisation 

As previously done for the mesoscale model, an objective calibration of the mechanical characteristics 

of the infill and frame-infill boundary interfaces is carried out. The parameters adopted for the analysis 

are presented in Table 21. The main considerations are as follows: 

• External frame-infill interfaces 

The strength and stiffness parameters align with those employed in the mesoscale model (Table 

19). 

 



Chapter 4. Advanced modelling of masonry-infilled frame structures 

116 

• Masonry elastic modulus 

Estimated as a diagonal-like value (denoted as Ediag) through relation (20), considering a linear 

interpolation between the vertical elastic modulus (Ev, assumed as the initial tangent modulus 

derived from the compression test on the wallet, estimated at 14300 MPa) and the horizontal 

modulus (Eh, assessed as 0.7 times the vertical one, as suggested by Jafari et al., 2022).  

𝐸𝑑𝑖𝑎𝑔 = 𝐸ℎ +
𝐸𝑣 − 𝐸ℎ
90

𝛼 (20) 

• Masonry compressive strength 

Since the material is isotropic, it is assessed as 50% of the vertical one to account for possible 

compressive failure in the horizontal direction, as previously done. 

• Masonry tensile strength 

Estimated by considering two mechanisms of diagonal cracking: 

o Stepped-crack mechanism: Links the tensile strength to the cohesion of the mortar 

joint, the height of the unit, and the overlapping length through equation (11), resulting 

in a tensile strength of 0.12 MPa. 

o Straight-crack mechanism: Involves the failure of units and head joints, with the 

suggested masonry tensile strength being 50% of the tensile strength of the unit, as 

suggested by (Lourenco and Gaetani (2022) (the tensile strength of the unit is taken 

from  

o Table 15), resulting in a masonry tensile strength of 0.82 MPa. 

In this context, the tensile strength is estimated as the average of these two values. 

• Dilatancy angle 

Set at a low value of 10°, given the high confining stress level provided by the surrounding 

frame.  

• Other values are derived from Chapter 3.4.1. 
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Table 21. Reference characterisation and variant case studies for the panels analyses the variable 

parameters are reported in shaded cells. 

Parameter Symbol U.o.m. 
Reference 

values 

Infill - Concrete Damage Plasticity 

Young’s modulus E [MPa] 11660 

Poisson’s coefficient ν [-] 0.2 

Dilatancy angle ψ [°] 10 

Ratio between biaxial and uniaxial compressive strength fb0 - 1.16 

Flow potential eccentricity ε - 0.1 

Ratio of the second stress invariant on the tensile meridian to that on 

the compressive meridian at initial yield 
Kc - 0.66 

Tensile strength ft [MPa] 0.47 

Tensile fracture energy Gt [N/mm] 0.02 

Stiffness degradation μ [-] 0.2 

Maximum compression strength fc [MPa] 7.55 

Ratio between uniaxial yielding stress and maximum strength in 

compression 
fyr [-] 0.3 

Plastic strain in compression kc,fmax [-] 0.002 

Tensile stiffness recovery wt [-] 0 

Compressive stiffness recovery wc [-] 1 

Frame-infill interfaces 

External interfaces strength parameters 

Cohesion cje N/mm2 0.014 

Friction coefficient tanφje - 0.35 

Bond strength ft,je N/mm2 0.01 

External interfaces fracture energies 
Mode I GI,je N/mm 0.01 

Mode II GII,je N/mm 0.10 

 Analysis results 

The response obtained with the macroscale model is accurate and comparable to the prediction of the 

more refined mesoscale model, showing good predictions for stiffness, maximum strength, and post-

peak behaviour (Figure 87). However, some discrepancies are observed: a slight overestimation of the 

stiffness decay after the detachment of the infill, a minimal overestimation of the maximum strength 

(within 10%), and a more noticeable underestimation of the residual strength, amounting to 22% at 35 

mm of displacement. The observed damage pattern aligns with both experimental findings and the 

mesoscale model response (Figure 88), with similarities regarding the tensile damage, assimilable to 

the experimental diagonal cracking damage, and the crushing of the masonry at the corner, responsible 

for the reaching of the peak strength. Moreover, a similar damage state is observed in the reinforced 

concrete frame. 
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Figure 87 Shear-displacement response of bare-frame and continuum macroscale infilled-frame: 

comparison between experimental and numerical results.  

  

(a) (b) 

  
(c) (d) 

Figure 88 (a) Deformed shape (5x amplification) at the last step (35mm) with contours on the frame 

indicating strain energy (values in legend expressed in N mm); (b) experimental damage pattern (Mehrabi, 

1994); (c) tensile and (d) compressive damage of the infill at the last step 

The same characteristic phases identified in the mesoscale modelling are also observed within the 

macroscale modelling. Figure 89 illustrates the progression of the stress state, depicting the diagonal 

strut following a similar development pattern, although with a different distribution and more 
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concentrated stresses on the corners. After reaching the peak-strength, the diagonal strut deviates 

downward, resulting in stress concentration in the middle of the left-hand side column. Figure 90 

presents the progression of infill tensile damage, revealing that diagonal cracking initiates right from 

the beginning of the analysis, occurring at 1.5 mm of horizontal displacement. The reaching of the peak 

strength is given by the onset of crushing damage, as observed in Figure 91, which depicts the 

compression damage progression. Notably, crushing damage is also observed at the bottom corner of 

the right-hand side column. Figure 92 illustrates the progression of external interfaces damage, showing 

a response similar to what was previously observed in the mesoscale analysis. The damage initiates at 

the top interfaces upon vertical load application, followed by the damaging of the interfaces at the top-

right and bottom-left corners, ultimately resulting in damage across all interfaces. 

  
(a) (b) 

  

(c) (d) 

Figure 89 Representation of principal stresses throughout the analysis of the continuum macroscale model: 

(a) after the vertical load application, (b) at a horizontal displacement of 1.5mm, (c) at the peak-strength, 

and (d) at the last step (deformed shapes with 5x amplification) 
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(a) (b) 

  
(c) (d) 

Figure 90 Representation of CDP tensile damage throughout the analysis - (a) after the vertical load 

application, (b) at a horizontal displacement of 1.5mm, (c) at the peak-strength, and (d) at the last step 

(deformed shapes with 5x amplification) 

  
(a) (b) 

Figure 91 Representation of CDP compressive damage (a) at the peak-strength, and (b) at the last step 

(deformed shapes with 5x amplification). 
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(a) (b) 

  

(c) (d) 

Figure 92 Representation of external interfaces tensile damage throughout the analysis - (a) after the 

vertical load application, (b) at a horizontal displacement of 1.5mm, (c) at the peak-strength, and (d) at the 

last step (deformed shapes with 5x amplification) 

 Sensitivity analysis 

Sensitivity analyses are carried out to assess how the numerical response may vary based on the analyst's 

choices, as done within the mesoscale modelling. The specific scenarios considered are listed below, 

while all the characterisations evaluated are reported in Table 22. 

• Variant 1: Strength parameters of the external frame-infill interfaces  

Evaluated considering the same scenarios employed in the mesoscale models.  

• Variant 2: Stiffness parameters of the external frame-infill interfaces 

Evaluated with the same scenarios, along with an additional case analysed with stiffness one 

order of magnitude lower. 

• Variant 3: Masonry elastic modulus  

Assessed by considering both horizontal and vertical moduli (as defined in Chapter 4.6.1). 

• Variant 4: Compressive strength of masonry 
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Varies considering both the estimated diagonal strength (calculated as in relation (20), 

considering compression strength instead of elastic modulus) and the vertical strength. 

• Variant 5: Plastic strain at the peak 

Linked to the crushing fracture energy, it is assessed within the range of 0.1% to 0.3%. 

• Variant 6: Tensile strength of masonry 

Assessed by considering strengths from both mechanisms of diagonal cracking: stepped-crack 

and straight-crack. 

• Variant 7: Fracture energy of masonry 

Evaluated by considering the range of variation reported in Table 10. 

Table 22 Variants material characterisation for continuum macroscale infill model. 

Variant 1 – Frame-infill interfaces strength parameters 

Parameter Symbol u.o.m. Ref. Var 1.1 Var 1.2 

Cohesion cje N/mm2 0.014 0.11 0.07 

Friction coefficient tanφje - 0.35 1.02 0.86 

Bond strength ft,je N/mm2 0.010 0.08 0.05 

Variant 2 - Frame-infill interfaces elastic parameters 

Parameter Symbol u.o.m. Ref. Var 2.1 Var 2.2 Var 2.3 

Normal stiffness Kn,je N/mm3 2533 25.33 253.3 2533 

Tangential stiffness Kt,je N/mm3 1055 10.55 105.5 1055 

Variant 3 – Infill elastic modulus 

Parameter Symbol u.o.m. Ref. Var 3.1 Var 3.2 

Young’s modulus E N/mm2 11660 9996 14280 

Variant 4 – Infill compressive strength 

Parameter Symbol u.o.m. Ref. Var 4.1 Var 4.2 

Maximum compression strength fc N/mm2 7.55 10.50 15.10 

Variant 5 – Infill strain at the peak 

Parameter Symbol u.o.m. Ref.  Var 5.1 Var 5.2  

Plastic strain in compression kc,fmax - 0.002 0.001 0.003 

Variant 6 – Infill tensile strength 

Parameter Symbol u.o.m. Ref. Var 6.1 Var 6.2 

Tensile strength ft N/mm2 0.47 0.12 0.82 

Variant 7 – Infill tensile fracture energy 

Parameter Symbol u.o.m. Ref. Var 7.1 Var 7.2 

Tensile fracture energy Gt N/mm 0.02 0.005 0.035 

The results, reported in Figure 93, mirror what was already seen in the mesoscale analysis. Notably, the 

important influence of the strength of the external interfaces is observed even here, although with a 

lower percentage of increase of strength (+24%), while no significant variations are observed by varying 

the specification of the stiffnesses. Remarkably, there is no influence detected from the elastic modulus, 

while, once again, a significant influence is evident from the choice of compressive strength, leading to 

+41% increase of the peak-strength. The effect of the strain at the peak also proves to be significant. 

Concerning tensile strength, no variations are noticed when adopting the higher value, while 
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considering the lower value leads to a significant change of shear-displacement curve, becoming more 

stepped and characterised by a higher stiffness decay. However, the maximum strength, primarily 

governed by the compressive behaviour of the infill, remains unaffected. Finally, there is no significant 

influence attributed to the tensile fracture energy. 
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Figure 93 Shear-displacement curves from the variant continuum macroscale models. 

4.7 Effects of openings in masonry-infills 

As outlined in Chapter 2.4.4 and 2.5.3, the presence of openings can significantly impact the response 

of infilled frame structures, constituting a potential source of structural irregularity and consequently 

having a detrimental influence on their behaviour. In this section, the impact of the presence of openings 

within the infilled frame is examined. The continuum macroscale model, which has been evaluated in 

the previous chapter and demonstrated its accuracy in representing the experimental response while 

maintaining consistency with the more refined mesoscale model, is here adopted. Therefore, the same 

geometry and configuration of external action are considered herein. Six central openings are specified, 

differentiated into door and window openings. Standard dimensions are taken into account, considering 

typical dimensional ratios (ratios between the area, length, and height of the openings with those of the 

solid infill dimensions). The geometric characteristics of the analysed case are detailed in Table 23 and 

the views of the models are provided in Figure 94. 

Table 23 Geometric characteristics of the infilled frames with openings examined (opening-solid infill 

ratios, αb: length r tio; αh: height r tio; αa: area ratio) 

 Cases b [mm] h [mm] αb αh αa 

W1 419 284 20% 20% 4% 

W2 699 569 33% 40% 13% 

W3 978 853 47% 60% 28% 

D1 419 996 20% 70% 14% 

D2 699 996 33% 70% 23% 

D3 978 996 47% 70% 33% 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 94 Models of infilled frames with openings: (a) W1, (b) W2, (c) W3, (d) D1, (e) D2, (f) D3 

The base shear vs. horizontal displacement curves for window infills and door infills are presented in 

Figure 95 and Figure 96, respectively. The impact of the openings is significant, greatly influencing 

both the strength and stiffness of the infilled frame. As regards the windowed infilled frames, it is 

observed how they are notably affected by the opening dimensions. With a small opening (W1), the 

peak strength is nearly the same as that of the solid infilled frame, only leading to a reduction in stiffness 

and causing a slight shift in the peak point to a larger displacement. As the opening dimensions increase, 

the response shows a progressive decay in both strength and stiffness. The response of the model with 

the largest window (W3) is characterised by maximum strength close to the residual strength of the 

solid infilled frame. Conversely, concerning door infills, no remarkable variations are observed as the 

opening dimensions increase, with maximum strength of each model aligning with the residual strength 

of the solid infilled frame. 
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Figure 95 Shear-displacement curves for window-infills 

 

Figure 96 Shear-displacement curves for door-infills 

The differences in the responses are evident also when analysing the infill stress distribution and the 

damage pattern. The progression of the stress state throughout the analysis for the window-infilled 

frame and door-infilled frame is illustrated Figure 97 and Figure 98, respectively. Additionally, Figure 

98 and Figure 100 depict the compressive and tensile damage states of the infill, along with the damage 

on the RC frame, at the end of the analysis. 

The influence of different window dimensions on the capacity of the infilled frame is clearly 

recognisable when examining the progression of the stress state (Figure 97). In the case of the small 

window (W1), a diagonal compressive strut still develops, leading to a response similar to that of the 
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solid-infilled frame. Conversely, the medium-sized window (W2) leads to the development of a double-

strut, while the largest window (W3) is characterised by an even more complex stress state. Notably, as 

the opening increases the infill tends to remain adherent to the frame, given its higher deformability. 

The different behaviour is also evident in the damage pattern, shown in Figure 98. In the case of the 

small opening, the compressive damage is mainly present at the corners of the infills, while with larger 

windows it tends to extend to other areas, particularly the corners of the openings. Regarding tensile 

damage of the infill, a similar pattern is observed among the models, with damage spread throughout 

the infill.  

Conversely, the response for the door infills remains consistent across the different dimensions. 

Specifically, it is characterised by a rocking mechanism of the right hand-side pier, which is 

accompanied by the development of an internal diagonal strut (Figure 99). Additionally, stress 

concentrations are observed at both the top-right corner of the opening and the loaded corner of the 

infill, leading to the crushing of masonry (Figure 100). Minimal damage is observed on the left-hand 

side pier, which presents a sliding mechanism at the external interface with the bottom beam. 
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 After vertical load application 15 mm lateral displacement 35 mm lateral displacement 
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Figure 97 Principal stresses in the windowed infilled-frame models at different analysis phases (deformed 

shapes with 5x amplification) 
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Figure 98 Tensile and compressive damage in the infill, along with strain energy in the frame at the 

conclusion of the analysis of the windowed infilled-frame models (deformed shapes with 5x amplification) 
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 After vertical load application 15 mm lateral displacement 35 mm lateral displacement 
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Figure 99 Principal stresses in the door infilled-frame models at different analysis phases (deformed shapes 

with 5x amplification) 
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Figure 100 Tensile and compressive damage in the infill, along with strain energy in the frame at the 

conclusion of the analysis of the door infilled-frame models (deformed shapes with 5x amplification) 
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Finally, an analytical evaluation is conducted to assess the decrease of maximum strength and pre-peak 

stiffness resulting from the presence of openings. As discussed in Section 2.5.3, many authors consider 

reduction coefficients to account for openings, within the equivalent strut modelling approach. These 

coefficients are applied to reduce the section of the equivalent strut. Some authors propose a single 

value for both stiffness and strength reduction, while others evaluate them separately. Table 24 presents 

the peak strength reached (Vmax) along with two secant stiffness values (Ksec), considering either 60% 

or 100% of the strength. Strength and stiffness reductions are then calculated as percentages of 

decreases from the solid-infilled frame response. 

Table 24 Evaluation of the effects of openings presence 

   Infilled Frame W1 W2 W3 D1 D2 D3 

Vmax [kN] 297.1 293.8 254.2 179.3 169.5 160.6 163.3 

Ksec(0.6Vmax) [kN/mm] 65.4 53.4 33.2 19.9 21.0 18.4 16.4 

Ksec(Vmax) [kN/mm] 30.3 22.0 16.3 8.0 8.5 7.3 7.4 

ΔV - -1.1% -14.4% -39.6% -42.9% -46.0% -45.1% 

ΔK60% - -27.4% -46.1% -73.6% -72.1% -75.9% -75.5% 

ΔK100% - -18.3% -49.3% -69.7% -67.9% -71.9% -75.0% 

In Figure 101, the reduction values are depicted as functions of αa, the ratio between the opening and 

infill areas. Interestingly, the variation of the reduction values is approximately linear for both strength 

and stiffness, whether for window-infill or door-infill. Notably, the reduction of strength and stiffness 

is not equal, with a higher impact on the reduction of stiffness. Moreover, the two reductions vary in 

parallel with each other. No significant differences are noticed when considering the stiffness at 60% 

of the peak or at 100% of the peak. For the door infills, the reductions, which remain almost constant 

due to the low variability of the response, are around -50% for peak strength and -75% for stiffness. On 

the other hand, the large variability of the window infills is reflected by the slope of the linear regression: 

the stiffness reduction varies between -30% and -75%, while strength reduction ranges from -5% to -

40%. 

  
(a) (b) 

Figure 101 Decrease of strength and stiffnesses due to openings presence: (a) window infills; (b) door infills 
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4.8 Summary and conclusions 

In this chapter, the performance of masonry-infilled frames has been examined using advanced finite 

element modelling strategies. The reinforced concrete frame has been represented through beam 

elements formulated based on a fibre-plasticity approach, while the masonry infill has been modelled 

using both a mesoscale strategy and a continuum macroscale strategy (employing the concrete damage 

plasticity material law). To ensure effective coupling between the 3D masonry representation and the 

1D beam/column elements, a multi-dimensional partitioned strategy has been employed. 

Experimental tests from the literature have been simulated, involving the initial calibration of the 

reinforced concrete frame through the simulation of a bare-frame experimental test. Subsequently, the 

masonry infill has been modelled using both mesoscale and macroscale strategies, with an accurate 

objective calibration of the material. The results have demonstrated a good level of accuracy, providing 

a representation that effectively captures both the global response, namely the capacity curve, and the 

local behaviour, including the failure mechanisms of the infill, frame, and frame-infill interfaces. 

Additionally, sensitivity analyses have been conducted to identify the parameters that significantly 

impact the response. Notably, the response of the infilled frame has been found to be particularly 

influenced by the strength of the external frame-infill interfaces and the compressive response of the 

masonry infill. 

Finally, the study has examined the influence of the presence of openings within the infills. The 

continuum macroscale infilled-frame model has been adopted as the solid reference model. Six cases 

with openings have been evaluated, considering either door or window openings. The influence on the 

response of either windows or doors has been found different, considering the capacity curve 

(specifically, maximum strength and pre-peak stiffness reduction), the progression of the stress state, 

and the damage development. Remarkably, the responses of door infilled-frames have not shown 

significant variation with changing opening dimensions, while the window infilled-frame response has 

been notably affected by window dimensions. 
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CHAPTER 5  

A NOVEL ENHANCED 3D MACROELEMENT FOR 

URM AND INFILLED FRAME STRUCTURES 

MODELLING 

 

5.1 Introduction 

Despite their reliability, the computational demand of mesoscale models generally restricts their 

application to small-scale structures. Additionally, even in finite element macroscale modelling, 

simulating large-scale URM and infilled-frame structures under realistic dynamic loading conditions 

often requires extensive numerical analyses, leading to significant computational requirements. 

This chapter introduces an enhanced macro-element model to overcome these limitations, building upon 

the groundwork established by the element introduced in (Minga et al. 2020). The model has already 

shown high potential, providing accurate results with reduced computational cost. The advances 

introduced in the present work address certain limitations of the original implementation, leading to 

improved response predictions.  

A comprehensive exposition of the macroelement formulations is provided, encompassing kinematic 

characteristics, connectivity properties, and a description of the behaviour of cohesive boundaries and 

in-plane and out-of-plane nonlinear springs. The main drawbacks of the original implementation are 

highlighted, for which refinements and innovations are introduced in the enhanced macroelement and 

presented in the chapter. 

 



Chapter 5. A novel enhanced 3D macroelement for URM and infilled frame structures modelling 

134 

5.2 Macroelement formulation 

The 3D macroelement approach proposed by E. Minga et al. (2020) was developed to analyse 

unreinforced masonry structures subjected to in-plane and out-of-plane actions, used to represent 

significant portions of masonry walls. The macroelement, illustrated in Figure 21a, is formulated based 

on an inner deformable block equipped with in-plane and out-of-plane nonlinear springs (Figure 21b 

and c) and surrounded by four external edges, connected through zero-thickness cohesive-frictional 

interfaces. The element can interact along those edges with adjacent elements, allowing a realistic 

representation of any plane geometry. The model is able to represent all the typical failure modes of 

masonry buildings, including both in-plane (as illustrated in Figure 5) and out-of-plane modes (Figure 

7), while maintaining a high level of computational efficiency. Moreover, distinct from previous 

macroelement strategies (e.g., Caliò et al., 2012; Pantò et al., 2016, 2017), this approach was developed 

within a FEM framework, enabling flexible connectivity with adjacent elements through its four 

boundary edges. This feature allows the combination of the macroelement with different types of finite 

elements, such as quadratic beams and shells. 

(a)  

(b)  
(c)  

Figure 102 (a) URM macroelement; (b) in-plane shear and (c) out-of-plane diagonal bending deformation 

modes of the inner block 
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Kinematics 

The macroelement is, in general, defined by 8 nodes, where pairs of nodes at the corners share identical 

coordinates (though sketched separately for the sake of clarity). Each node generally has 3 translational 

and 3 rotational degrees of freedom (DOFs). In the local element coordinate system XYZ, translational 

DOFs are represented as uX, uY, uZ, and rotational DOFs are denoted as θX, θY, θZ, as illustrated in Figure 

103. The DOFs required at the edge nodes vary depending on whether the external edge connects a 

macroelement with a steel or reinforced concrete surrounding frame or links two macroelements. In the 

first case, the external edge is defined as a 'full-DOF' edge, where all the 6 DOFs of the nodes must be 

considered to represent a deformation mode compatible with the elastic deformation of the beam 

element. Conversely, when an external edge connects two adjacent macroelements, the interacting faces 

remain plane since the interpolation of displacements within the inner block is linear. In this case, edges 

are defined by 4-DOF nodes and are referred to as ‘reduced-DOF’ edges (only twisting rotations are 

necessary to represent the out-of-plane displacements). Moreover, in the case of a macroelement 

adjacent to a frame element, the nodes corresponding to beam-column joints are merged (as further 

shown in Figure 105). Therefore, every single macroelement is generally defined through n distinct 

nodes, where 4 ≤ n ≤  ; the vector of si e 6n containing all the nodal DOFs (degrees of freedom) of the 

macroelement in the element reference system XYZ can be expressed as: 

𝑈𝑠 = [𝑢X,1 𝑢Y,1 𝑢Z,1 𝜃𝑋,1 𝜃𝑌,1 𝜃𝑍,1  ⋯ 𝑢X,n 𝑢Y,n 𝑢Z,n 𝜃𝑋,𝑛 𝜃𝑌,𝑛 𝜃𝑍,𝑛 ]
𝑇

 (21) 

The displacement field within the external edges Ued is determined by employing either linear shape 

functions in the case of reduced degrees of freedom (DOF) edges, or cubic shape functions for edges 

with full degrees of freedom (DOF) (refer to Figure 103 for an example of deformed shapes). 

 

Figure 103 Basic DOFs of external edges in the local element coordinate system and example of deformed 

shapes 
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In addition to the nodal DOFs, each macroelement is defined by eight additional DOFs that govern the 

deformation modes of the inner block, as depicted in Figure 104: DOFs from d1 to d4 are associated to 

the in-plane response, while DOFs from d5 to d8 to the out-of-plane response. The vector representing 

these additional DOFs of the macroelement is denoted as: 

𝑈𝑎 = [𝑑1  𝑑2  𝑑3  𝑑4  𝑑5  𝑑6  𝑑7  𝑑8]
𝑇 (22) 

while the vector containing all the basic and additional degrees of freedom (DOFs) of the element is 

given by: 

𝑈 = [𝑈𝑠 𝑈𝑎]
𝑇 (23) 

The displacement field of the inner block, denoted as Ubl, is determined through a linear interpolation 

of the displacements related to the additional DOFs. To achieve this, a linear distribution of the 

translations of vector Ua is assumed along the mid-surface of the block. Additionally, it is assumed that 

the mid-surface rotates around axes X and Y due to differential out-of-plane translations; within the 

block, a linear distribution of rotations is also assumed. An example of mixed-mode deformation of the 

inner block is provided in Figure 104. 

For more information on the interpolation of the displacement fields of external edges and inner block 

refer to Minga (2017).  

 

Figure 104 Inner block additional DOFs and example of deformed shape 
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Connectivity 

The element connectivity is determined based on the specific structure being modelled. Specifically, 

the pairs of nodes situated at the corners can be considered separately or merged into a single node; this 

feature depends on whether the external edge connects two adjacent masonry blocks or links a masonry 

portion with a steel or reinforced concrete frame (see Figure 105). In the case of bare URM structures 

(Figure 105a) the external edges serve as fictional boundaries between masonry portions, not 

transferring moments and allowing for a linear relative displacement field in the normal and transversal 

directions. In this scenario, two distinct nodes are considered for each corner. On the other hand, in the 

case of masonry-infilled frames (Figure 105b), the connectivity of the macroelement to the frame 

elements requires the transfer of forces and moments between the edges in contact with the frame. In 

this case, the corner corresponding to the beam-column joint consists of a single node, and all the nodes 

shared with frame elements are merged. 

(a) 

 

(b) 

Figure 105 Types of nodal connectivity: (a) adjacent URM blocks; (b) URM blocks surrounded by a frame 
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Cohesive interfaces 

The boundary interfaces are characterised by cohesive-frictional behaviour governed by a 3D plasticity-

damage constitutive law. This law establishes the relationship between the relative displacements 𝜀𝑖 

and the interface tractions 𝜎𝑖 at each Gauss Point within the 2D domain of the zero-thickness interface, 

as illustrated in Figure 106a. Relative displacements and interface tractions are expressed in (4) and (5), 

respectively, as defined in the local reference system xyz of boundary (i) (refer to Figure 106), where y 

represents the direction normal to the zero-thickness interface mid-surface. In contrast, x and z represent 

the tangential directions. 

𝜀𝑖 = [𝜀𝑥,𝑖 𝜀𝑦,𝑖 𝜀𝑧,𝑖]
𝑇

 (24) 

𝜎𝑖 = [𝜎𝑥,𝑖 𝜎𝑦,𝑖 𝜎𝑧,𝑖]
𝑇

 (25) 

The relative displacements are determined (as expressed by equation (24)) as the difference between 

the internal displacement field along the face of the block constituting the internal side of the zero-

thickness interface (i), denoted as uint,i, which depends on the additional DOFs Ua of the inner block, 

and the external displacement field along the 2D surface defined by the two-noded edges, denoted as 

uext,i, which depends on the basic nodal DOFs Us (see Figure 106b). The interpolation of the 

displacement fields uint,i and uext,i is performed by considering appropriate matrices Na,i and Ns,i which 

depend on Ua and Us respectively. 

𝜀𝑖 = 𝑢𝑖𝑛𝑡,𝑖 − 𝑢𝑒𝑥𝑡,𝑖 = 𝑁𝑎,𝑖𝑈𝑎 − 𝑁𝑠,𝑖𝑈𝑠 (26) 

For the interpolation of internal and external displacement fields refer to Minga (2017) and Minga et 

al. (2020). The relationship between the relative displacement and the traction is governed by the 

sophisticated 3D plasticity-damage constitutive law developed for the representation of joint interfaces 

under cyclic loading, as proposed in (Minga et al., 2018). This model was previously employed within 

the mesoscale approach described in Chapter 2.3.1, for the modelling of mortar joints and internal brick-

to-brick interface. Hence, instead of considering uncoupled springs as in previous implementations 

(e.g., Caliò et al., 2012; Pantò et al., 2016, 2017), the integration of this model interface directly couples 

normal and tangential behaviour, therefore acting as triaxial springs located at the Gauss points. 
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(a) (b) 

Figure 106 (a) Internal and external displacement fields on the two sides of the i-th interface; (b) local 

reference system and Gauss points along the i-th macroelement cohesive-frictional boundary 

The damage along the macroelement interfaces enables the representation of various typical masonry 

collapse mechanisms, including shear-sliding (both in-plane, as depicted in Figure 5c, and out-of-plane, 

as in Figure 7b), flexural cracking (both in-plane, as illustrated in Figure 5d, and out-of-plane, as in 

Figure 7a) and toe crushing (Figure 5e). The elastic stiffnesses of the interfaces are assumed so as all 

normal elastic in-plane deformation within the masonry block is concentrated along these interfaces, 

based on the influence areas related to the corresponding volumes (as illustrated in Figure 107). 

Consequently, the normal stiffness Kn,i of each edge is determined by the ratio of the normal elastic 

modulus (denoted as Ex or Ey, depending on the direction) over half of the element’s height (denoted 

as H) or length (denoted as L), respectively, as in equations (27) and (28) (where the number subscript 

refer to the external edge as specified in Figure 21). On the contrary, the shear stiffness is assumed to 

be infinitely high, as the element shear deformability is entirely attributed to the deformability of the 

inner block. 

𝐾𝑛,1 = 𝐾𝑛,3 =
2𝐸𝑦

𝐻
 (27) 

𝐾𝑛,2 = 𝐾𝑛,4 =
2𝐸𝑥
𝐿

 (28) 
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Figure 107 Areas of influence of the interfaces between the inner block and the external edges 

In-plane and out-of-plane springs 

The mechanisms of in-plane diagonal cracking of masonry (illustrated in Figure 5a and Figure 5b) and 

out-of-plane two-way flexural bending (Figure 7c) cannot be described by damage in the surrounding 

interfaces. Therefore, these modes are represented in the macroelement in a phenomenological way 

through specific deformation modes of the inner block, represented by nonlinear springs (as illustrated 

in Figure 108) and depending on the additional DOFs. In particular, the in-plane shear deformation (an 

example of which is provided in Figure 108a) is defined by a single lagrangian parameter, denoted as 

ud, conveniently controlled by an individual nonlinear spring. This parameter is associated to the in-

plane additional DOFs of the element (d1, d2, d3 and d4, as depicted in Figure 104). Considering α as the 

angle between the diagonal spring and the top edge of the macroelement, as shown in Figure 108a, the 

calculation of ud is as follows: 

𝑢𝑑 = 𝑁𝑑  𝑈𝑎 (29) 

where: 

 

𝑁𝑑 = [cos𝛼  −sin𝛼   cos𝛼  −sin𝛼   0  0  0  0] (30) 

Similarly, the out-of-plane two-way flexural bending (an example of which is shown in Figure 108b) is 

governed by the out-of-plane additional DOFs (d5, d6, d7 and d8, as depicted in Figure 104) and is 
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associated with a single nonlinear spring governed by a lagrangian parameter, uout. The deformation of 

the out-of-plane spring is determined by the lateral distance between the central points of the two 

diagonals of the inner block mid-surface, which is zero in the undeformed configuration. The parameter 

uout is calculated as follows: 

𝑢𝑜𝑢𝑡 = 𝑁𝑜𝑢𝑡  𝑈𝑎 (31) 

where: 

 

𝑁𝑜𝑢𝑡 =
1

2
[0  0  0  0 − 1  1  − 1  1] (32) 

It is noteworthy that the incorporation of the out-of-plane deformation mode allows the description of 

two-way out-of-plane bending deformation with the use of coarser meshes, while in the macroelement 

proposed by Pantò et al. (2016, 2017) this mechanism could be simulated with a larger number of 

elements. 

  
(a) (b) 

Figure 108 Inner block mid-surface deformations: (a) In-plane shear mode; (b) Out-of-plane diagonal 

bending mode 

The force-displacement relationship, adopted for both in-plane (denoted as Fd-ud) and out-of-plane 

(denoted as Fout-uout) springs, is based on a simplified piecewise-linear law, illustrated in Figure 109, 

featuring a bilinear backbone curve with a softening post-peak branch, followed by a final residual 

branch. The cyclic response is characterised by unloading branches with no stiffness degradation, while 

the reloading occurs by pointing towards the last maximum displacement reached in the considered 

direction. Consequently, damage accumulates independently in positive and negative displacements. 
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Figure 109 Simplified piecewise-linear constitutive law employed for the macroelement in-plane and out-

of-plane springs (image taken from Minga et al., 2020) 

As regards specifically the in-plane spring, the model parameters defining the spring force-displacement 

law include the initial stiffness Kd,e, the post-peak stiffness Kd,p, the maximum strength Fd,y and the 

residual strength Fd,r. The stiffnesses values can be determined through an equivalence between the 

macroelement inner block and a homogeneous masonry plate under pure shear, as illustrated in Figure 

110 and following equations (33) and (34), where L, H and W represent length, height and thickness of 

the homogeneous plate, α is the angle between the hori ontal and the diagonal spring and Ge and Gp 

are the masonry elastic and post-peak shear modulus. 

𝐾𝑑,𝑒 = 𝐺𝑒
𝐿𝑊

𝐻𝑐𝑜𝑠2𝛼
 (33) 

𝐾𝑑,𝑝 = 𝐺𝑝
𝐿𝑊

𝐻𝑐𝑜𝑠2𝛼
 (34) 

(a)         (b)  

Figure 110 Equivalence of (a) the macroelement inner block to a (b) homogeneous masonry plate under 

pure shear 

Fd - Fout 

ud - uout 
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The maximum strength of diagonal spring Fd,y is determined by applying the criterion proposed by 

Mann and Müller (1980). The calculation of the horizontal shear strength for diagonal cracking, denoted 

as Vres, is calculated according to relations (35), (36) and (37), which depend on the characteristics of 

the single masonry constituents, specifically the unit interlocking and cohesive and frictional 

characteristics of the mortar joints. Additionally, it is also influenced by the level of confinement σn, 

calculated as the average normal stress in the boundary interfaces at the previous converged step of the 

analysis. The shear diagonal strength is finally calculated through (38). 

𝑉𝑟𝑒𝑠 =  𝐿 𝑊 (�̃� + �̃� ∙ 𝜎n) (35) 

�̃� =
c

1 + 2𝜇
𝛥𝐻
𝛥𝐿
 
 

(36) 

�̃� =
𝜇

1 + 2𝜇
𝛥𝐻
𝛥𝐿  

 
(37) 

𝐹𝑑,𝑦 = 
𝑉𝑟𝑒𝑠
cos𝛼

 (38) 

In the equations c and μ are cohesion and friction angle of the masonry joints, Δ  and ΔL are the length 

and height of the brick units, c̃ and μ̃ are the global equivalent values of cohesion and coefficient of 

friction. 

The same simplified constitutive law was adopted for the out-of-plane spring, as previously mentioned. 

In contrast to the in-plane evaluation of diagonal cracking strength, there is currently no established 

mechanical criterion in the literature for assessing the out-of-plane two-way bending strength. 

Therefore, the authors (Minga et al., 2020) proposed a calibration of the model parameters by testing 

an equivalent detailed mesoscale model (with the same dimensions of a single macroelement), 

following the mesoscale strategy presented by Minga et al. (2018). The schematisation of the mesoscale 

model, regarded as a virtual numerical test, is illustrated in Figure 111a. The model is pinned along two 

edges, and an out-of-plane force Fz is applied to the free corner, inducing a deformation mode 

corresponding to the activation of the out-of-plane spring (Figure 111b). Simultaneously, a uniform 

vertical pressure σn is applied to the top edge. The model was tested under various levels of confinement. 

Figure 111c illustrates an exemplary response, depicting the out-of-plane force per unit surface (denoted 

as the pressure p, given by the ratio between the out-of-plane force Fz and the area HL) as a function of 

the out-of-plane displacement at the corner. The obtained responses can be approximated to piecewise-

linear fitting curves, with a second branch of softening followed by a final residual phase. Consequently, 

the backbone curve of the spring constitutive law appears suitable for representing the out-of-plane 
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bending response. Moreover, the response is clearly influenced by the vertical stress. As depicted in 

Figure 111d, both maximum and residual pressure exhibit a nearly linear increase with the respect of 

confinement level; the linear regression curves of yield and residual pressures are plotted, each 

characterised by the respective slopes denoted as μ
out,y

 and μ
out,r

. 

 

      

(a) (b) 

 
 

(c) (d) 

Figure 111 Calibration of the out-of-plane spring: (a) boundary and loading conditions of the meso-scale 

test and (b) corresponding out-of-plane deformation mode of the inner block; (c) curve fitting and 

mechanical parameter identification; (d) linear regression of yield and residual pressure with respect to the 

normal compressive stress (images taken from Minga et al., 2020, and Minga, 2017) 

The fitting curves of displacement-pressure (Figure 111c) are determined by the slope of the elastic 

branch tan θe, the slope of the post-peak branch tan θp, the yield pressure p
y
 and the residual pressure 

p
r
. The calibration of the initial and post-peak stiffness of the spring can be assessed as the average 

values for different confinement levels, following equations (40) and (43). 

uout 

Z 

X 

Y 

μout,y 

μout,r 

ucorner≡d8 
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𝐾𝑜𝑢𝑡,𝑒 =
1

𝑛
∑4𝐿𝐻 tan𝜃𝑒,𝑘

𝑛

𝑘=1

 (39) 

𝐾𝑜𝑢𝑡,𝑝 =
1

𝑛
∑4𝐿𝐻 tan 𝜃𝑝,𝑘

𝑛

𝑘=1

 (40) 

Regarding the forces, the yield and residual pressures (p
y,0

 and p
r,0

 respectively) under zero vertical 

stress are associated with the corresponding out-of-plane spring reactions Fout,y,0 and Fout,r,0 as 

determined by the following relations: 

𝐹𝑜𝑢𝑡,𝑦,0 = 2𝐿𝐻𝑝𝑦,0 (41) 

𝐹𝑜𝑢𝑡,𝑟,0 = 2𝐿𝐻𝑝𝑟,0 (42) 

Ultimately, the spring forces are derived from relations (43) and (44), considering the contribution of 

vertical stress, through the yield and residual coefficients obtained from linear regressions. 

𝐹𝑜𝑢𝑡,𝑦(𝜎𝑛) = 𝐹𝑜𝑢𝑡,𝑦,0 + 𝜇𝑜𝑢𝑡,𝑦𝜎𝑛 (43) 

𝐹𝑜𝑢𝑡,𝑟(𝜎𝑛) = 𝐹𝑜𝑢𝑡,𝑟,0 + 𝜇𝑜𝑢𝑡,𝑟𝜎𝑛 (44) 

Drawbacks and advances 

The accuracy of the proposed macroelement strategy underwent validation through numerical 

simulations of experimental tests, providing reliable predictions while maintaining high computational 

efficiency. Nevertheless, mechanical enhancements and further in-depth evaluation of its ability to 

simulate the actual response of masonry and masonry-infilled frame should be undertaken. 

In particular, the constitutive law governing in-plane and out-of-plane springs (Figure 109)  is overly 

simplified, not considering stiffness and strength degradation, as well as the actual dependency on the 

response between positive and negative displacements, as also highlighted by the authors (Minga et al., 

2020). Indeed, this representation separates the response in the different directions, thus strength 

degradation progresses independently in the positive and negative quadrants. Consequently, any 

softening behaviour observed in one direction does not influence the response in the opposite direction. 

This means that, upon reaching a specific displacement in the positive direction, the unloading branch 

points towards the maximum negative displacement previously attained, independently from the 

specific positive value attained, leading to possible inaccuracies in the response prediction. An 

illustrative example of this is provided in Figure 112, which pertains to the simulation of an 
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experimental test conducted by Griffith et al. (2007). The experiment involved subjecting a wall to two-

way bending under an out-of-plane pressure. The specimen comprised a long wall exposed to cyclic 

uniform pressure from both sides, along with two short return walls serving to stabilise the main walls 

and provide fixed restraints at both ends (as depicted in Figure 112a and b). In Figure 112c, the 

experimental-numerical comparison is presented, showcasing the macroelement response obtained 

using a macroelement model. Notably, while the numerical response in the first quadrant substantially 

aligns with the experimental envelope, there is a significant reduction in strength upon load reversal, 

resulting in an overall cycle that deviates considerably from the experimental findings. As highlighted 

by the authors, this discrepancy can be attributed to the characteristics of the constitutive law, wherein 

strength degradation occurs independently in the positive and negative quadrants. To address this issue, 

the enhanced macro-element presented in this chapter integrates a more advanced constitutive law for 

both in-plane (Chapter 5.3) and out-of-plane (Chapter 5.4) springs, sourced from the literature 

(Tomaževič and Lutman, 1996). This updated model enables the appropriate consideration of actual 

strength and stiffness degradation. 

 
(a) 

 

 
(c) 

 
(b) 

Figure 112 Two-way bending of URM walls subjected to out-of-plane pressure: (a), (b) geometry and 

boundary conditions (F: fixed support; SS: simple support; Griffith et al., 2007); (c) Numerical-

experimental comparison (Minga et al., 2020) 

Moreover, an essential modification concerns the definition of the post-peak branch characteristics in 

the skeleton curve, aimed at ensuring mesh objectivity. This adjustment is crucial as the original 

specification fails to guarantee it, as will be demonstrated and discussed in Chapter 5.3.1. Furthermore, 
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an additional parameter controlling the extent of the stiffness degradation is also introduced (Chapter 

5.5). 

Another drawback of the original model was the impossibility to mechanically differentiate the material 

characteristics of all the boundary interfaces, which is particularly important for modelling infilled-

frames. It is emphasised that an accurate prediction of the infilled-frame structure response strongly 

depends on the characteristics of the complex and ever-changing contact between frame and infill. This 

is particularly important, considering the typically poor mechanical properties of the external interfaces 

and their crucial role in influencing the responses of infilled-frame structures. In the infilled-frame 

specimen assessed in (Minga et al. 2020), the same material characteristics were adopted for both 

external frame-to-infill interfaces and internal infill interfaces. As a consequence, the novel enhanced 

macroelement introduces the capability for this specific differentiation. This aspect, along with the 

material calibration of infilled-frame models, is presented in Chapter 5.6. 

Finally, the macroelement strategy was not assessed within the following important scenarios: 

• Analysis of the cyclic response of masonry infilled-frame structures: The macroelement 

capability to simulate the response of MIF structures was assessed only under monotonic action 

and was not evaluated under cyclic actions. 

• Nonlinear dynamic response: The macroelement was not tested under earthquake loading, 

neither for URM nor infilled-frame structures. 

• Testing on real-sized structures: The macroelement has yet to be tested for the analysis of real-

sized structures, highlighting the need to evaluate its applicability and accuracy in practical 

scenarios.  

The application of the enhanced macroelement will be thoroughly examined in Chapter 6 and Chapter 

7, where these scenarios will be investigated. 

5.3 Modelling of in-plane spring response 

The constitutive law for the diagonal in-plane is derived from the model described in (Tomaževič and 

Lutman, 1996). This model is a cyclic constitutive law for masonry walls, developed based on several 

experimental tests on masonry piers subjected to in-plane cyclic lateral loading. This constitutive law 

has been previously utilised in (Rinaldin et al., 2016) for the nonlinear shear springs of a 

monodimensional macro-model within an equivalent frame description for masonry wall structures. 
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The amended macro-element subroutine is written in Fortran and implemented into the finite element 

software ADAPTIC of Imperial College London (Izzuddin, 1991). The pre-processing and post-

processing MATLAB scripts (MathWorks, 2022), firstly developed by Minga (2017), were extended 

and improved to allow damage and deformed shape visualisation of the enhanced macroelement. 

 Backbone curve 

The skeleton curve proposed by Tomazevic-Lutman consists of a lateral load vs. lateral displacement 

tri-linear curve symmetric with respect to the origin, comprising an elastic and two plastic branches, 

where the first is characterised by hardening and the second represents softening. The curve is applied 

on the diagonal spring by considering the direction of the diagonal with respect to the horizontal, as in 

equation (38). The complete definition of the axial force vs. axial displacement of the diagonal spring 

requires three points, as illustrated in Figure 113: the elastic limit (ud,y, Fd,y), the point of maximum 

strength (uFmax, Fd,max) and the point of ultimate displacement (ud,u, Fd,u). The curve is dependent on the 

level of confinement σn for the calculation of the maximum strength; thus, the curve is recalculated at 

each step by considering the average normal stress in the boundary interfaces from the previous 

converged step of the analysis. This dependency also influences the hysteretic response, which is 

assessed by allowing for potential step-by-step changes in the vertical stress. Such variations may 

strongly influence the performance of masonry structures, particularly when subjected to significative 

ground motion vertical components, as highlighted by Chieffo et al. (2021) and Rinaldin et al. (2019). 

 

Figure 113. Backbone curve of in-plane spring with the model proposed by Tomazevic-Lutman 

The elastic and the first plastic branches of the in-plane spring are uniquely determined by the strengths 

Fd,y and Fd,max, and the stiffnesses Kd,e and Kd,p1, the latter representing the elastic stiffness and the 

stiffness of the first plastic branch, respectively. 
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For the evaluation of the maximum force, two strength criteria are incorporated into the model for 

evaluating the shear diagonal cracking strength Vres, which can be calculated employing either the 

anisotropic criterion of Mann and Müller (1980), described by equations (35), (36) and (37), or the 

isotropic criterion of Turnsek and Cacovic (1971) and Turnsek and Sheppard (1980), incorporated in 

the enhanced formulation and described by the following relation (MIT, 2019): 

𝑉𝑟𝑒𝑠 =
𝑊 ∙ 𝐿 ∙ 𝑓𝑡

𝜉
√
𝜎𝑛
𝑓𝑡
+ 1 (45) 

where ft is the masonry tensile strength along the diagonal direction of the panel and ξ is a correction 

coefficient associated with the stress distribution on the section, dependent on the slenderness ratio H/L 

of the panel (ξ is equal to 1 if H/L is lower than 1, to 1. 5 if H/L is higher than 1.5, and H/L otherwise), 

while the other parameters are known. Fd,max is then calculated though (38). The yielding force Fd,y is 

user-specified as a percentage of the maximum force (a value of 0.7 was assumed by Rinaldin et al., 

2016). 

The initial axial elastic stiffness of a single diagonal spring, denoted as Kd,e, depends on the masonry 

shear modulus Ge and the macro-element geometry, as in (33). The first plastic branch stiffness Kd,p1 is 

subsequently defined as a fraction of the initial elastic stiffness, denoted as Kd,p1/Kd,e (suitable values 

can be in the range 0.1÷0.2).  

In the original formulation, the post-peak stiffness Kd,p2 was determined by defining a post-peak shear 

modulus Gp, as outlined in relation (34). Noteworthy, according to this approach, the dimensions of the 

analysed element are not taken into account, potentially leading to mesh-sensitivity issues. To prove 

this, a wall subjected to horizontal in-plane monotonic loading is analysed using masonry 

macroelements with four different mesh refinements: a basic discretisation with a single macroelement 

and three increasingly refined models with 2x2, 3x3 and 6x6 elements (geometry, load conditions and 

mesh adopted are illustrated in Figure 114). The wall is fixed at the nodes along the base edges (or the 

single base edge for the single-element mesh) and restrained against rotations at the nodes on the top 

edges (or the single top edge for the single-element mesh), where the horizontal displacement δ is 

applied. A total vertical load Fv of 150kN is distributed among the nodes along the top edges (the vertical 

load on each node depends on the mesh discretisation). The strength parameters and stiffnesses of the 

external interfaces are assumed to be infinitely high to exclude their contributions to the overall 

response. The maximum strength for the diagonal spring of each element in the adopted meshes is 
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determined using the isotropic criterion of Turnsek-Cacovic. Mechanical and geometric characteristics 

are provided in Table 25, including the post-peak elastic modulus Gp. 

 
 

(a) (b) 

Figure 114. Mesh sensitivity analysis: (a) Geometry and load conditions (case of mesh with a single 

element); (b) mesh discretisations adopted 

Table 25. Geometric and mechanical characteristics of the differently mesh-refined models 

Parameter Symbol Unit Value 

Height H [m] 1.35 

Width L [m] 1.00 

Thickness W [m] 0.25 

Elastic modulus Ge [MPa] 580 

Post-peak modulus Gp [MPa] -25 

Tensile strength ft [MPa] 0.2 

Yielding force ratio Fy/Fmax [-] 0.8 

1st plastic branch ratio Kp1/Ke [-] 0.1 

Vertical force Fv [kN] 150 

 

The resulting capacity curves for each adopted mesh are shown in Figure 115, illustrating that, despite 

the accordance on initial stiffness, first post-elastic stiffness and maximum strength, the overall post-

peak branch becomes steeper as the mesh becomes more refined. Hence, mesh objectivity is not 

guaranteed. This fact would also affect the cyclic behaviour, where a minor dissipative capacity would 

be noticed with increasing mesh refinement. 

This issue is resolved by introducing a common fictitious ultimate axial displacement, denoted as ud,u
 . 

This parameter defines the post-peak slope and remains invariant with the mesh discretisation. Notably, 

the actual ultimate displacement ud,u is either less or equal to ud,u
 . Upon revisiting the previous 

numerical example, a fictitious ultimate lateral displacement δu
 
 equal to 18 mm is considered, which 

corresponds to a displacement ud,u
   equal to 10.7 mm. As a result, this new definition leads to a post-

peak stiffness for the diagonal spring that varies with mesh refinement, becoming steeper as the mesh 
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becomes coarser, as illustrated in Figure 116a. This results in consistent responses for the entire walls, 

as the shear vs. lateral displacement curves are now in agreement, as depicted in Figure 116b, thereby 

ensuring mesh objectivity. 

 

  

(a) (b) 

Figure 115. Mesh-sensitivity analysis with former post-peak stiffness definition: (a) axial force versus axial 

displacement diagonal spring curves; (b) horizontal base shear versus horizontal displacement wall curves  

 

  
(a) (b) 

Figure 116. Mesh-sensitivity analysis with new post-peak stiffness definition: (a) axial force versus axial 

displacement diagonal spring curves; (b) horizontal base shear versus horizontal displacement wall curves 

The ultimate point of the backbone curve (ud,u, Fd,u) can be determined by specifying a percentage value 

of the maximum force Fd,max. In the present work, the 100% of maximum force decay is considered, 

thus assuming the fictitious ultimate displacement as the actual one. It should be considered that, in 

general, a macroelement portion does not coincide with a structural member, namely piers or spandrels. 

As a result, the typical maximum limit drifts used for such members (MIT, 2008) are not applicable in 

this context. This feature will be re-examined in future research. 
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 Hysteretic behaviour 

The hysteresis cycle proposed by Tomaževič and Lutman (1996) is characterised by a sequence of 

unloading and reloading branches, as depicted in Figure 117, accounting for strength and stiffness 

degradation. A representative cycle is reported, starting from the origin O and terminating at the final 

point H. Initially, the element resides within the elastic field along branch OA, after which it enters the 

first plastic branch. At point B, a change in the direction of the applied load occurs. Subsequently, 

within branch BC, the force gradually decreases until it reaches a predetermined percentage (denoted 

as CF) of the previously attained maximum load at point C. In particular, branch CD is characterised by 

an unloading stiffness, denoted as Kd’, defined as a certain percentage of the initial elastic stiffness and 

dependent on the maximum displacement reached ud,1; generally, the unloading stiffness decreases as 

the maximum displacement reached increases, as further shown (Figure 118a). Subsequently, branch 

CD exhibits a pinching effect, ending at a point symmetric with respect to the origin, at a displacement 

equal to -ud,1. The curve then follows the backbone until another change in the load direction occurs at 

point F. Here, once again, the force decreases until it reaches a predetermined percentage of the 

maximum load attained (now corresponding to the maximum strength), with the unloading stiffness 

dependent on the displacement ud,2 (the corresponding unloading stiffness of branch GF is lower than 

that of branch BC). Finally, in branch GH, the curve is characterised by a reloading branch ending at a 

point further from the symmetric point with respect to the origin, owing to an additional increase in 

target displacement Δu due to strength degradation. This additional increase is accounted for during 

reloading from the third softening branch after overcoming the maximum strength. 

 

Figure 117. Hysteretic law proposed by Tomazevic-Lutman. 
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The unloading stiffness Kd
'  of the unloading branches is described by a linear relationship, as illustrated 

in Figure 118a, linking it with the maximum displacement reached. This relationship is linear between 

the initial elastic stiffness Kd,e  and the ultimate stiffness Kd,u
' , the latter corresponding to the ultimate 

displacement ud,u. In particular, Kd,u
'  is determined as a percentage α of the initial elastic stiffness (46) 

while a stiffness degradation parameter Ck (47) defines the slope of the unloading stiffness linear decay. 

The unloading stiffness is finally calculated through equation (48). 

𝐾𝑑,𝑢
′ = 𝛼 𝐾𝑑,𝑒 (46) 

𝐶𝑘 = [(𝐾𝑑,𝑢
′ 𝐾𝑑,𝑒⁄ ) − 1] [(𝑢𝑑,𝑢 𝑢𝑑,𝑦⁄ ) − 1]⁄  (47) 

𝐾𝑑
′ (𝑢𝑑) = 𝐾𝑑,𝑒  [1 + 𝐶𝑘 ((𝑢𝑑 𝑢𝑑,𝑦⁄ ) − 1)] (48) 

The strength degradation is based on the estimation of the energy dissipated throughout an entire plastic 

cycle. As depicted in Figure 118b, an additional displacement is added during the reloading phase, 

resulting in a lower strength value for a given target displacement. The increase in target displacements 

Δu is given through the equations (49) and (50), for loading in positive and in negative direction, 

respectively. Here, β represents a strength degradation parameter (a value of 0.06 is suggested in 

Tomaževič and Lutman, 1996), dW is the energy dissipated in a cycle and Fd,max is the maximum force 

attained. 

𝛥𝑢𝑑
+ = 𝛽(𝑑𝑊+ 𝐹𝑑,𝑚𝑎𝑥⁄ ) (49) 

𝛥𝑢𝑑
− = 𝛽(𝑑𝑊− 𝐹𝑑,𝑚𝑎𝑥⁄ ) (50) 

 

 

 
(a) (b) 

Figure 118.  (a) Definition of the stiffness degradation parameter Ck; (b) Definition of the strength 

degradation parameter β (after Park et al., 1987) 
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The deformed shape and in-plane spring damage condition of the macroelement models are represented 

using a MATLAB post-processing script. A damage parameter, denoted as DAMIP, is evaluated through 

equation (51), where ud is the maximum displacement attained. DAMIP linearly varies between 0 and 

1, corresponding respectively to the yielding point condition and the ultimate point condition. In the 

post-processing program ud,y and ud,u are determined by evaluating the backbone curve once the 

yielding limit is surpassed (note that the backbone curve may vary due to changes in the confinement 

level). 

𝐷𝐴𝑀𝐼𝑃 =

{
 

 
0  𝑢𝑑 < 𝑢𝑑,𝑦
𝑢𝑑 − 𝑢𝑑,𝑦

𝑢𝑑,𝑢 − 𝑢𝑑,𝑦
1  𝑢𝑑 > 𝑢𝑑,𝑢

 𝑢𝑑,𝑦 ≤ 𝑢𝑑 ≤ 𝑢𝑑,𝑢 (51) 

Illustrative shear base vs. lateral displacement cycles are reported in Figure 119a, representing the 

responses of a 1x1 model under in-plane cyclic loading, for which both the old and new implementations 

of the constitutive law for the diagonal spring are utilised to qualitatively show the different responses. 

The panel analysed is the same as in Chapter 5.3.1, as illustrated in Figure 114, with geometric and 

mechanical characterisation provided in Table 25. The post-peak branch is evaluated within the new 

constitutive model by fixing a horizontal ultimate displacement of 18mm. The additional hysteretic 

parameters for the Tomazevic-Lutman constitutive relationship are derived from (Rinaldin et al., 2016); 

in particular, the force percentage for the evaluation of the first unloading branch CF is set equal to 0.4, 

the stiffness degradation parameter α is 0.8 and the strength degradation β is 0.06. The imposed 

displacements for the short panel considered in Chapter 3 (Figure 39a) are horizontally applied at the 

top of the specimen. The deformed shape corresponding to the maximum displacement is illustrated in 

Figure 119b. Additionally, the damage plot for the in-plane diagonal spring is reported in Figure 119c, 

with different damage levels specified in the colormap on its side. 

In Chapter 6.2, the capability of the enhanced macroelement, defined with the new constitutive law for 

the spring, to accurately simulate the in-plane response of masonry structures will be extensively 

examined by simulating several experimental tests. 
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 (a) 

 
 

(b) 

 

(c) 

 

 

 

 
 

Figure 119. (a) Comparison of shear base vs. lateral displacement cycles between the original and the new 

models for the in-plane diagonal spring; (b) Deformed shape at maximum displacement (amplification 

factor of 20); (c) Damage state at the last step of the analysis 

5.4 Modelling of out-of-plane spring response 

The Tomazevic-Lutman law is applied also to the out-of-plane diagonal spring introducing a distinct 

model description. As outlined in Chapter 5.2 the monotonic force-displacement response of a wall 

subjected to out-of-plane loading can be described by a trilinear relationship (Figure 111c), featuring 

an initial linear-elastic behaviour, a second branch with softening and a third horizontal plateau 

representing the actual residual strength. Therefore, for the out-of-plane spring, the Tomazevic-Lutman 

model is applied by considering a backbone curve with a different configuration of the plastic branches 

to maintain consistency with the previous implementation. Hence, the spring modification only pertains 
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to the definition of the hysteretic response, for which the model described in Chapter 5.3.2 is utilised, 

following the same rules for defining the Fout-uout cyclic response. 

The characterisation of the backbone curve involves the definition of the elastic stiffness Kout,e, the post-

peak stiffness Kout,p, the maximum strength Fout,y (which coincides with the yielding strength) and the 

residual strength Fout,r. These parameters can be derived from the masonry Young’s modulus Ee, the 

post-peak modulus Ep, the yield pressure with zero compression py,0, the residual pressure with zero 

compression pr,0, the peak friction-angle μo,p and the residual friction angle μo,r, using equations from 

(39) to (44). Detailed mesoscale models, as suggested in (Minga et al., 2020), offer a reliable tool for 

the evaluation of the required mechanical parameters. 

In-plane spring and out-of-plane spring act independently one to each other, thus their damage states 

are represented separately. For the out-of-plane spring, a damage parameter denoted as DAMOOP is 

defined and evaluated through equation (52), depending on the maximum force reached on the spring. 

DAMOOP linearly varies between 0 and 1, corresponding respectively to the yielding point condition, 

which for the out-of-plane spring coincides with the maximum strength, and the residual strength. As 

for the in-plane spring, in the post-processing program, Fout,y and Fout,r are determined by evaluating 

the backbone curve once the yielding limit is surpassed. 

𝐷𝐴𝑀𝑂𝑂𝑃 =

{
 
 

 
   0  𝐹𝑜𝑢𝑡 < 𝐹𝑜𝑢𝑡,𝑦
𝐹𝑜𝑢𝑡,𝑦 − 𝐹𝑜𝑢𝑡

𝐹𝑜𝑢𝑡,𝑦 − 𝐹𝑜𝑢𝑡,𝑟
  

1  𝐹𝑜𝑢𝑡 > 𝐹𝑜𝑢𝑡,𝑟

𝐹𝑜𝑢𝑡,𝑦 ≤ 𝐹𝑜𝑢𝑡 ≤ 𝐹𝑜𝑢𝑡,𝑟 (52) 

Illustrative out-of-plane corner force vs out-of-plane corner displacement cycles are reported in Figure 

19a, representing the responses of a basic 1x1 model macroelement subjected to out-of-plane loading, 

for both the old and new implementations for the out-of-plane spring constitutive law. The model 

features free rotations at the nodes and is pinned in the Z-direction at 3 out of 4 corners while an out-

of-plane force is applied to the free corner node ( Figure 120b). Geometric and mechanical properties 

and the applied load are provided in Table 26. The out-of-plane deformed shape at the maximum 

displacement is depicted in  Figure 120c. In contrast, the damage of the out-of-plane spring is 

represented in  Figure 120d, corresponding to full damage given that the residual branch has been 

reached. 

In Chapter 6.3, the capability of the enhanced macroelement to accurately simulate the out-of-plane 

response of masonry structures will be extensively examined through the simulation of experimental 
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tests regarding the out-of-plane loading of a wall subjected to two-way bending under different 

configurations of vertical loads and the presence of openings. The notable pinching effects, which 

characterise the physical response of panels subjected to out-of-plane loading (Griffith et al., 2007) and 

were not fully represented by the original implementation in (Minga et al., 2020), as also reported in 

Figure 112, can be accurately predicted by the enhanced material model, as will be further shown. 

Table 26 Geometric and mechanical characteristics of the 1x1 model subjected to out-of-plane loading. 

Parameter Symbol Unit Value 

Height H [m] 1.25 

Width B [m] 2.00 

Thickness W [m] 0.11 

Elastic modulus Ee [MPa] 1000 

Post-peak modulus Ep [MPa] -50 

Yield pressure with zero compression py,0 [KPa] 1 

Residual pressure with zero compression pr,0 [KPa] 0.05 

Yield out-of-plane friction-angle μo,y [-] 0.004 

Residual out-of-plane friction-angle μo,r [-] 0.004 

Total vertical load Fv [kN] 44.0 
 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

 Figure 120. (a) Comparison of out-of-plane force vs. out-of-plane displacement cycles between the original 

and the new models for the in-plane diagonal spring; (b) Geometry of URM block; (c) Deformed shape at 

maximum displacement (amplification factor of 20) and (d) Damage state at the last step of the analysis 
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5.5 Stiffness recovery 

Introducing the new spring law, designed to simulate both in-plane and out-of-plane cyclic behaviour, 

results in a mutual dependence of damage propagation in opposite directions. Specifically, when the 

spring unloads after reaching a displacement +u within the plastic region (defined by either the plastic 

pre- or post-peak branch), it follows a linear branch towards the displacement -u, which is equal and 

opposite to +u. Hence, this characteristic differs from the previous implementation (illustrated in Figure 

109), where the cycles evolved independently in the first and third quadrants. 

To allow for achieving an intermediate behaviour, the enhanced implementation offers users the ability 

to specify a parameter, denoted as krec, that governs a certain stiffness recovery during cyclic actions. 

This parameter represents the percentage by which the unloading stiffness increases. The recovery is 

applied to the reloading branches after reaching the maximum strength. However, it is limited by the 

slope that would lead to the already attained peak strength. This parameter can be applied to both in-

plane and out-of-plane springs. 

The modification leads to wider cycles as krec increases, resulting in higher dissipation capacity. This 

effect can be observed in Figure 121, where the macroelement model analysed in Section 5.3.2 (Figure 

114; Table 25) is re-examined with the inclusion of the stiffness recovery, specifically considering 

recovery of 10% and 20%. The stiffness recovery factor significantly affects the shear displacement 

cycle (Figure 121a) and the amount of total energy (Figure 121b). This additional feature may improve 

the prediction of experimental responses, as shown further in the simulations of Chapter 6. 

 

  
(a) (b) 

Figure 121. Application of different stiffness recovery parameters: (a) shear-displacement cycles; (b) 

dissipation energies 
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5.6 Enhanced macroelement for infilled-frame structures modelling 

This chapter focuses on modelling masonry infilled frames using the novel enhanced macroelement. It 

discusses the advancements made within the macroelement and the calibration characteristics of 

infilled-frame models, which enable the representation of all the typical in-plane resistance mechanisms 

of this structural typology.  

In the original implementation, the mechanical characterisation of the macroelement cohesive interfaces 

could not be distinctly specified for each edge since the two horizontal interfaces (top and bottom edges) 

share a single set of material properties, as for the vertical interfaces (left and right edges). 

Consequently, introducing separate properties for internal and external frame-infill interfaces of 

macroelements at the boundaries of a masonry infill panel was impossible. 

As emphasised in Chapter 4, the external frame-infill mortar layers play a crucial role in the overall 

response of infilled-frame structures, typically weaker than the internal mortar joints. Consequently, the 

enhanced macroelement model allows for the distinct specification of materials for all cohesive 

interfaces, addressing this limitation. In particular, the proposed refinement enables considering the 

different characteristics of external frame-infill interfaces, permitting more accurate predictions of the 

overall response. 

Figure 122 shows an illustrative infilled-frame model featuring a 3x3 mesh representing the masonry 

infill and highlighting the components characterising the infilled-frame macroelement model. It is noted 

that the external cohesive interfaces at the border between the frame and infill may have different 

characteristics from the internal ones. Additionally, the representation of external edges varies 

depending on whether they are full dof edges (considered when adjacent to frame elements) or reduced 

dof edges (considered between two adjacent masonry macroelements), as mentioned in Chapter 5.2 (see 

Figure 105).  

The complete characterisation of the model necessitates the specification of: 

- External cohesive interfaces, characterised by low strength properties for both shear and tensile 

responses, but high compression strength, as discussed in Chapter 4. These interfaces are crucial 

during the initial phases of analysis, influencing the detachment of the infill from the frame. 

- In-plane diagonal spring, modelled using the Tomazevic-Lutman constitutive law, as presented 

for in-plane springs in Chapter 5.3, for both backbone and hysteretic responses. In this context, 
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since diagonal cracking typically does not represent an ultimate collapse mechanism, following 

the guidelines of (Comité Euro-International du Béton, 1996) and supported by the results of 

Chapter 4 analysis with more refined models, the maximum strength (Fd,max) is assumed to 

represent the corner crushing mechanism, while the yielding strength (Fd,y) represents the actual 

diagonal cracking mechanism. 

- Internal interfaces, defined utilising the properties of mortar joints and bricks. These interfaces 

play a crucial role in representing the ultimate mechanism of sliding; moreover, the 

compressive and tensile responses of these interfaces may have a significant impact in presence 

of openings and more generally in the post-plastic phase. 

 

Figure 122 Macrolement infilled-frame modelling 

Figure 123 provides a qualitative representation of the typical in-plane resistant mechanisms in infilled 

frames along with their corresponding macroelement representations. In particular, diagonal cracking 

(Figure 123-a1 and a2) can occur due to the yielding of the in-plane springs along the infill diagonal or 

in its proximity. The corner crushing (Figure 123-b1 and b2), generally occurring after diagonal 

cracking, may result from the collapse of the springs at the corners. The sliding mechanism is 

represented in Figure 123-c1 and c2 by the Mode II failure of a row of internal cohesive interfaces. 

These representations are simplifications, and the mechanisms that occur are generally more complex, 

often involving a combination of failure modes. For instance, part of the crushing may also be attributed 

to the failure of internal cohesive interfaces, and diagonal cracking may occur outside the infill diagonal 

elements.  

Possible out-of-plane mechanisms are not considered herein. Indeed, it is deemed necessary to 

implement a corotational approach within the macroelement formulation to adequately consider the 

geometric nonlinearity, which can be significant in slender panels used for infills. This aspect will be 
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re-examined in the future. Finally, frame failure can be captured through the adopted fibre-plasticity 

approach proposed by Izzuddin and Elnashai, (1993b), as described in Chapter 4.3 and employed for 

the modelling of the frame. 

  
(a1) (a2) 

  

(b1) (b2) 

  

(c1) (c2) 

Figure 123 Qualitative representation of typical in-plane infilled-frame resistant mechanisms and their 

macroelement representations: (a) diagonal cracking; (b) corner crushing (considered occurring after 

diagonal cracking); (c) sliding 

To highlight the influence of external interfaces on the overall response of a macroelement model and 

to present the calibration characteristics, the infilled frame model discussed in Chapter 4 is revisited 

(experimental test taken from Mehrabi et al., 1996). Two scenarios are analysed, involving external 

interfaces that are either equivalent to or weaker than the internal ones. 
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The geometry and mechanical characteristics of the infilled frame have been presented in Chapter 4. 

Specifically, the experimental mechanical properties of the concrete for specimen 1 (bare-frame) and 

specimen 3 (infilled rame) are presented in Table 14. Additionally, the properties of the masonry infill 

are detailed in Table 15, while the experimental mechanical properties of steel can be found in Table 

16. Figure 124 depicts the modelling of the bare RC frame, which is discretised with a coarser mesh 

compared to those employed for mesoscale and continuum macroscale infills. The bare-frame mesh is 

chosen to enable the insertion of up to 6x6 infill macroelements (which represent the finest mesh 

evaluated in Chapter 6). As mentioned, the bare-frame model is discretised with elements considering 

the fibre-plasticity approach proposed by Izzuddin and Elnashai (1993b) while rigid elements are 

adopted for the modelling of beam-column joints and for the bottom ends of the columns. The 

mechanical properties employed are reported in Table 18. 

 

Figure 124 Bareframe modelling 

The macroelement infill model is discretised with a 3x3 mesh, with an additional row of infinitely stiff 

and strong elements at the base, replicating the behaviour of the RC bottom beam. Table 27, Table 28 

and Table 29 provide the mechanical characteristics of internal interfaces, external interfaces, and 

diagonal springs, respectively. 

Concerning the stiffness values, the same elastic moduli are applied for internal (Table 27) and external 

interfaces (Table 28). This choice is made because each edge contributes to the elastic deformability of 

a specific portion of an element, depending on its area of influence. The normal modulus En of the 

horizontal interfaces is taken as the tangent of the experimental elastic modulus (derived from the 

experimental stress-strain curves reported by Mehrabi, 1994), while for the vertical ones 70% of its 
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value is assumed. The tangential elastic modulus of interfaces is assumed to be infinitely high, as the 

shear elastic deformability is considered concentrated along the diagonal springs. The shear modulus 

of the diagonal spring Ge (Table 29) is determined to be 40  of the normal Young’s modulus of the 

interfaces. 

The strength parameters (bond strength, cohesion and friction angle) of the horizontal internal interfaces 

are derived from the results of triplet shear tests (Table 17 and Figure 79), consistent with the mesoscale 

modelling. For vertical interfaces, average values between mortar interfaces and internal brick 

interfaces are employed for cohesion and bond strength (where the cohesion of brick-brick interfaces is 

assumed to be equal to the tensile strength), while the same coefficient of friction as the horizontal 

interfaces is considered. The compressive strength of the horizontal interfaces is defined as the 

experimental compressive vertical strength. At the same time, 50% of its value is adopted for the vertical 

interfaces coherently with mesoscale and macroscale modelling. 

The weak shear strength parameters for the external interfaces are determined based on the reference 

configurations of both mesoscale and continuum macroscale approaches aiming to capture the 

mechanisms of opening and sliding that occur between the infill and frame. On the other hand, the 

external interfaces are modelled using a high compressive strength. As mentioned, this feature is 

intended to represent the high compression strength of the column and beam perpendicular to the fibres 

and to prevent excessive interpenetration between the infill and the frame. 

The estimation of the diagonal spring strength is undertaken by applying a criterion that assesses the 

lateral strength of an infilled frame concerning the corner crushing failure mechanism, as presented in 

Chapter 5.6.1. This involves evaluating an equivalent tensile strength ft, to be applied within the 

Turnsek-Cacovic criterion. The actual diagonal cracking mechanism corresponds to the yielding point, 

being assessed by determining an appropriate Fd,y/Fd,max ratio. Furthermore, the ultimate displacement 

δu
 
 is chosen to fit the post-peak branch of the experimental response. 

Figure 125 provides a comprehensive representation of the model, wherein each macroelement is 

distinctly identified based on edge characteristics, including materials, the number of degrees of 

freedom considered, and specific features related to the diagonal springs. This representation also 

differentiates the nodes belonging to the macroelements from those exclusively associated with the RC 

frame. Details regarding the characteristics of the edges and the diagonal springs for each element are 

outlined in Table 30. 
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Table 27 Internal infill interfaces material parameters for infilled frame specimen 3. 

  
En 

[MPa] 

ft 

[MPa] 

c  

[MPa] 

tanφ  
[-] 

fc  

[MPa] 

Gf,I 

[N/mm] 

Gf,II 

[N/mm] 

Gf,c 

[N/mm] 

Horizontal Int-h 14300 0.075 0.11 1.02 15.10  0.05 0.10 20.7 

Vertical Int-v 10010 0.86 0.88 1.02 7.50 0.05 0.10 18.0 

Table 28 External frame-infill interfaces material parameters for infilled frame specimen 3. 

  
En 

[MPa] 

ft 

[MPa] 

c  

[MPa] 

tanφ  
[-] 

Gf,I 

[N/mm] 

Gf,II 

[N/mm] 

Horizontal Ext-h 14300 0.01 0.014 0.35 0.05 0.10 

Vertical Ext-v 10010 0.01 0.014 0.35 0.05 0.10 

Table 29. Diagonal springs characterisation for infilled frame specimen 3. 

Identification 
Ge  

[MPa] 

ft  

[MPa] 
δu

 
  

[mm] 
kpl1 Fy/Fmax CF α β 

Diag 5720 1.2 15 0.1 0.53 0.4 0.8 0.06 

 

Figure 125 Macroelement infilled-frame modelling 

Table 30  h r cteristics of the m croelements in the 3 3 infilled fr me model. “Rig”  nd “ i g-rig” denote 

infinitely strong  nd stiff interf ce  nd di gon l spring; “R”  nd “ ” indic te reduced-DOF edge and full-

DOF edge, respectively. 

Macroelement 

identification 

Edge 1 Edge 2 Edge 3 Edge 4 Diagonal 

spring Material DOF Material DOF Material DOF Material DOF 

MR1 Rig R Rig R Rig R Rig F Diag-rig 

MR2 Rig R Rig R Rig R Rig R Diag-rig 

MR3 Rig R Rig F Rig R Rig R Diag-rig 

M1 Ext-h R Int-v R Int-h R Ext-v F Diag 

M2 Ext-h R Int-v R Int-h R Int-v R Diag 

M3 Ext-h R Ext-v F Int-h R Int-v R Diag 

M4 Int-h R Int-v R Int-h R Ext-v F Diag 

M5 Int-h R Int-v R Int-h R Int-v R Diag 

M6 Int-h R Ext-v F Int-h R Int-v R Diag 

M7 Int-h R Int-v R Ext-h F Ext-v F Diag 

M8 Int-h R Int-v R Ext-v F Int-v R Diag 

M9 Int-h R Ext-v F Ext-h F Int-v R Diag 
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 Diagonal spring strength assessment 

The assessment of the in-plane spring strength involves the consideration of a corner crushing 

mechanism, corresponding to the experimental failure mode also observed by mesoscale and 

macroscale modelling. The criterion proposed by (Decanini et al., 2004) within a single-strut modelling 

approach is taken into account. This criterion is implemented in the macroelement model by considering 

a proper equivalent tensile strength through the application of the Turnsek-Cacovic criterion. While not 

simulating ultimate failure, the diagonal cracking mechanism is treated as a reduction in stiffness of the 

second branch of the backbone curve (see Figure 113). As a result, the in-plane spring accounts in a 

phenomenological manner for both the diagonal cracking and corner crushing mechanisms. 

(Decanini et al., 2004) introduced analytical relationships for the different mechanisms characterising 

the infill frame response. Specifically, the strength associated with corner crushing in contact with the 

frame, denoted as σcc, is given by the following relationship: 

𝜎𝑐𝑐 =
(1.12 sin θ cos θ)

𝐾1(𝜆ℎ)
−0.12 + 𝐾2(𝜆ℎ)

0.88
𝑓𝑐 (53) 

where fc is the masonry compressive strength, θ is the slope of the strut with respect to the horizontal 

axis, λh is a non-dimensional parameter depending on the geometric and mechanical characteristics of 

the frame-infill system, K1 and K2 are coefficients functions of λh and calibrated based on experimental 

tests. The λh parameter is determined through the relation (Smith, 1967, 1966; Smith and Carter, 1969): 

𝜆ℎ=h√
Emtinf sin 2θ

4E𝑐I𝑐hinf

4

 (54) 

where Em is the equivalent elastic modulus corresponding to the complete cracking stage of the infill, 

Ec is the elastic modulus of concrete, tinf is the thickness of the infill masonry panel, h is the story height, 

hinf is the height of the masonry infill panel, Ic is the second moment of area of the column cross section. 

The width of the strut ω is introduced by means of the relative stiffness parameter λh, the two constants 

K1 and K2, and length d of the equivalent strut, as in the following relation: 

ω = (
𝐾1
𝜆ℎ
+ 𝐾2)𝑑 (55) 

Finally, the lateral strength of the equivalent strut associated with corner crushing Vres,CC is given by 

the following relation: 
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𝑉𝑟𝑒𝑠,𝐶𝐶 = 𝜎𝑐𝑐  tinf ω cos𝛳 (56) 

The calculation of the lateral strength for the analysed case is reported in Table 31. 

Table 31 Calculation of lateral strength for corner compression failure. 

Frame 

h 1536.5 mm 

b 2337 mm 

bc 178 mm 

hc 178 mm 

Ic 8.366 · 107 mm4 

Ec 21930 MPa 
 

Infill 

fc 15.1 MPa 

tinf 92 mm 

linf 2337 mm 

hinf 1422 mm 

EM 9520 MPa 

d 2796.9 mm 

θ 33.3 ° 
 

Lateral strength 

Corner compression failure 

λh 4.55  
K1 0.707  
K2 0.01  
ω 462.33 mm 

σcc 12.37 MPa 

Vres,CC 439.79 kN 
 

The equivalent tensile strength ft,eq, can be then determined by inverting the Turnsek-Cacovic criterion 

(equation (45)): 

𝑓𝑡,𝑒𝑞 =

−𝜎 +√𝜎2 + 4 (
𝑉𝑟𝑒𝑠,𝐶𝐶  𝜉

tinflinf
⁄ )

2

2
 

(57) 

In this way, it is possible to evaluate the equivalent tensile strength as a function of the vertical stress 

σn. The vertical stress of the infill varies throughout the analysis, progressively increasing with the 

lateral displacement. In an initial estimation, assuming a uniform distribution of the total applied load 

to the infill leads to a vertical stress of 1.37 MPa, corresponding to a tensile strength of 1.47 MPa. To 

gain insight into the potential variation of the equivalent tensile strength with vertical stress, the 

parabolic relation σn - ft,eq is depicted in Figure 126, for vertical stresses between 0 and 3 MPa. A 

sensitivity evaluation within this range enables a simple estimation of the final value adopted for the 

analysis, which was set as 1.2 MPa. 

The diagonal spring represents the diagonal cracking mechanism by adopting an appropriate Fd,y/Fd,max 

ratio. This is evaluated by calculating the shear strength Vres using the Turnšek-Cacovič criterion, as 

described by relation (45), and considering a tensile strength value ft corresponding to either the corner 

crushing mechanism or the diagonal cracking mechanism. The confinement level is assumed to be equal 

to 1.37 MPa, approximating the initial vertical stress. First, the equivalent tensile strength determined 

for the corner crushing mechanism (assumed to be equal to 1.2MPa) is applied, resulting in a shear 

strength of 377.6 kN. Then, the tensile strength corresponding to the diagonal cracking mechanism 
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assumed to be equal to 0.47 MPa and derived from the continuum macroscale model analysed in 

Chapter 4 (Table 21), is applied, resulting in a shear strength of 199.9 kN. Finally, the Fd,y/Fd,max ratio 

for the diagonal spring is taken as the ratio of the two shear strength values, resulting in a value of 0.53. 

 

Figure 126 Equivalent tensile strength as a function of vertical stress. 

 Macroelement infilled-frame response 

Figure 127 presents the shear-displacement responses for two infilled-frame models: one with weak 

external interfaces (referred to as “Model A”) and another with external interfaces equal to the internal 

ones (referred to as "Model B"). The experimental curve is also included for comparison. 

The main distinction lies in the model ability to capture the initial decrease in stiffness, attributed to the 

detachment of the infill from the frame. The differentiation of external interfaces in Model A allows a 

more accurate representation of this initial stiffness decrease, contrasting with Model B, where it is 

overestimated. The difference is evident in the progression of the deformed shape and damage of 

diagonal springs, as depicted in Figure 128 for model A and Figure 129 for model B. 

In model A, right from the beginning of the analysis (at a displacement of 0.5 mm), the weakened 

characteristics of the external interfaces result in an early detachment at the top-right corner, followed 

by detachment at the bottom-left corner (visible with a displacement equal to 2 mm). After the complete 

detachment of the infill frame, the diagonal strut begins to develop as the diagonal spring yields, 

surpassing the diagonal cracking strength. By a displacement of 4 mm, recognisable diagonal cracking 

damage is evident, with the diagonal spring along the infill diagonal within the first plastic phase. The 

peak strength is reached when some diagonal springs reach their maximum strength, corresponding to 
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a displacement of around 6.5 mm. Therefore, the damage progression of the model aligns with the 

experimental observations. 

The progressive frame-infill detachment also takes place in Model B, with external interfaces equal to 

the internal ones but with a certain delay, not allowing for a correct prediction of the stiffness in the 

elastic phase (Figure 129). This would decrease the fundamental period of vibration and, consequently, 

a higher magnitude of the seismic actions. Moreover, the greater resistance against tensile debonding 

and sliding provided by the external interfaces, results in a more stepped curve, in contrast to the 

smoother curve observed in the case of weak interfaces (Figure 127). Nevertheless, comparisons with 

the experimental response reveal that both models accurately predict the maximum force. Concerning 

the post-peak behaviour, both models accurately capture the rate of strength decay. However, an 

extended stepped plateau of maximum strength is observed in the model without interfaces distinction 

after the peak. 

 

Figure 127 Infilled-frame shear-displacement responses (Int: internal interfaces, Ext: external interfaces, 

Exp: experimental response; Num: numerical response; IF: Infilled Frame; BF: Bare Frame) 
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Figure 128 Model A: deformed shape (amplification factor of 50) and in-plane diagonal spring damage 

progressions at three steps in the first phase of the analysis (DK: diagonal cracking; CC: corner crushing) 
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Figure 129 Model B: deformed shape (amplification factor of 50) and in-plane diagonal spring damage 

progressions at three steps in the first phase of the analysis (DK: diagonal cracking; CC: corner crushing) 

In Figure 130, infill deformed shapes and in-plane spring damages at the last step are presented for both 

models, revealing some differences between them. 

In the first model (Figure 130a), four elements at the top-left corner have exceeded the corner crushing 

conditions, indicating that the diagonal springs have surpassed their maximum strength. While the 

element at the corner still retains some residual capacity (the damage indicator is around 0.65), the other 

three have reached the collapse limit, as evidenced by the attainment of the ultimate displacement. This 

damage state resembles the experimental observations, wherein crushing mechanisms are observed not 

only at the top-left corner but also in the top-middle of the panel, possibly after the splitting of the 

diagonal strut where one branch pointed towards the centre of the top beam (suggestion given also by 

the cracking of the top beam). Additionally, spring damage is accompanied by crushing and tensile 

DAMIP 
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Ultimate  

Max Force 

(CC) 

Yielding 

(DK) 

Ultimate  

Max Force 

(CC) 

Yielding 
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debonding of internal cohesive interfaces at the bottom-right corner, which develops towards the end 

of the analysis and is not observed in the experimental observations. Therefore, given the simplified 

nature of the macroelement approach, the enhanced macroelement model provides a reasonably 

accurate prediction of the damage state progression, not only in the pre-peak phase but also in the post-

peak phase.  

Not considering the differentiation of frame-infill cohesive interfaces leads to a different response in 

terms of damage progression within the post-peak phase, as shown in Figure 130b. The spring element 

at the bottom right corner is fully damaged, and sliding mechanisms are also visible, neither of which 

were observed in the experimental observations. 
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Figure 130 Post-peak phase: deformed shape (amplification factor of 5) and in-plane diagonal spring at the 

last step of analysis, for models with frame-infill external interfaces either (a) differentiated from or (b) 

equal to the internal infill interfaces, and (c) experimental damage at the end of the experimental test 

(Mehrabi et al., 1996) 

Figure 131 illustrates the deformed shape and damage of the RC frame at the final step, providing a 

comparison between the results obtained from the macroelement modelling (specifically considering 

model A) and those obtained from the more refined mesoscale and continuum macroscale modelling 

employed in Chapter 4. The damage pattern of the RC frame within the macroelement modelling agrees 

well with the experimental observations and is consistent with the results obtained from mesoscale and 

continuum macroscale models. In particular, the damages observed at the top of the left column and the 

centre-left of the top beam in the macroelement model, resulting from the failure of the macroelements 

at the top-left corner, align with experimental evidence. Nevertheless, the severe damage observed at 

the bottom of the right column was less pronounced in the experimental observations; this, however, 

aligns with findings from mesoscale and macroscale models. Similarly, the damage observed in the 

Max Force 
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middle of the left column was not evident in the experiments but was observed in both mesoscale and 

continuum macroscale models. 

 
 

 
 

(a) (b) 

 
(c) 

Figure 131 Deformed shape (5x amplification) at the last step with the contour on the frame indicating 

strain energy (values in legend expressed in N mm), for, (a) mesoscale model, (b) continuum macroscale 

model and (c) macroelement (Model A) 

5.7 Summary and conclusions 

The present chapter presents developments introduced to enhance an existing macroelement model. An 

improved constitutive law governing the phenomenological evaluation of both in-plane and out-of-

plane response was implemented. The updated relationship is characterised by realistic strength and 

stiffness degradation. An important refinement also concerned the post-peak branch definition in the 

skeleton curve. To assure mesh objectivity, the post-peak branch is defined by specifying an ultimate 

displacement independent from the adopted mesh. Users can also specify an intermediate cyclic 

response by introducing a stiffness recovery factor, which determines the characteristics of the 

unloading and reloading branches. 

Finally, a separate definition of the mechanical properties of the external frame-infill interfaces and the 

internal masonry interfaces has been introduced to predict the actual response of infill frames. This 

allows for considering frame-infill interfaces characterised by weaker mechanical characteristics as 

found in actual structures. This feature enables an improved prediction of the actual behaviour at the 
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first loading stages by capturing the actual stiffness degradation after the initial detachment of the infill 

from the frame. Additionally, an objective calibration of the various components of the infill 

macroelement was presented. As a result, the enhanced macroelement can represent all typical in-plane 

mechanisms of infilled-frame structures. Finally, the macroelement has been tested against 

experimental outcomes, demonstrating its significant potential in assessing this particular structural 

typology. 

The enhanced macroelement will be deeply validated in the next chapter by simulating experimental 

tests on both URM and masonry-infilled frame structures. 
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CHAPTER 6  

MACROELEMENT SIMULATIONS OF URM AND 

MASONRY-INFILLED FRAME STRUCTURES 

 

6.1 Introduction 

In this chapter, an exhaustive evaluation of the enhanced macroelement approach is undertaken, 

focusing on applications for both URM and masonry-infilled frame structures.  

The structural components under investigation include the masonry elements subjected to in-plane 

loadings previously studied in Chapter 3. This examination encompasses a short wall, characterised by 

a shear failure mode with diagonal cracking, a tall panel exhibiting a typical flexural response, and the 

entire façade with openings. Furthermore, the analysis extends to the crucial out-of-plane response, 

essential for comprehensively assessing the seismic performance of existing masonry buildings. This is 

achieved through the simulation of four experimental cyclic tests conducted on unreinforced masonry 

walls subjected to two-way bending. Additionally, the enhanced macroelement potential is evaluated 

through the simulation of an experimental test on a 3D masonry structure subjected to earthquake 

loading. 

In relation to infilled frame structures, the solid masonry-infilled frame specimen investigated in 

Chapter 4, employing advanced mesoscale and continuum macroscale modelling techniques for the 

masonry infills, is revisited herein with the utilisation of macroelements for the modelling of the infill. 

Subsequently, the simulation of a cyclic experimental test is conducted to evaluate the capability of the 

enhanced macroelement model in predicting the hysteretic response of masonry-infilled frames. Finally, 

the macroelement is assessed for its capability to consider the presence of openings within the masonry 

infills in infilled frames by comparing its outcomes with those derived from the continuum macroscale 
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models implemented in Chapter 4 (models derived from a solid infilled frame model calibrated based 

on experimental tests). 

6.2 URM structures under in-plane actions 

 Single panels 

The URM wall structures examined in Chapter 3 are here evaluated to determine the accuracy provided 

by the enhanced macroelement in representing the response under in-plane horizontal loading up to 

collapse. The experimental mechanical parameters are reported in Table 5, while the geometry of the 

analysed specimens is given in Table 6.  

Concerning the stiffness parameters, the normal elastic modulus (En) of the horizontal interfaces is set 

as the experimental tangent modulus, which has been derived from the experimental stress-strain curves 

reported in (Binda et al., 1995) in Chapter 3. The normal elastic modulus of the vertical interfaces is 

evaluated as 70% of the horizontal one, as suggested by Jafari et al. (2022). The elastic shear modulus 

(Gₑ) for the diagonal spring is determined using the secant experimental elastic modulus, calculated 

through interpolation within the range values specified by the Italian code for assessing existing 

masonry structures (MIT, 2019), by considering the typology of masonry with solid brick and lime 

mortar (Table 9). 

The strength parameters of the horizontal interfaces, namely tensile bond strength (ft), cohesion (c), and 

friction angle (tanφ), are determined from the experimental values. For the vertical interfaces, cohesion 

and tensile bond strength are considered as average values between the characteristics of bricks and 

mortar (where the cohesion of brick-brick interfaces is assumed equal to its tensile strength), while the 

friction angle is set to the horizontal value. The compressive strength (fc) of the horizontal interfaces 

corresponds to the experimental masonry compressive strength, while for the vertical interfaces the 50% 

of the same value is assumed. The mode I and mode II fracture energies are set to 0.05 and 0.1 MPa (as 

in Minga et al., 2020), respectively, while crushing fracture energies are computed through the relation 

proposed by Model Code 90 (Comité Euro-International du Béton, 1993). Finally, the shear strength of 

the diagonal spring is evaluated using the anisotropic criterion of Mann-Müller (as described by 

relations (38), (36) and (37)); this criterion represents one of the two alternatives available for 

determining the shear strength of the diagonal spring, alongside the isotropic criterion of Turnsek-

Cacovic described in equation (45).  The global equivalent values of cohesion and friction angle, 

denoted as c̃ and μ̃, are determined based on the experimental characteristics of mortar joints and the 
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arrangement of the masonry texture. The diagonal spring ultimate displacement (δu
 
) has been evaluated 

to fit the experimental cyclic strength degradation. Finally, the additional parameters (α, β and CF) are 

those employed in the models evaluated in Chapter 5, derived from (Rinaldin et al., 2016). 

Table 32 Material parameters of the interfaces for the single panels simulations 

Interface 
En  

[MPa] 

ft  

[MPa] 

c  

[MPa] 

tanφ  
[-] 

fc  

[MPa] 

Gf,I 

[N/mm] 

Gf,II 

[N/mm] 

Gf,c 

[N/mm] 

Horizontal 1980 0.04 0.23 0.58 6.2  0.05 0.1 17.5 

Vertical 1386 0.63 0.73 0.58 3.1 0.05 0.1 16.3 

Table 33. Material parameters of the diagonal springs for the single panels simulations 

Ge  

[MPa] 

�̃�  
[MPa] 

�̃�  
[-] 

δu
 
  

[mm] 
Kp1/Kel Fy/Fmax CF α β 

580 0.17 0.42 10.5 0.1 0.8 0.4 0.8 0.06 

The experimental set-up is reproduced through the explicit modelling of the rigid base and the upper 

beam; these are modelled through macroelements characterised by infinitely stiff and strong interfaces 

and diagonal springs. The base is fully fixed while the upper beam is allowed only to translational 

motion, maintaining a horizontal orientation.  

The short panel has been examined through four distinct mesh discretisations, and the corresponding 

responses are given from Figure 132 to Figure 135. These encompass shear force vs. horizontal 

displacement diagrams, deformed shapes and damage patterns for the diagonal springs for both 

monotonic and cyclic simulations. Regarding the damage representation, it is important to note that 

DAMIP values (defined in relation (51)) range from 0 to 1, representing the transition from the yielding 

point and elastic phase to the ultimate displacement. For the monotonic analysis, spring damage and 

deformed shape are given at the midpoint and at the end of the analysis, as well as for the spring damage 

snapshots in the cyclic analysis. Besides, cyclic analysis deformed shapes are reported at the maximum 

and the minimum displacements. 

The shear-displacement curves are in close agreement with the experimental response, with a 

satisfactory alignment starting from the coarse 2x2 mesh. Improved accuracy is observed with the more 

refined 3x3 and 6x6 meshes. Initial stiffness, maximum strength and force at the onset of damage are 

correctly reproduced for the monotonic and cyclic responses. The wide hysteretic shear-displacements 

cycles, due to diagonal-cracking, are close to the experimental response. Indeed, when the wall is 

subjected to reversal cyclic actions, strength and stiffness degradations are reasonably well simulated.  
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As far the shear damage pattern is concerned, the monotonic response is characterised by the 

propagation of damage (shear springs failures) in the elements along the compression diagonal. This is 

accompanied by the occurrence of horizontal crack openings at both the bottom and the top of the wall. 

As for the cyclic analysis, the numerical responses exhibit a first phase wherein the diagonal damage 

displays a somewhat mirrored pattern, resulting in the characteristic X-shaped damage. In the final 

phase, the collapse of the elements in a single row is observed. 

Only the basic 1x1 model fails to capture the actual response, exhibiting a flexural behaviour 

characterized by an S-shaped cycle. This response is marked by openings at the top and bottom 

interfaces, accompanied by only marginal damage in the diagonal springs. 
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Figure 132 Short panel responses with 1x1 discretisation: a) experimental-numerical shear-displacement 

curves; b) in-plane diagonal spring damage for monotonic and cyclic analysis (at half and at the end of the 

analysis); c) deformed shape for monotonic (at half and at the end of the analysis) and cyclic analysis (at 

the maximum positive and minimum negative displacements; amplification factor 20) 
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(b) (c)  

Figure 133 Short panel responses with 2x2 discretisation: a) experimental-numerical shear-displacement 

curves; b) in-plane diagonal spring damage for monotonic and cyclic analysis (at half and at the end of the 

analysis); c) deformed shape for monotonic (at half and at the end of the analysis) and cyclic analysis (at 

the maximum positive and minimum negative displacements; amplification factor 20) 

-10 - -6 -4 -2 0 2 4 6  10

 ori ontal displacement  mm 

-100

- 0

-60

-40

-20

0

20

40

60

 0

100
S
h
e
a
r 
fo

rc
e
  

k
 

 

Experimental

Cyclic

Monotonic

DAMIP 



Chapter 6. Macroelement simulations of URM and masonry-infilled frame structures 

178 

 
(a) 

                          

 

       

  

M
o

n
o

to
n

ic 

                             

C
y

clic
 

(b) (c)  

Figure 134 Short panel responses with 3x3 discretisation: a) experimental-numerical shear-displacement 

curves; b) in-plane diagonal spring damage for monotonic and cyclic analysis (at half and at the end of the 

analysis); c) deformed shape for monotonic (at half and at the end of the analysis) and cyclic analysis (at 

the maximum positive and minimum negative displacements; amplification factor 20) 
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(b) (c)  

Figure 135 Short panel responses with 6x6 discretisation: a) experimental-numerical shear-displacement 

curves; b) in-plane diagonal spring damage for monotonic and cyclic analysis (at half and at the end of the 

analysis); c) deformed shape for monotonic(at half and at the end of the analysis) and cyclic analysis (at the 

maximum positive and minimum negative displacements; amplification factor 20) 
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in Figure 136a, where the energy progression of the 3x3 model is shown alongside the experimental 
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result.  
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set to 0.1 and 0.2, resulting in broader shear-displacement cycles (Figure 136b) and consequently higher 

energy dissipated. In particular, when considering a 10% recovery of unloading stiffness, the final 

amount of energy closely aligns with the experimental value (Figure 136a). The stiffness recovery can 

also have a slight impact on the damage response. In Figure 136c, it can be observed that, in the last 

step, the damage pattern is characterised by the collapse of different elements among the three analysed 

variants, occurring even at different row levels. Meanwhile, the first loading phase retains the typical 

X-shaped damage pattern. 
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Figure 136 Comparison among 3x3 discretised short panel model with different stiffness recoveries: a) 

shear-displacement diagrams, b) energy dissipation comparison and c) in-plane diagonal spring damage 

for monotonic and cyclic analysis (at half and at the end of the analysis) 

Finally, the slender panel with a higher height-to-width ratio is investigated using a 3x3 model. The 

material characteristics are the same as the short panel, reported in Table 32 and Table 33. The responses 

of the model are depicted in Figure 137. The shear-displacement curves show an accurate prediction of 
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the initial stuffiness, yielding strength and hardening branch. Indeed, the typical flexural S-shaped 

cycles are satisfactorily reproduced. However, the experimentally observed stiffness degradation is not 

captured. The same outcome was observed for the mesoscale model in Figure 47. This could be 

attributed to the assumption of simplified elastic unloading–reloading in the constitutive model of 

Minga et al. (2018), which, in reality, involves a certain level of hysteresis. The deformed shape is 

characterised, in both monotonic and cyclic response, by cracks opening in the bed joints at the two 

extremities of the wall specimen, along with partial damage in the shear springs of the macroelements 

at the corners. 
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(b) (c)  

Figure 137 Tall panel responses with 3x3 model: a) experimental-numerical shear-displacement diagrams 

comparison; b) in-plane diagonal spring damage for monotonic and cyclic analysis (at half and at the end 

of the analysis); c) deformed shape for monotonic(at half and at the end of the analysis) and cyclic analysis 

(at the maximum positive and minimum negative displacements with amplification factor of 20) 
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 Two-storey façade 

The ability of the enhanced macroelement to accurately simulate the in-plane response of masonry wall 

elements has been further examined considering a larger façade with openings. The cyclic behaviour of 

the Wall-D, previously examined in Chapter 3 through mesoscale and continuum macroscale 

approaches, is here simulated considering various macroelement models, each featuring different 

mechanical characterisation variants. 

As done for the mesoscale and continuum macroscale approaches in Chapter 3, the macroelement model 

is implemented by applying the external action through a spreader system (Figure 49). 

The material characteristics for the single panels analysed before, as provided in Table 32 and Table 

33, serve as initial reference. From this first “solution 1”, two additional characterisations are then 

evaluated, with the aim of progressively improving the prediction of the cyclic response and better 

fitting the experimental curve through reasonable and plausible variations. The three material 

characterisations are outlined in Table 34: “solution 2” involves higher ultimate displacement (δu
 
) and 

unloading factor (CF) for the diagonal springs, while “solution 3” additionally considers increased 

tensile bond strength and cohesion for the horizontal interfaces, which are assumed as two times the 

reference values for “solution 1”. 

Table 34 Variant parameters for the material characterisations of Wall-D 

 
diagonal springs horizontal interfaces 

δu
 
 CF ft c 

 [mm] [-] [MPa] [MPa] 

Solution 1 10.5 0.4 0.04 0.23 

Solution 2 15 0.8 0.04 0.23 

Solution 3 15 0.8 0.08 0.46 

The capacity curve of “solution 1” (depicted in Figure 138) aligns well with the envelope of the 

experimental cycle response, accurately capturing initial stiffness, maximum strength and strength 

decay. Nevertheless, the cyclic response displays pronounced pinching and low dissipation capacity. 

This is mainly attributed to the low ductility of the diagonal springs, resulting in a rapid failure of the 

first-floor spandrels reaching the ultimate displacement. In addition to this, the behaviour of the facade 

is governed by the rocking of the three piers, from the bottom bed-joint openings (cracks also observed 

in the experimental response, see Figure 42) to the top of the windows at the first floor. Further interface 

openings are observed at the second-floor level, between the 7th and the 8th rows of macroelements (also 

counting the rigid elements at the base). This corresponds to the crack openings observed in the 
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experimental test between the second-floor windows and the second-floor level in the lateral piers. No 

damage at all is observed on the diagonal springs of the lateral piers, which were, however, 

experimentally observed. Furthermore, regarding the central pier at the bottom, the maximum capacity 

of the in-plane springs (specifically in the lower half elements of the pier) is reached, consistent with 

experimental observations (where the pier collapsed due to shear diagonal cracking), but still with 

residual post-peak capacity. The increase in ductility and hysteretic capacity of the diagonal spring, as 

provided by “solution 2”, results in an improved response characterised by wider cycles (see Figure 

42). Qualitatively, the response remains similar, with the same crack propagation. 

 
(a) 

 
(b) 

    
(c) 

Figure 138 Wall D responses with solution 1: a) experimental-numerical shear-displacement diagrams 

comparison; b) in-plane diagonal spring damage under cyclic analysis (at half and at the end of the 

analysis); c) deformed shape under cyclic analysis (at the maximum positive and minimum negative 

displacements with amplification factor of 30) 
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(a) 

 

 
(b) 

    
(c) 

Figure 139 Wall D responses with solution 2: a) experimental-numerical shear-displacement diagrams 

comparison; b) in-plane diagonal spring damage under cyclic analysis (at half and at the end of the 

analysis); c) deformed shape under cyclic analysis (at the maximum positive and minimum negative 

displacements with amplification factor of 30) 
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conducted by taking into account the mesh discretisation. In “solution 3”, characterised by hori ontal 

interfaces with higher cohesion and bond strength, the resultant shear-displacement cyclic response, as 

depicted in Figure 140, aligns more closely to the experimental curve, even if pinching is still slightly 

overestimated. The crack openings at the top of the first-floor windows, which appeared in solutions 1 

and 2, do not take place in this third solution. This may result in damage to the springs of the second-

floor spandrels, leading to a wider overall shear-displacement cycle, and accompanied by the formation 

of a full span crack opening at the second-floor level. Furthermore, a similar damage pattern to the 

previous cases is observed for the diagonal springs of the central pier at the ground floor. 
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(a) 

 

 
(b) 

    
(c) 

Figure 140 Wall D responses with solution 3: a) experimental-numerical shear-displacement diagrams 

comparison; b) in-plane diagonal spring damage under cyclic analysis (at half and at the end of the 

analysis); c) Deformed shape under cyclic analysis (at the maximum positive and minimum negative 

displacements with amplification factor of 30) 

The evolution of the dissipation energy provided by the solution 3 model is closer to the experimental 
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gives an improved approximation of the experimental data, despite the ultimate dissipation magnitude 

remains equivalent to that of the original solution 3 model without stiffness recovery. 

 

Figure 141 Wall D energy dissipation comparison among different material characterisations 

In conclusion, considering the inherent simplifications associated with the macroelement modelling 

approach and the coarse mesh utilised, the outcomes derived from an objective material characterisation 

are satisfactory, closely simulating the experimental response in terms of monotonic and cyclic load-

displacement response and failure mode. However, further studies should be conducted to improve the 

calibration for the ultimate displacement of the diagonal springs and the specification of the mechanical 

characteristics of the nonlinear interfaces in relation to the mesh discretisation. 

6.3 Out-of-plane two-way bending 

URM buildings subjected to earthquakes loading often experience damage associated with the out-of-

plane response of URM walls. Thus, an accurate prediction of the seismic performance of URM 

building structures necessitates a rigorous consideration of the out-of-plane failure mechanism of the 

walls. The typical out-of-plane response involves the development of diagonal cracks eventually 

leading to the wall collapse. In this section, the response of URM walls subjected to out-of-plane loading 

is analysed, with a focus on wall components supported along both horizontal and vertical edges.  

The macroelement formulation described in Chapter 5.2 includes the representation of the out-of-plane 

response, which is primarily governed by the out-of-plane spring but also influenced by the cohesive-
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frictional interfaces, as the effects of tensile opening and sliding significantly impact the dissipation 

capacity of elements subjected to out-of-plane loadings, as shown later on. 

To evaluate the model ability of predicting this failure mode, the experimental tests conducted by 

(Griffith et al., 2007) are simulated. The experiments considered URM walls laterally supported along 

all four edges, including various configurations obtained by varying vertical loads and the presence of 

openings.  

These tests had already been examined in (Minga et al., 2020). However, the former out-of-plane spring 

showed limitations in accurately capturing the actual response of masonry walls subjected to out-of-

plane loading (as reported in Figure 112). Indeed, as highlighted by the authors, the model did not 

adequately capture the strong pinching effects and the strength degradation following the loading 

reversal, as observed in the physical tests. Besides, the amount of dissipation energy appeared to be 

overestimated in comparison to the experimental one.  

One of the reasons of this inadequate response prediction was the overly simplified law implemented 

for the out-of-plane spring, where strength degradation develops separately in the positive and negative 

quadrants. Consequently, the softening behaviour in one direction does not influence the response in 

the other direction. The novel constitutive law implemented for out-of-plane spring (described in 

Chapter 5.4) has been developed to address these issues. 

 The experimental tests 

The experimental tests conducted by Griffith et al. (2007) focused on evaluating several single-wythe 

running bond URM walls under out-of-plane two-way bending conditions, made with cored clay 

masonry units measuring 230 x 110 x 76 mm and mortar joints of 10 mm thickness. The specimens 

considered in the present study consisted of a main wall 4000 × 2500 mm, flanked by return walls on 

both sides, each extending 480 mm. The thickness of the walls is 110 mm. The top and the bottom edge 

of the main wall were simply supported in the direction of the loading, while the vertical edges of the 

return walls were restrained to obtain a full-moment connection. Four different test configurations are 

examined in a numerical study, taking into account the presence or absence of an eccentric opening, as 

well as the inclusion or exclusion of a uniform vertical loading. Details of these configurations are 

provided in Table 35, where specifications for vertical stress, loading history and geometry are given. 

Figure 142 presents a 3D view of a generic specimen. 
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The out-of-plane load was applied through an airbags system. The airbags were gradually inflated on 

alternate sides to provide a uniform pressure on the face of the wall. The specimens were first subjected 

to a static monotonic action, until a certain damage level was reached. Subsequently, from the residual 

displacements, they were subjected to a cyclic history of imposed displacement (Figure 143a). Two 

type of displacement history were considered: the type A was applied to the solid specimens and the 

loaded-windowed one, while the window specimen with no initial vertical loading was subjected to 

type B displacement history (Figure 143b). 

Table 35 Wall geometry and loading conditions 

Specimen 
Vertical 

stress 

Loading 

history 

Geometry 

(dimensions in mm) 

Solid 

loaded 0.10 MPa Type A 

       

Solid 

not-loaded 
0 MPa 

Type A 

Windowed 

loaded 
0.10 MPa Type A 

 

Windowed 

not-loaded 
0 MPa Type B 

Displacement 

transducer 

Displacement 

transducer 
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Figure 142 3D view of the specimen 

 
(a) 

 
(b) 

Figure 143 Cycling loading histories: (a) type A and (b) type B 

 Numerical modelling 

In the solid specimens, the main wall is represented by 6x4 macroelements of equal size, and each 

lateral wall is modelled by 1x4 elements (see Figure 144a). To account for the presence of the openings, 
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a more refined mesh is adopted for the window wall specimens, featuring 7 columns and six rows for 

the main walls, while each lateral wall is modelled considering a mesh of 1x6 elements (Figure 144b). 

The bottom edges of the walls are fully restrained, while the top edges are restrained only in the out-of-

plane direction, providing a pinned support. The external edges of the return walls are restrained through 

a moment restraint and also preventing the horizontal translations. Vertical loads are applied at the top 

nodes of both the main and return walls. The out-of-plane action is imposed to the main wall face using 

nodal forces corresponding to the area of influence of each node. This is achieved through a spreader 

system controlled by an external master non-structural node. Cyclic displacement histories are applied 

at this node.  

The material properties reported in Table 36 and in Table 37 have been derived from (Minga, 2017). In 

particular, the interface properties were obtained from a mesoscale modelling of the experimental test. 

Besides, the out-of-plane spring characteristics (described in Chapter 5.2 and 5.4) were assessed through 

the calibration procedure presented in Chapter 5.2. This involved the testing of an equivalent detailed 

mesoscale model, with dimensions comparable to those of a single element within a macroelement 

model. Table 38 contains the material parameters for the in-plane springs. The shear modulus (Ge) is 

derived from interpolation within the range of values suggested in the Italian code (MIT, 2019), 

considering the experimental elastic modulus and a masonry class of masonry in semi-solid bricks with 

cement mortar. The global cohesion (c̃) and global coefficient of friction (μ̃) are determined by 

considering the characteristics of the horizontal interfaces and the dimensions of the units, and are 

derived from equations (36) and (37). The other parameters are taken from Table 33. 
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(b) 

Figure 144 Macroelement models for the out-of-plane loaded specimens: (a) solid walls, (b) window walls  

Table 36 Material parameters for interfaces of specimens subjected to out-of-plane loading 

Interface 
En  

[MPa] 

ft  

[MPa] 

c  

[MPa] 

tanφ  
[-] 

fc  

[MPa] 

Gf,I 

[N/mm] 

Gf,II 

[N/mm] 

Gf,c 

[N/mm] 

Horizontal 3540 0.16 0.75 0.24 17.6 0.05 0.1 17.5 

Vertical 2124 1.08 2.43 0.56 8.80 0.05 0.1 10 

x+z+ry 

restraints 

x+z+y 

restraints 

z restraint 

x+z+ry 

restraints 

x+z+y 

restraints 

z restraint 

X 

Y 

Z 
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Table 37. Material parameters for out-of-plane springs of specimens subjected to out-of-plane loading 

Specimens 
Ee 

[MPa] 
Ep [MPa] 

py,0 

[kPa] 

pr,0 

[kPa] 

μo,y 

[-] 

μo,r 

[-] 
CF α β 

Solid walls 1815 -74 2.4 0.22 0.0143 0.0148 
0.8 0.8 0.06 

Window walls 1593 -90 4.9 0.23 0.0279 0.0279 

Table 38. Material parameters for in-plane diagonal springs of specimens subjected to out-of-plane loading 

Ge  

[MPa] 

�̃�  
[MPa] 

�̃�  
[-] 

δu
 
  

[mm] 
Kp1/Kel Fy/Fmax CF α β 

885 0.64 0.20 10.5 0.1 0.8 0.4 0.8 0.06 

The numerical results are presented in the following paragraphs, focusing on numerical-experimental 

comparisons of the load-displacement response, damage pattern in the out-of-plane springs (only the 

out-of-plane damage is depicted, as DAMOOP, defined in (52); no damage is observed for the in-plane 

springs). 

 Solid wall specimen 

Figure 145 illustrates the out-of-plane response for the solid loaded specimen, presenting the 

displacements at the monitoring point against the applied pressure. The latter is determined by the ratio 

between the total force applied at the monitoring point and the area of the main wall. The numerical 

curve is shown together with the experimental results. The first monotonic loading phase is accurately 

predicted since initial stiffness and maximum strength are well captured. Moreover, the cyclic response 

is well-replicated, exhibiting strength decay and an overall dissipation capacity that closely align with 

the experimental response. Therefore, the improved spring formulation, which considers damage 

accumulation during the reversal of action direction, enables an accurate prediction of strength 

degradation and pinching effect. This represents a significant improvement compared to the former 

formulation. 

The overall numerical response is governed by both the out-of-plane spring and the nonlinear interfaces. 

In Figure 146a, the damage of the out-of-plane springs is displayed, showing that the elements at the 

corners are fully damaged, having reached the residual branch of the capacity curve (indicated by brown 

colour in Figure 146a). This damage pattern is consistent with the experimental observations presented 

in Figure 146e and Figure 146f for the inside and outside faces, respectively. The localisation of damage 

coincides with the areas where the diagonal cracks appeared during the experimental test. 

The evident pinching effect of the cyclic curve is significantly influenced by the contribution of the 

nonlinear interfaces. As evident in the deformed shapes presented in Figure 146b, Figure 146c and 
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Figure 146d (depicting 3D and plan-view deformed shapes), marked areas indicate interfaces that 

experience significant damage. The flexural damage along the two damaged vertical interfaces can be 

associated with the experimental cracking pattern, although located more externally. Similarly, the 

cracked horizontal interfaces can be correlated with the single horizontal crack along bed joints 

observed at the centre of the experimental specimen, characterised by different lengths from the inside 

to the outside face. 

 

Figure 145 Solid wall specimen with vertical load: experimental-numerical shear-displacement diagrams 

(numerical response in red; the background is taken from Griffith et al., 2007) 
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(a) (b) 

 

 

(c) (d) 

  
(e) (f) 

Figure 146 Solid wall specimen with vertical load: (a) out-of-plane spring damage at the last step of analysis; 

(b) 3-D view of deformed shape at minimum displacement and (c) maximum displacement (amplification 

factor of 5);  (d) plan-view of maximum displacement (amplification factor of 2); experimental cracking 

pattern in the (e) inside face and (f) outside face 

The cyclic pressure-displacement response for the case with zero compressive stress is illustrated in 

Figure 147. The numerical model accurately reproduces the experimental response, for both the 

monotonic and cyclic phases. Notably, it correctly captures the decrease in the maximum strength and 

the increase in the rate of strength degradation due to the reduction of the confinement offered by the 

vertical loading. 

DAMOOP 
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The damage in the diagonal springs is depicted in (Figure 148a). The absence of vertical load results in 

a symmetric damage pattern, where two columns of elements on each side are fully damaged. This 

pattern aligns with the actual wall areas where cracking occurs, as represented in the experimental 

pattern given in Figure 148e and Figure 148f. 

The broadness of cycles becomes progressively narrower as the displacements increase, which is due 

to the increasing flexural damage of the interfaces (Figure 148b, c and d). The more pronounced damage 

of the interfaces, in comparison to the model with vertical load, results in a lower dissipation capacity. 

The localisation of the damaged interfaces is consistent with the experimental observations, allowing 

for the same considerations made for the loaded model. 

 

Figure 147 Solid wall specimen without vertical load: experimental-numerical load-displacement curves 

(numerical response in red; the background is taken from Griffith et al., 2007) 
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(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

Figure 148 Solid wall specimen without vertical load: (a) out-of-plane spring damage at the last step of 

analysis; (b) 3D view of deformed shape at minimum displacement and (c) maximum displacement 

(amplification factor of 5); (d) plan-view of maximum displacement (amplification factor of 2); 

experimental cracking pattern in the (e) inside face and (f) outside face 

 Window wall specimen 

The cyclic out-of-plane response for the window walls specimens, both with and without vertical 

pressure, is also examined. Numerical-experimental comparisons are presented in Figure 149 and 

Figure 151. In both the models, the monotonic phase closely matches the experimental results, with 

initial stiffnesses and maximum strengths aligning closely with the experimental values. For the not-

loaded specimen, the influence of the vertical loads is accurately considered, observing a lower 
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maximum pressure compared to the loaded specimen, although slightly higher than the experimental 

one. Moreover, also the cyclic responses are in good agreement with the experimental curves, accurately 

predicting strength degradation, although with slightly higher strengths at the first load reversal. 

The experimental cracking patterns, given in Figure 150e, Figure 150f and Figure 152e, are similar to 

the ones of the solid wall specimen. However, there is a more extensive cracking pattern both below 

and above the eccentric opening. The damage in the out-of-plane springs, as illustrated in Figure 150a 

and Figure 152a, reflects this extensive damage, with nearly all macroelements exhibiting full damage. 

Furthermore, the observed damage in the nonlinear interfaces is consistent with the experimental 

patterns. Horizontal bed-joint cracks can be related to the large horizontal interfaces openings (Figure 

150c and Figure 152c). Vertical cracks are also well predicted, even if, in the loaded model, the crack 

starts from the opposite corner of the opening (Figure 150c). In the experimental pattern, flexural 

damage appears quite widespread, while in the model, it is concentrated along some main cracks. 

Nevertheless, the amount of dissipated energy is generally underestimated compared to the 

experimental amount. Besides, the numerical cycles are generally narrower than those of the solid 

specimen. This difference can be attributed to a higher damage of the interfaces with respect to the solid 

specimen, resulting in a predominantly flexural response characterised by low dissipation of energy. 

Nonetheless, the response is overall consistent with the experimental evidence, considering the still 

coarse mesh adopted and the simplified nature of the modelling strategy. 

 

Figure 149 Window wall specimen with vertical load: experimental-numerical shear-displacement 

diagrams (numerical response in red; the background is taken from Griffith et al., 2007). 
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(a) (b) 

 

 

(c) (d) 

  

(e) (f) 

Figure 150 Window wall specimen with vertical load: (a) out-of-plane spring damage at the last step of 

analysis; (b) 3D view of deformed shape at minimum displacement and (c) maximum displacement; (d) 

plan-view of maximum displacement (amplification factor of 2) ; experimental cracking pattern in the (e) 

inside face and (f) outside face 
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Figure 151 Window wall specimen without vertical load: experimental-numerical shear-displacement 

diagrams (numerical response in red; the background is taken from Griffith et al., 2007). 
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(e) 

Figure 152 Window wall specimen without vertical load: (a) out-of-plane spring damage at the last step of 

analysis; (b) 3D view of deformed shape at minimum displacement and (c) maximum displacement; (d) 

plan-view of maximum displacement (amplification factor of 2); (e) experimental cracking pattern in the 

outside face 

6.4 3D URM structure subjected to earthquake loading 

 Experimental test 

In a final simulation focusing on the analysis of URM structures, an experimental test was simulated 

verifying the earthquake performance of a 2-story terraced house with a rigid base and two RC floor 

slabs. The seismic testing of the full-scale prototype was conducted at the European Laboratory for 

Structural Assessment (ELSA) Reaction-wall Laboratory of the Joint Research Centre (JRC), utilising 

pseudodynamic testing techniques (Anthoine and Capéran, 2008). The specimen, representing one 

symmetric half of a house, had overall dimensions of 5.30 × 4.75 m and a height of 5.40 m (see Figure 

153). Each shear wall was connected to the perpendicular long walls through a continuous vertical 

mortar joint with masonry connectors (e.g., metal strips) inserted in the mortar bed joints. The concrete 

slabs were directly poured onto the units at the levels of the two floors without any mortar joint. 

The walls consisted of calcium silicate units measuring 250 × 175 × 250 mm, arranged though thin 

mortar bed-joints and unfilled head-joints. The out-of-plane connection was established by matching 

vertical grooves. Compression and tensile tests were conducted on individual units and small 

assemblages, providing the mechanical properties listed in Table 39. 
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(a) (b) 

Figure 153 Pseudodynamic test: (a) view of the structure (adapted from Michel et al., 2011); and (b) plan 

view 

Table 39 Mechanical properties of units and joints 

Material Property Value 

Unit 

Young’s modulus 13620 MPa 

Poisson’s ratio 0.253 

Compressive strength 23.6 MPa 

Tensile strength 1.49 MPa 

Mortar joint 

Young’s modulus 2849 MPa 

Poisson’s ratio 0.028 

Tangent of friction angle 0.55 

Cohesion 0.28 MPa 

The pseudodynamic tests were conducted under the vertical loading conditions prescribed by the 

seismic design standards, as outlined in Eurocode 8, which include the application of dead loads and 

30% of the live loads. To achieve the necessary loads, a distribution of water tanks was arranged on 

each floor, also taking into account the testing setup. The placement of the tanks was designed to exert 

gravity loads on the masonry walls consistent with the expected values in the original terraced house, 

while also minimising the eccentricity between the centre of mass and the centre of stiffness. The total 

added mass on the first floor amounted to 4.52 t, while on the second floor, it was 7.39 t.  

The pseudodynamic tests were unidirectional, conducted in the east-west direction (as indicated in 

Figure 153b). Consequently, in the pseudodynamic algorithm, the tested structure had only 2 degrees 

of freedom, with one translation at each floor level. The equations of motion were iteratively solved 

online using experimentally observed stiffness to determine the corresponding relative displacements. 

These displacements were then applied to the structure using hydraulic actuators fixed on both sides at 
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the two floor levels (Figure 154). Each floor slab movement was controlled by these actuators, imposing 

identical horizontal displacements to prevent any rotation around the vertical axis. 

 

Figure 154 Experimental testing setup 

An artificial accelerogram was utilized as reference ground motion. It was generated to align with the 

Eurocode 8 (EN 1998-1-1, 2005) design spectrum, considering an elastic response Spectrum type I, a 

peak ground acceleration (PGA) of 0.04g, and Soil type B. The duration of the accelerogram is 10.23 

seconds. A series of scaled ground motions with increasing intensity (0.02g, 0.04g, 0.06g, ..., 0.20g) 

was applied to the specimen. Since significant damages were first reported with the application the 

0.12g test, this accelerogram (reported in Figure 155) is utilised for the subsequent numerical 

simulations involving the macroelement strategy. Refer to (Anthoine and Capéran, 2008) for a detailed 

description of the experimental setup and outcomes. 

          

Figure 155 0.12g scaled accelerogram for the pseudodynamic test 
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 Macroelement model 

The two-floor macroelement model (illustrated in Figure 156) utilises a mesh discretisation approach 

for the URM walls, comprising 152 elements with a thickness of 175 mm, fully restrained at the bottom 

nodes. For the reinforced concrete slab floors, elastic shell elements with a thickness of 22 cm and with 

a Young’s modulus of 30000 MPa are employed. The wall-to-floor connections are established by 

considering full-DOF edges for the macroelements boundaries shared with the slabs, as detailed in 

Chapter 5.2 regarding frame-macroelement connectivity (refer to Figure 107). The slabs are discretised 

to align with the macroelement borders and allow for the exact application of the added loads derived 

from water tanks, as in the experiment. 

Regarding the loading conditions, a dynamic pseudo-static analysis is conducted, following the 

approach used in (Chisari et al., 2020). The experimental displacements are transformed into equivalent 

floor accelerations by fitting them with spline curves and subsequently differentiated twice. These 

accelerations are applied to the nodes corresponding to the actuators (see Figure 105b) by performing 

dynamic nonlinear analysis. 

 

 

(a) (b) 

Figure 156 Macroelement model: (a) macroelement for the modelling of the wall elements (Matlab post-

processing) and (b) shell elements for the floors (Adaptic post-processing) 

The material characteristics of the macro-elements are determined following the procedure described 

in the previous paragraphs and taking into account the results of material tests reported in Table 39. 

Interface characteristics are provided in Table 40, while diagonal in-plane spring characteristics are 
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outlined in Table 41. Specifically, for the horizontal interfaces, the tensile strength is derived by 

dividing cohesion by 1.4, as suggested by Lourenço and Gaetani (2022). For the vertical interfaces, the 

elastic modulus is taken as 0.7 times that of the horizontal interfaces, and the tensile strength and 

cohesion are calculated as the averages between values obtained from mortar joints and units (with the 

cohesion of units assumed to be the tensile strength). Regarding the diagonal spring, the shear modulus 

is set at 0.4 times the Young’s modulus, and the strength parameters are determined using the Mann-

Muller criterion, through relations (35), (36) and (37). 

Table 40 Material parameters for interfaces of the 3D structure macroelement model 

Interface 
En  

[MPa] 

ft  

[MPa] 

c  

[MPa] 

tanφ  
[-] 

fc  

[MPa] 

Gf,I 

[N/mm] 

Gf,II 

[N/mm] 

Gf,c 

[N/mm] 

Horizontal 2849 0.20 0.28 0.55 18.4 0.05 0.1 21.7 

Vertical 1994 0.85 0.89 0.55 9.20 0.05 0.1 18.7 

Table 41. Material parameters for in-plane diagonal springs of the 3D structure macroelement model 

Ge  

[MPa] 

�̃�  
[MPa] 

�̃�  
[-] 

δu
 
  

[mm] 
Kp1/Kel Fy/Fmax CF α β 

1140 0.13 0.26 15 0.1 0.7 0.4 0.8 0.06 

The characteristics of the out-of-plane spring are determined employing a mesoscale model representing 

a portion of the masonry specimen, following the approach outlined in (Minga et al., 2020) and detailed 

in Chapter 5.2. The dimensions of the model are 750x750x175 mm, reflecting the dimensions of the 

macroelements utilised in the model (which slightly vary across the walls). The mesoscale model is 

pinned along two sides, subjected to a certain level of confinement, and to an out-of-plane force applied 

to the free corner. Figure 157a illustrates the boundary and loading conditions of the mesoscale virtual 

test, while Figure 157b depicts a typical deformed shape. 

 
 

(a) (b) 

Figure 157 Mesoscale virtual test model: (a) boundary and loading conditions and (b) deformed shape    
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Figure 158 Out-of-plane corner displacement vs. force of the mesoscale model under various level of 

compressive stress σn 

The force-displacement curves are then transformed into equivalent trilinear pressure-displacement 

curves (out-of-plane force per unit surface against out-of-plane corner displacement), as illustrated in 

Figure 113b. Maximum pressure (py) and residual pressure (pr) from each analysis, along with the pre-

peak slope (tan θe) and the post-peak slope (tan θp), are reported in Table 11. Elastic pre-peak modulus 

(Ee) and post-peak modulus (Ep) are then derived by multiplying tan θe and tan θp by the surface of the 

mesoscale model. The average values of the modulus Ee and Ep are adopted within the spring 

specification, as shown in Table 12. 

Table 42 Calibration of out-of-plane springs: values obtained by idealisation of numerical curves 

σ py pr tan θe tan θp Ee Ep 

N/mm2 N/mm2 N/mm2 N/mm3 N/mm3 N/mm N/mm 

0 0.012 0.001 0.0100 -0.0041 5631 -2326 

0.05 0.013 0.002 0.0095 -0.0044 5350 -2490 

0.1 0.014 0.003 0.0092 -0.0032 5172 -1777 

0.2 0.015 0.004 0.0088 -0.0022 4961 -1247 

0.3 0.016 0.008 0.0087 -0.0010 4905 -555 

0.4 0.017 0.009 0.0087 -0.0015 4913 -851 

0.5 0.018 0.009 0.0088 -0.0017 4961 -943 

0.6 0.019 0.010 0.0088 -0.0014 4956 -803 

0.8 0.020 0.012 0.0086 -0.0011 4835 -645 

1 0.022 0.016 0.0083 -0.0009 4689 -527 
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Maximum pressure (py) and residual pressure (pr) from each analysis are depicted as functions of 

compressive stress (σn) in Figure 159, alongside the corresponding linear regressions, which exhibit a 

good fit. The resulting y-intercepts, py,0 and pr,0, and the slopes μo,y and μo,r, are included in the spring 

definition (Table 43). The remaining parameters are assumed to be the same as those listed in Table 37. 

     

Figure 159 Linear regression of yield and residual pressure with respect to the normal compressive stress 

Table 43. Material parameters for out-of-plane springs of the 3D structure macroelement model 

Ee 

[MPa] 
Ep [MPa] 

py,0 

[kPa] 

pr,0 

[kPa] 

μo,y 

[-] 

μo,r 

[-] 
CF α β 

5037 -1216 0.0129 0.0016 0.0095 0.0016 0.8 0.8 0.06 

 Numerical simulations 

The experimental test has already been simulated using both the mesoscale approach, as described in 

(Chisari et al., 2021) and the continuum macroscale approach, as detailed in (Chisari et al., 2020), 

modelling strategies employed throughout the present research. In the mesoscale model, the 

accelerogram was applied within a dynamic analysis with ground motion at the base. In the macroscale 

model, both loading conditions were considered: dynamic analysis with ground motion at the base and 

dynamic pseudo-static analysis with experimental displacements applied at the floors on the two floors. 

The results obtained, in terms of horizontal displacements (of both the first and the second floor) versus 

base shear force, from the three approaches are presented in Figure 160 (for the macroscale model, the 

results obtained from dynamic pseudo-static analysis are reported). It can be observed that the response 

obtained with the macroelement (Figure 160a and b) closely matches the experimental outcomes in 

terms of initial stiffness, maximum strength attained, stiffness degradation, and overall hysteretic cycle. 

y   0.0095x   0.0129

R    0.9933

y   0.0143x   0.0016

R    0.9542

0.000

0.005

0.010

0.015

0.020

0.025

0 0.2 0.4 0.6 0. 1

py pr

Compressive stress σn [MPa] 

O
u
t-

o
f-

p
la

n
e 

fo
rc

e 
p

er
 u

n
it

 s
u

rf
ac

e
 [

M
P

a]
 



Chapter 6. Macroelement simulations of URM and masonry-infilled frame structures 

208 

Remarkably, the curves even exhibit a closer fit to the experimental responses compared to the 

continuum macroscale curves (Figure 160c and d) and the mesoscale model (Figure 160e and f). 

Macroelement 

  
(a) (b) 

Continuum macroscale 

  
(c) (d) 

Mesoscale 

  
(e) (f) 

Figure 160 Experimental-numerical comparison of base shear force vs. horizontal displacement, including 

both first and second floors, for (a-b) macroelement model, (c-d) continuum macroscale model, and (e-f) 

mesoscale model; experimental curves in black, numerical curves in red 
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To compare the computational efficiency among the three approaches, the analysis for the 

macroelement model is conducted under the same conditions as the other two models. The calculation 

is performed within the high-performance computing facilities at Imperial College London. The 

differences in the problem dimensions and computational time are illustrated in Table 44. Essentially, 

the difference in terms of degrees of freedom is one order of magnitude higher when passing from the 

macroelement to the continuum macroscale to the mesoscale. In terms of computational time, the 

macroelement and macroscale approaches are similar, but it is important to note that a single partition 

is used for the macroelement, while 14 partitions were employed for the continuum macroscale model, 

which tackled the computational burden. On the other hand, for the mesoscale model, which involved 

105 partitions, the analysis time was approximately six times longer. Hence, the macroelement strategy 

provides high reliability while offering a lower computational cost compared to the other more refined 

strategies. 

Table 44 Comparison of the computational efficiency of the modelling strategies 

Strategy Mesoscale Continuum macroscale Macroelement 

Number of partitions 105 partitions 14 partitions 1 partition 

Number of DoFs 161748 20256 4470 

Analysis time 
69h,6min 

(not completed) 

11h,33min 

(completed) 

10h,59min 

(completed) 

The damage pattern observed in the macroelement model resembles the experimental observations. 

Specifically, the damage exhibited by the diagonal in-plane springs (illustrated in Figure 161) closely 

aligns with the actual damage observed along the walls in the direction of the applied actions. Many 

elements exceed the maximum strength of the diagonal springs (indicated by a DAMIP indicator of 

around 0.2, which may vary depending on the dimensions of the elements), mirroring the experimental 

findings where shear diagonal cracking damage is observed. Out-of-plane flexural damage on interfaces 

is observed, as highlighted in Figure 162a, showing views of the deformed shape at the final step 

reached. This type of damage was also observed during the experimental test, as shown in Figure 162b. 

In contrast, no damage is observed on the out-of-plane springs, despite experimental evidence showing 

some out-of-plane diagonal cracking. 
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Figure 161 3D views of the damage pattern of the in-plane diagonal spring aligning with experimental 

observations 

    

 
(a) (b) 

Figure 162 (a) 3D views of the deformed shape at the maximum displacement reached (amplification factor 

x50) highlighting the out-of-plane flexural damage; (b) experimental out-of-plane flexural damage 

DAMIP 
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6.5 Infilled frames 

The field of applications of the macroelement include the assessment of the behaviour of masonry-

infilled frames. As previously mentioned, the proposed macroelement strategy is developed within a 

FEA framework, ensuring its compatibility with different types of finite elements. Thus, the model is 

suitable for modelling masonry infills. Additionally, the amendment allowing for a distinct material 

characterisation for each interface, described in Section 5.6, enables an accurate representation of the 

ever-changing interaction between the infill and the external frame. This chapter evaluates the 

macroelement ability to reproduce the behaviour of this structural typology by simulating existing 

experimental tests, under both monotonic and cyclic loading conditions. The influence of openings is 

also examined by comparing the results obtained with the more refined continuum macroscale model. 

 Response of solid masonry-infilled frames 

The analysis of the “Specimen 3”, which was experimentally tested in ( Mehrabi et al., 1996) and 

simulated using mesoscale and macroscale modelling strategies in Chapter 4, has been conducted within 

the framework of macroelement modelling strategy in Section 5.6. It has been emphasised there how 

distinct material characterisation for the external interfaces enables a more accurate representation of 

the actual experimental response. The numerical-experimental comparison depicted in Figure 127 

demonstrates the correctness of the prediction in terms of initial stiffness, maximum strength, and post-

peak softening. Moreover, the macroelement model response prediction is consistent with the results 

provided by the two alternative more sophisticated and computationally expensive modelling 

approaches, as illustrated in Figure 163. 

 

Figure 163 Comparison among the different masonry modelling approaches adopted for the modelling of 

infilled frames. 
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To investigate the influence of the mesh characteristics, the infilled-frame specimen is analysed with 

different meshes with 1x1, 2x2 and 6x6 macroelements. The results are illustrated in Figure 164. 

The outcomes from the coarser 1x1 and 2x2 meshes deviate significantly from the experimental 

response in terms of maximum strength and post-peak behaviour. In particular, the behaviour of the 

basic 1x1 mesh with only one macroelement is solely determined by the single spring positioned along 

the compression diagonal. Lacking internal interfaces for the redistribution of internal forces, the 

response results in a steep post-peak branch. The 2x2 model, still excessively coarse, exhibits a 

comparable initial phase of the capacity curve, with higher strength and stiffness. However, the post-

peak behaviour is notably different, characterised by a lower strength decay. This difference can be 

attributed to the redistribution of internal forces facilitated by the presence of internal interfaces. 

The further refinement of the mesh discretisation enables a differentiation of the internal forces path, 

allowing for a more scattered damaging of the diagonal springs. The overall response, previously 

dominated by the in-plane springs, is now determined by the interaction among all the components, 

including the in-plane springs, the internal and external nonlinear interfaces. The response prediction 

provided by more refined 6x6 mesh closely resembles that of the 3x3 model, exhibiting a similar path 

and aligning with experimental findings. Similar to the 3x3 model, the initial phase is characterized by 

damage of the diagonal springs, followed by the ultimate failure of a horizontal row of elements. 

As a result, the response generally decreases from coarser to finer models, though not in a strictly 

gradual manner (the 6x6 model exhibits a slightly more resistant response than the 3x3 model, in line 

with the coarser meshes 2x2 and 1x1). Reasonably, this nonlinear variation may be expected 

considering the discrete nature of the modelling approach and the complex interactions among the three 

components of the infill - diagonal springs, internal interfaces, and external interfaces - and the 

surrounding frame components. 
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Figure 164 Comparison among different mesh refinements for masonry-infilled frame specimen 3. 

  

 

 

(a) (b) 

  

(c) (d)  

Figure 165 Deformed shape and damage in the diagonal springs at the last step of the nonlinear simulation 

for different mesh discretisations: (a) 1x1, (b) 2x2, (c) 3x3, (d) 6x6 

Finally, two additional experimental tests (Mehrabi, et al. 1996) are simulated. In order to assess the 

ability of the adopted modelling strategy with macroelements to effectively consider the influence of 

vertical loading, 'Specimen 9’ is investigated. This specimen was subjected to a load distribution 

different from that of s 'Specimen 3,' involving a fraction of 1/3 of the total load subtracted from the 

columns and uniformly applied to the top beam. Additionally, the macroelement crucial ability to 

accurately reproduce the hysteretic cyclic response is examined by simulating 'Specimen 5,' which was 

subjected to cyclic horizontal displacement history. 

The experimental material characteristics of concrete and masonry are presented in  Table 45 and Table 

46, highlighting differences among the specimens, particularly in terms of Young’s modulus and 
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compressive strength for both masonry and concrete. These variations are appropriately taken into 

account in the model, and the same material characterisation procedure adopted in Section 5.6 is applied 

here. 

Table 45 Mechanical properties of the concrete material of the tested specimens (Mehrabi et al., 1996) 

Specimen 
Secant modulus (*) Compressive strength 

[MPa] [MPa] 

3 21930 30.9 

5 18070 20.9 

9 17240 26.8 
*At 45% of the compressive strength 

Table 46 Mechanical properties of the masonry of the tested specimens (Mehrabi et al., 1996) 

Specimen 

Masonry 

secant 

modulus 

(*) 

Masonry 

compressive 

strength 

Masonry strain 

at peak stress 

Brick 

compressive 

strength 

Mortar 

compressive 

strength 

[MPa] [MPa] [-] [MPa] [MPa] 

3 9520 15.10 0.0029 15.59 16.00 

5 8950 13.86 0.0023 15.59 13.38 

9 8240 14.21 0.0026 15.59 12.48 
*At 45% of the compressive strength 

The material characterisation of the macrolement infill for Specimen 9 is provided in Table 47, Table 

48 and Table 49. The numerical response, as illustrated in Figure 166, closely approximates the 

experimental curve, providing an accurate prediction of the initial stiffness degradation and showing a 

slightly higher maximum strength. By the point of peak load, the diagonal springs have already reached 

their maximum strength (Figure 167a), and the second phase is characterised by the failure of the central 

elements band (Figure 167b). Hence, the model proves to be capable of accurately capturing the 

behaviour of a masonry infill frame under a different vertical load configuration. 

Table 47 Internal infill interfaces material parameters for the macroelements of Specimen 9 model. 

 
En 

[MPa] 

ft 

[MPa] 

c  

[MPa] 

tanφ  
[-] 

fc  

[MPa] 

Gf,I 

[N/mm] 

Gf,II 

[N/mm] 

Gf,c 

[N/mm] 

Horizontal 12360 0.075 0.11 1.02 14.21  0.05 0.1 20.4 

Vertical 8652 0.86 0.88 1.02 7.11 0.05 0.1 17.8 

Table 48 External infill interfaces material parameters for the macroelements of Specimen 9 model. 

Direction 
En  

[MPa] 

ft  

[MPa] 

c  

[MPa] 

tanφ  
[-] 

Gf,I 

[N/mm] 

Gf,II 

[N/mm] 

Horizontal 12360 
0.01 0.14 0.35 0.05 0.1 

Vertical 8652 
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Table 49. Diagonal springs characterisation for the macroelements of Specimen 9 model. 

Ge  

[MPa] 

ft  

[MPa] 
δu

 
  

[mm] 
Kp1/Kel Fy/Fmax CF α β 

5700 1.1 30 0.1 0.7 0.4 0.8 0.06 

 

Figure 166 Experimental-numerical comparison for masonry-infilled frame Specimen 9. 

 

 

 

 
(c) 

(a) 

 
 

(b)  

Figure 167 Infilled frame 3x3 model of specimen 9: deformed shape (amplification factor of 5) and damage 

of diagonal springs at two displacements: (a) 6mm and (b) 40mm; (c) Experimental damage pattern at the 

end of the analysis for the Specimen 9 (Mehrabi, 1994) 

Finally, the cyclic response is assessed by simulating Specimen 5', which underwent cyclic testing. The 

geometry and load configuration mirror that of 'Specimen 9,' with an amount of the applied loads 

exerted onto the top beam. The macroelement characteristics are detailed Table 50, Table 51 and Table 

52. The model undergoes an initial load cyclic history (Figure 168a), followed by a displacement-

control phase (Figure 168b). The numerical-experimental comparison is depicted in Figure 169. 
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Notably, the numerical prediction closely aligns with the experimental cyclic curve, accurately 

capturing initial stiffness, maximum strength, and overall strength decay. Furthermore, the pinching 

effect is well-represented, albeit with a slight underestimation of the hysteretic capacity. The final 

damage pattern, as illustrated in Figure 170, is in good agreement with the experimental observations, 

with damage concentrated mostly on a horizontal central band. The obtained responses are remarkable, 

especially considering the simplified nature of the model and its very low computational burden. 

Table 50 Internal infill interfaces material parameters for the macroelements of Specimen 5 model. 

 
En 

[MPa] 

ft 

[MPa] 

c  

[MPa] 

tanφ  
[-] 

fc  

[MPa] 

Gf,I 

[N/mm] 

Gf,II 

[N/mm] 

Gf,c 

[N/mm] 

Horizontal 11370 0.08 0.11 1.02 13.86  0.05 0.1 20.3 

Vertical 7959 0.86 0.88 1.02 6.93 0.05 0.1 17.8 

Table 51 External infill interfaces material parameters for the macroelements of Specimen 5 model. 

Direction 
En  

[MPa] 

ft  

[MPa] 

c  

[MPa] 

tanφ  
[-] 

Gf,I 

[N/mm] 

Gf,II 

[N/mm] 

Horizontal 11370 
0.01 0.014 0.35 0.05 0.1 

Vertical 7959 

Table 52. Diagonal springs characterisation for the macroelements of specimen 5 model. 

Ge  

[MPa] 

ft  

[MPa] 
δu

 
  

[mm] 
Kp1/Kel Fy/Fmax CF α β 

4548 0.82 30 0.1 0.7 0.4 0.8 0.06 
 

(a) 

 

(b) 

 

Figure 168 Cyclic analysis actions: (a) load-control phase, (b) displacement-control phase 
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Figure 169 Cyclic response of the infilled-frame: experimental-numerical load-displacement curves 

(numerical response in red; the background is taken from Mehrabi, 1994) 

 
(a) 

 
(b) 

 

 

 
(c) 

Figure 170 Infilled frame 3x3 model of specimen 5: (a) deformed shape (amplification factor of 5) at the 

maximum displacement, (b) damage of diagonal springs at the last step reached; (c) Experimental damage 

pattern (Mehrabi, 1994) 

 Response of masonry-infilled frames with openings 

The presence of openings significantly influences the final response of infilled frames. In current 

engineering practice, openings are typically evaluated through the application of specific stiffness and 

strength reduction factors in association within a simplified equivalent-strut modelling. However, the 

determination of these factors could be not straightforward, and their application may lead to 

inaccuracies in the response prediction. On the contrary, the use of macroelements allows for the 
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representation of the actual geometry of the infill, incorporating any specific openings, without the 

necessity of defining any a priori equivalent coefficient.  

The impact of openings in the infills is assessed by comparing the macroelement outcomes with those 

derived from continuum finite element modelling, as detailed in Section 4.7. Pushover analyses are 

conducted on identical geometries, covering both door-infills (models D1, D2 and D3) and window-

infills (models W1, W2 and W3). Geometry and identification of the analysed models are specified in 

Table 23. In addition, BF and IF stand for bare and infilled frame, respectively. Two distinct mesh 

discretisations are employed, originating from 3x3 models ("Mesh 1") and 6x6 models ("Mesh 2") of 

‘Specimen 3’, with element dimensions suitable for the insert of openings. The final models are 

subsequently obtained by removing the elements within the opening area. The material characteristics 

of the infilled-frame model are given in Table 18, Table 27, Table 28 and Table 29. 

The results of the analyses on macroelement door infills are in accordance with the outcomes previously 

obtained using a 3D continuum mesh with the CDP material model for masonry, even with the coarse 

Mesh 1. The load-displacement responses presented in Figure 171 reveal that stiffness and strength 

reductions from the solid infilled frame model are accurately captured, closely aligning with continuum 

finite element results. The curves exhibit an approximately elasto-perfectly plastic behaviour, given the 

inability of the diagonal compression strut to develop due to the presence of the openings. Furthermore, 

the maximum force closely approximates the residual force of the solid-infilled frames. 

The curves corresponding to different openings are close to each other, suggesting that in presence of 

door openings, extending from the bottom base, the opening dimensions do not exert a significant 

influence on the final response.  

Furthermore, the progression of damage is consistent among the modelling strategies, as observed in 

Figure 172. Crushing damage occurs at the top right corner of the opening in each macroelement model, 

along with slight damage on the nearby diagonal springs. This damage pattern aligns with the one 

obtained using the continuum finite element model. 
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(a) 

 
(b) 

 
(c) 

Figure 171 Load-displacement curves for door-infills: (a) macroelement Mesh 1, (b) macroelement Mesh 2 

and (c) continuum finite element (CDP material model) 
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(a1) (a2) (a3) 

   
(b1) (b2) (b3) 

   
(c1) (c2) (c3) 

   
(d1) (d2) (d3) 

   

(e1) (e2) (e3)  

Figure 172 Door Infilled frames responses: (a-c) deformed shape (amplification factor of 5) and (b-d) 

damage in the diagonal springs at the end of the analysis for the macroelement models with mesh 1 and 

mesh 2; (c) Compressive damage at the end of the analysis for the macroscale CDP models (deformed shape 

with amplification factor of 5); (1) Infill D1; (2) Infill D2; (3) Infill D3 

The results for window-infills models are also remarkable, demonstrating a comparable prediction of 

strength and stiffness decay given by macroelement models and finite element models (Figure 173). A 

notable agreement is observed in the case of W2 and W3 models, particularly concerning initial stiffness 

and maximum strength. 

DAMIP 

Crushing dam. 

CDP 
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However, significant differences are noticed for the model with the small window (W1). In the finite 

element model, the small dimensions of the opening allow the development of the compression strut, 

enabling the model to attain the same shear strength as the solid-infilled frames. Conversely, the 

macroelement models exhibit the failure of springs around the opening, which is observed in both Mesh 

1 and Mesh 2. Nevertheless, the prediction of initial stiffness is nearly identical, with the differences in 

maximum strength predictions being relatively small and around 10%. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 173 Load-displacement curves for window-infills: (a) macroelement Mesh 1, (b) macroelement Mesh 

2 and (c) continuum finite element (CDP material model) 
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(a1) (a2) (a3) 

   
(b1) (b2) (b3) 

   

(c1) (c2) (c3) 

   
(d1) (d2) (d3) 

   
(e1) (e2) (e3)  

Figure 174 Window infilled frames responses: (a-c) deformed shape (amplification factor of 5) and (b-d) 

damage in the diagonal springs at the end of the analysis for the macroelement models with mesh 1 and 

mesh 2, (e) compressive damage at the end of the analysis for the macroscale CDP models (deformed shape 

with amplification factor of 5); (1) Infill W1; (2) Infill W2; (3) Infill W3 

In conclusion, the developed macroelement modelling proves to be effective in accurately simulating 

the effects of opening, producing results closely aligned with the more refined continuum finite element 

models while maintaining high computational efficiency. 
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6.6 Summary and conclusions 

In this chapter, the enhanced macroelement has been validated against experimental outcomes, 

encompassing both unreinforced masonry and infilled frame structures. 

First, the macroelement was tested to simulate the cyclic response of individual masonry solid panels 

with varying height-to-width ratios, demonstrating its ability to accurately predict shear diagonal 

cracking and flexural responses. Moreover, a large perforated brick-masonry wall was modelled 

achieving an accurate response prediction under monotonic loading also using a coarse mesh of 

macroelements with a straightforward calibration of the material model parameters. An improved model 

calibration led to a very accurate prediction also under cyclic loading. Furthermore, the out-of-plane 

response of masonry walls was also assessed, for which certain drawbacks were highlighted within the 

original version. The new implementations facilitated the calibration of the experimental responses, 

achieving very good agreement with both monotonic and cyclic behaviour. The model was successfully 

tested against several masonry specimens both in the presence or absence of openings, and with or 

without vertical loading. Notably, it was found that the adopted improved macroelement model can 

adequately capture pinching effects and strength decay which develop in the physical test under cyclic 

loading conditions. The model also successfully reproduced the structural response of a 3D URM 

building experimentally tested under earthquake loading, with high accuracy and significantly lower 

computational demands compared to other, more sophisticated modelling approaches employed for 

replicating the same test. 

The macroelement was also tested against experimental infilled frame tests. The model demonstrated 

its ability to accurately predict the response, accurately reproducing the actual failure mechanisms 

characterising the complex response of infilled frame structures. This includes initial stiffness 

degradation due to early frame-infill detachment and the development of a diagonal compression strut, 

through a proper damage development in in-plane diagonal springs. Monotonic pushover analyses, 

conducted using models with different confinement levels, exhibited very good agreement with the 

experimental outcomes. Moreover, the model proved highly effective in predicting the cyclic response. 

Finally, the presence of infill with openings was also evaluated. The results demonstrated a significant 

concordance with the outcomes previously obtained using more refined finite element models. 

Thus, the enhanced macroelement strategy stands as a reliable tool, capable of accurately predicting the 

response of masonry wall structures, while maintaining high computational efficiency, making it approp 

for accurate analysis of real-sized buildings.  
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CHAPTER 7  

SEISMIC ASSESSMENT OF A REAL RC MASONRY-

INFILLED FRAME BUILDING 

 

7.1 Introduction 

The proposed macroelement strategy has demonstrated its ability to accurately represent the response 

of URM and infilled frame structures under both monotonic and cyclic loading, while maintaining a 

high computational efficiency. This makes it a valuable tool for analysing the structural response of 

real-size structures.  

This concluding chapter focuses on applying the novel macroelement strategy to assess the seismic 

vulnerability of a real 4-story irregular RC existing building, originally not designed to withstand 

seismic actions. The assessment aims to evaluate the impact of masonry infills on the structural 

response. Nonlinear dynamic analyses are conducted using a set of natural spectrum-compatible 

accelerograms, considering both horizontal and vertical directions simultaneously. The assessment 

includes scenarios with and without masonry infill, featuring different configurations. The analysis 

highlights the significant impact of masonry infills on the final vulnerability assessment, emphasising 

the necessity of considering them for an accurate representation of the behaviour of existing RC 

structures. 

7.2 Case study 

The analysed structure represents a typical Italian school building from the 1960s, designed in 

accordance with strategies commonly employed in Italy before the implementation of seismic 

regulations. The structure, characterised by the typical scheme of weak columns and strong beams, 
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presents notable irregularities both in plane and in elevation, making the nonlinear dynamic analysis 

necessary to accurately predict the nonlinear response of the structure.  

The building consists of the first two floors with an equal area of 1239 m², while the last two floors 

have a smaller area of 660 m² (Figure 182). Regarding loads, the dead load on the floors is 4.6 kN/m², 

the live load is 3.0 kN/m², and the variable load due to snow on the top floor is 0.8 kN/m². The infills 

weight is equal to 15 kN/m3, considered as linearly applied on the perimeter beams. Comprehensive on-

site and laboratory tests were carried out on various elements, encompassing steel bar tension tests and 

compression tests on concrete specimens. The mechanical characteristics adopted for the subsequent 

analyses, as detailed in Table 53, appropriately take into account the achieved knowledge level, 

specifically the KL2 level (as defined by the Italian code - MIT, 2018, and Eurocode 8 - EN 1998-1-1, 

2005; please refer to Chapter 2.3.5). Floor plans and reinforcement details of some columns and beams 

are depicted from Figure 175 to Figure 180. The bare reinforced concrete frame structure has already 

been analysed in previous research (Izzuddin et al., 2013; Masjuki, 2017).  

Table 53 Concrete and steel material properties 

Concrete compressive strength 𝑓
𝑐
 18.7 MPa 

Beam steel reinforcements yield strength 𝑓
𝑦,𝑏𝑒𝑎𝑚

 382.5 MPa 

Column steel reinforcements yield strength 𝑓
𝑦,𝑐𝑜𝑙𝑢𝑚𝑛

 284.0 MPa 

Concrete Modulus of elasticity 𝐸𝑐 26544 MPa 

Steel Modulus of elasticity 𝐸𝑠 210000 MPa 

Steel strain hardening factor μ 0.1  
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Figure 175 First and second floor plan 
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Figure 176 Third and fourth floor plan 

Column n° 20 Column n° 13-14-21 

  

Figure 177 Reinforcements detailing on columns of the 1st and 2nd floors 
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First floor – Beam 19-20-21-22 

 

 

Figure 178 Reinforcements detailing on beams of the 1st and 2nd floors 

Column n° 20 Column n° 13-14 

 
 

Figure 179 Reinforcements detailing on columns of the 3rd and 4th floors 

19 20 21 22 
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Second floor (coverage) – beam 24-19-12 

 

 

Figure 180 Reinforcements detailing on beams of the 3rd and 4th floors 

7.3 Modelling of the structures 

The modelling approach for the RC frame involves the use of 1D elastic-plastic frame elements 

proposed by Izzuddin and Elnashai (1993a, 1993b), already employed throughout the thesis and 

described in Chapter 4.3. Each RC member is modelled through different segments, to effectively 

capture the development and spread of plasticity along its various sections. Specifically, the columns 

are discretised into 6 elements, while the beams are divided into 10. The same beam elements are 

adopted for the modelling of stairs and landing platforms. Fully fixed restraints are considered at the 

bottom of the columns, where the seismic accelerations are applied. Figure 182 shows an axonometric 

view of the numerical model implemented in Adaptic. 

24 19 12 
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Figure 181 3D extruded view of the bare-frame model 

Given the presence of holes within the floors, the modelling considers the actual deformability of the 

slabs in their plane. Specifically, the floor diaphragms are modelled using a system of elastic link 

elements, following the approach described by Yettram and Husain (1966). Each portion of the floor, 

assimilated as a solid slab with uniform thickness, is represented by a rectangular frame along the 

perimeter with an internal X-brace. The external perimetral elements are characterised by specific 

flexural stiffness (EIy,f) and axial stiffness (𝐸𝐴𝑓), while X-brace elements are trusses defined through a 

certain axial stiffness (EAd). These characteristics are evaluated through equations (58), (59) and (60): 

𝐸𝐼𝑦,𝑓 =
𝐸𝑐  ℎ

60
𝑙𝑥
2𝑙𝑧 

(58) 

𝐸𝐴𝑓 =
𝐸𝑐  ℎ 𝑙𝑧
2

[1 − 0.2 (
𝑙𝑥
𝑙𝑧
)
2

] (59) 

𝐸𝐴𝑑 =
𝐸𝑐  ℎ

10
(
𝑙𝑥
2 + 𝑙𝑧

2

𝑙𝑥𝑙𝑧
)

3 2⁄

 (60) 

where Ec represents the concrete elastic modulus of the floor, h is the thickness of the equivalent solid 

slab (assumed equal to the concrete slab topping), and lx and l  denote the dimensions in the plane of 

the floor portion. Figure 182 depicts the schematic plans of the floors, indicating the locations of the 

floor link systems and column numbering adopted for the subsequent analysis. In Figure 183, an 

axonometric view of the model is presented, illustrating the representation of the slabs using link 

elements. 
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(a) (b) 

Figure 182 Schematic representation of (a) the first two floors and (b) the last two floors, indicating the 

column numbering adopted for modelling and verifications. 

 

Figure 183 3D view of the bare-frame model with highlighted floor link-system 

Two different configurations of infills are considered: the real infill configurations, characterised by an 

irregular distribution of infills, including empty zones (mainly on the ground floor) and various types 

of openings, and the limiting hypothesis in which the frame is fully infilled. The two configurations are 

visualised in Figure 184, represented through post-processing MATLAB scripts. The macroelements 

modelling is automatically performed through the implementation of pre-processing MATLAB scripts. 

The material properties for the masonry macro-elements, representing typical hollow clay brick 

masonry panels, are provided in Table 54, Table 55 and Table 56, considering a thickness of 120 mm. 

x 

y 
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(a) (b) 

Figure 184 3D views of masonry macroelements in (a) fully and (b) partially infilled frame models 

Table 54 Internal infill interfaces material parameters 

  
En 

[MPa] 

ft 

[MPa] 

c  

[MPa] 

tanφ  
[-] 

fc  

[MPa] 

Gf,I 

[N/mm] 

Gf,II 

[N/mm] 

Gf,c 

[N/mm] 

Horizontal Int-h 1400 0.1 0.14 0.7 3 0.05 0.10 16.3 

Vertical Int-v 840 1.5 1.5 1 1.5 0.05 0.10 15.2 

Table 55 External frame-infill interfaces material parameters 

  
En 

[MPa] 

ft 

[MPa] 

c  

[MPa] 

tanφ  
[-] 

Gf,I 

[N/mm] 

Gf,II 

[N/mm] 

Horizontal Ext-h 1400 0.01 0.014 0.35 0.05 0.10 

Vertical Ext-v 840 0.01 0.014 0.35 0.05 0.10 

Table 56. Diagonal springs characterisation 

Identification 
Ge  

[MPa] 

ft  

[MPa] 
δu

 
  

[mm] 
Kp1/Kel Fy/Fmax CF α β 

Diag 560 0.2 20 0.1 0.7 0.4 0.8 0.06 

 Partitioning approach 

The computational demands required for performing nonlinear dynamic analysis can become 

significant due to the size of the model. To address the potentially high computational cost associated 



Chapter  . Seismic assessment of a real RC masonry-infilled frame building 

234 

with a monolithic model, the partitioned modelling approach introduced by Jokhio (2012), already 

employed throughout this thesis, is adopted herein. The model is divided into four partitions (see Figure 

185 and Figure 186, for bare frame and infilled frames, respectively), each corresponding to a single 

storey. The parent element is defined by the nodes at the ends of the columns situated between two 

consecutive storeys, enabling the communication between them. Additionally, in the presence of infills, 

nodes on beams that are common to two consecutive storeys must also be included. 

 

 

 

 

Figure 185 Partitioning strategy on the bare frame 
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(a) (b) 

Figure 186 Partitioning strategy on the case study building: masonry macroelements partitions on (a) fully 

and (b) partially infilled frame 

7.4 Seismic assessment framework 

Nonlinear dynamic analyses are conducted on the structure employing natural accelerograms selected 

to be spectrum-compatible with the design spectrum. These analyses involve calculating the seismic 

response of the structure by integrating the equations of motion, enabling the verification of potential 

ductile and brittle mechanisms. These advanced numerical analysis methods represent a fundamental 

tool for accurately evaluating the actual seismic capacity of complex structures. Their effectiveness is 

particularly evident when analysing existing structures with irregularities in plan and elevation. In such 

cases, the use of non-linear static analyses may lead to unrealistic results, discouraged from standard 

codes, while the use of linear dynamic analyses (response spectrum modal analysis) with a limited 

structural factor (for existing structures) may provide excessively conservative results.  
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In the current study, 7 pairs of ground motion acceleration histories are applied to the structures, in the 

horizontal X and Y directions. The analyses comprise two phases. Initially, a static analysis is conducted 

where vertical loads are applied to the structures, considering the seismic event combination factors 

recommended by the Italian Code (MIT, 2018). This involves the application of self-weight of both 

structural and non-structural components and 60% of the variable loads on the floors. Subsequently, the 

nonlinear dynamic analysis is executed by applying accelerograms to the base of the columns. Masses 

are applied as linearly distributed on columns and beams, while damping is determined following the 

Rayleigh formulation (Chopra, 2011), wherein the damping matrix is evaluated as a linear combination 

of the mass and stiffness matrices. A damping coefficient of 5% is applied for the natural frequency 

corresponding to the fundamental period of the structures. 

 Accelerograms 

In the dynamic simulations of structural systems under earthquake loading, the selection of realistic 

ground accelerations is crucial. Generally, three types of acceleration time-series can be employed: 

artificial, synthetic, or natural accelerograms. Artificial accelerograms are created through numerical 

procedures, utilising power spectral density functions based on smoothed spectra or derived sinusoidal 

signals. Synthetic accelerograms are generated from mathematical models that consider the actual 

characteristics of seismological sources and soil properties. Natural accelerograms are real records 

obtained from data collected during previous seismic events. In the present context, natural 

accelerograms are adopted for the assessment. 

According to Eurocode 8 (EN 1998-3, 2004) the consistency of the selected accelerograms with the 

elastic spectrum must be verified based on the average spectral acceleration as a function of vibration 

period. The average acceleration should not deviate by more than 10% compared to the elastic spectrum 

(determined with a damping coefficient of 5%) at any point within the larger of the two intervals for 

ultimate limit state checks: 0.15s ÷ 2.0s and 0.15s ÷ 2T (where T is the fundamental vibration period in 

the elastic condition). As for serviceability limit state checks, the deviation should be evaluated within 

the interval 0.15s ÷ 1.5 T. A minimum of 3 time histories must be adopted, and in this scenario, the 

effects on the structure are evaluated considering the most unfavourable demands. Alternatively, if at 

least 7 different time histories are employed, the effects on the structure are represented by the average 

of the seismic demands.  

In the present context, a set of 7 pairs of natural accelerograms are determined, generated by using 

REXEL (Iervolino et al., 2009), a computer-assisted program designed for code-based seismic 
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structural analysis record selection. The characteristics for determining the elastic response spectrum 

are detailed in Table 57, while the primary features of the natural records are outlined in Table 58. 

Figure 187 visually illustrates the compatibility between the elastic response spectrum and the natural 

elastic spectra corresponding to the selected accelerograms. The combinations of the time-history 

ground motions are graphically displayed in Figure 188 for both the x and y directions. 

Table 57 Elastic response spectrum parameters 

Lon [°] Lat [°] Site class Topographic 

category 

Nominal life Use 

coefficient 

Limit state 

13.394 42.366 C T1 50 years II SLC 
(*) corresponding to the Near Collapse limit state of Eurocode 8 

Table 58 Main characteristic of the seven adopted two-component records 

Identification  
Station 

ID  

Earthquake 

Name  
Date  Mw  

Fault 

Mechanism  

Epicentral 

Distance 

[km]  

PGAX 

[m/s2] 

PGAY 

[m/s2] 

170  ST46  
Basso 

Tirreno  
15/04/1978  6.0  oblique  18  0.719  1.585  

199  ST67  Montenegro  15/04/1979 6.9  thrust  16  3.680  3.557  

292  ST98  
Campano 

Lucano  
23/11/1980 6.9  normal  25  0.5878  0.5878  

333  ST121  Alkion  24/02/1981  6.6  normal  20  2.257  3.036  

600  ST223  
Umbria 

Marche  
26/09/1997 6.0  normal  22  1.685  1.041  

6331  ST2486  

South 

Iceland  

(aftershock)  

21/06/2000 6.4  strike-slip  22  0.513  0.386  

6335  ST2557  

South 

Iceland  

(aftershock)  

21/06/2000 6.4  strike-slip  15  1.248  1.132  
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Figure 187 Evaluation of the spectrum compatibility 
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Figure 188 Pairs of selected accelerograms 

 Verification of ductile mechanisms 

In accordance with current codes of practice (EN 1998-3, 2004; MIT, 2018), the seismic assessment 
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demands with capacity values, specifically checking for the occurrence of eventual ductile and brittle 

mechanisms. 

Local ductile failure occurs when the ultimate rotation capacity is exceeded. This is specifically 

evaluated by considering the chord rotation angle, which is defined, according to Eurocode 8 (EN 1998-

3, 2004), as the angle between the tangent to the axis at the yielding end and the chord connecting that 

end with the end of the contraflexure. Figure 189 provides a visual representation of the chord rotation 

definition for both beams and columns. 

 

 
(a) (b) 

Figure 189 Chord rotation for (a) beams and (b) columns (taken from (Masjuki, 2017) 

The chord rotation demands are calculated for the two extremities of each member at the end of each 

time step of the analysis. This calculation specifically includes contributions assessed considering both 

the local reference system (x, y, z) of the member (represented in Figure 190) and the global reference 

system (X, Y, Z). In particular, it considers the end-element rotations in the local system, the relative 

nodal displacements of the nodes of the end-element in the global system, and the relative nodal 

displacements of the extreme nodes of the entire element in the global system. Considering the distinct 

relationships between the two systems for columns, beams in the X direction, and beams in the Y 

direction, as illustrated in Figure 191, the chord rotations at the end nodes I and J of each element are 

evaluated using the relationships from (61) to (72). 
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Figure 190 Degree of freedom of the beam-column elements (Izzuddin and Lloyd Smith, 2000) 

 
(a) 

  
(b) (c) 

Figure 191 Orientation of (a) columns, (b) beams in X direction and (c) beams in Y direction 

Columns chord rotations: 

𝛳𝑦,𝑖̃ = (
𝑈𝑖+1 − 𝑈𝑖

𝐿𝑖
) + 𝛳𝑦,𝑖 − (

𝑈𝑗 − 𝑈𝑖

𝐿𝑖𝑗
) (61) 

𝛳𝑧,�̃� = (
𝑉𝑖+1 − 𝑉𝑖

𝐿𝑖
) + 𝛳𝑧,𝑖 − (

𝑉𝑗 − 𝑉𝑖

𝐿𝑖𝑗
) (62) 

𝛳𝑦,�̃� = (
𝑈𝑗 − 𝑈𝑗−1

𝐿𝑗
) + 𝛳𝑦,𝑗 − (

𝑈𝑗 − 𝑈𝑖

𝐿𝑖𝑗
) (63) 

𝛳𝑧,�̃� = (
𝑉𝑗 − 𝑉𝑗−1

𝐿𝑗
) + 𝛳𝑧,𝑗 − (

𝑉𝑗 − 𝑉𝑖

𝐿𝑖𝑗
) (64) 

Beams along X direction chord rotations: 

𝛳𝑦,𝑖̃ = (
𝑊𝑖+1 −𝑊𝑖

𝐿𝑖
) + 𝛳𝑦,𝑖 − (

𝑊𝑗 −𝑊𝑖

𝐿𝑖𝑗
) (65) 

𝛳𝑧,�̃� = (
𝑉𝑖+1 − 𝑉𝑖

𝐿𝑖
) + 𝛳𝑧,𝑖 + (

𝑉𝑗 − 𝑉𝑖

𝐿𝑖𝑗
) (66) 
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𝛳𝑦,�̃� = (
𝑊𝑗 −𝑊𝑗−1

𝐿𝑗
) + 𝛳𝑦,𝑗 − (

𝑊𝑗 −𝑊𝑖

𝐿𝑖𝑗
) (67) 

𝛳𝑧,�̃� = (
𝑉𝑗 − 𝑉𝑗−1

𝐿𝑗
) + 𝛳𝑧,𝑗 + (

𝑉𝑗 − 𝑉𝑖

𝐿𝑖𝑗
) (68) 

Beams along Y direction chord rotations: 

𝛳𝑦,𝑖̃ = (
𝑊𝑖+1 −𝑊𝑖

𝐿𝑖
) + 𝛳𝑦,𝑖 − (

𝑊𝑗 −𝑊𝑖

𝐿𝑖𝑗
) (69) 

𝛳𝑧,�̃� = (
U𝑖+1 − U𝑖

𝐿𝑖
) + 𝛳𝑧,𝑖 − (

U𝑗 − U𝑖

𝐿𝑖𝑗
) (70) 

𝛳𝑦,�̃� = (
𝑊𝑗 −𝑊𝑗−1

𝐿𝑗
) + 𝛳𝑦,𝑗 − (

𝑊𝑗 −𝑊𝑖

𝐿𝑖𝑗
) (71) 

𝛳𝑧,�̃� = (
U𝑗 − U𝑗−1

𝐿𝑗
) + 𝛳𝑧,𝑗 − (

U𝑗 − U𝑖

𝐿𝑖𝑗
) (72) 

where 𝛳 represent the end-element rotations in the local system, while U, V and W are the nodal 

displacements along the global reference axis X, Y and Z. 

As regards the capacity, the ultimate capacity rotation θu for each beam and column in the model is 

calculated using the formula (73) specified in Eurocode 8 (EN 1998-3, 2004): 

𝛳𝑢 =
1

𝛾𝑒𝑙
0.016 (0.3𝜈) [

𝑚𝑎𝑥(0.01; 𝜔′)

𝑚𝑎𝑥(0.01; 𝜔)
𝑓𝑐]

0.225

(
𝐿𝑣
ℎ
)
0.35

25
(𝛼 𝜌𝑠𝑥

𝑓𝑦𝑤
𝑓𝑐
)
(1.25100𝜌𝑑) (73) 

where: 

γ
el

 is equal to 1.5 for primary seismic elements and 1.0 for secondary seismic elements; 

Lv is the shear span; 

h is the section height; 

ν  (Acfc)⁄  is the average normal compression stress, with fc being the concrete compressive 

strength; 

ω Asfy (Acfc)⁄  and ω' As
' fy (Acfc)⁄  are the mechanical percentages of longitudinal 

reinforcement in tension and compression respectively, with fy being the steel reinforcement 

yield strength; 

fyw is the stirrup yield strength; 

ρ
sx

  Asx (bws)⁄  is the percentage of transversal reinforcement, with 𝑠 being the stirrup spacing 

and bw the minimum section width; 

ρ
d
 is the steel ratio of diagonal reinforcements, in each diagonal direction; 
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α confinement effectiveness factor that may be taken as equals to: 

            𝛼 = (1 −
𝑠

2𝑏0
) (1 −

𝑠

2ℎ0
) (1 −

∑𝑏𝑖
2

6 ℎ0𝑏0
) (74) 

where b0 and h0 are the dimensions of the confined core, bi are the distances between 

longitudinal bars laterally restrained by tie rods or stirrups. 

Ultimately, the final verification is conducted by concurrently considering demands and capacities 

corresponding to the two directions within a circular interaction domain (according to AIJ, 1994). The 

final ratio ρ
c
 for each member is determined as the maximum between the two ends, as reported in (75). 

𝜌𝑐 = 𝑚𝑎𝑥 [(
𝛳𝑦,𝑖̃

𝛳𝑢,𝑦,𝑖
)

2

+ (
𝛳𝑧,�̃�
𝛳𝑢,𝑧,𝑖

)

2

; (
𝛳𝑦,�̃�

𝛳𝑢,𝑦,𝑗
)

2

+ (
𝛳𝑧,�̃�

𝛳𝑢,𝑧,𝑗
)

2

] (75) 

 Verification of brittle mechanisms 

According to Eurocode 8 (EN 1998-3, 2004), typical brittle failure in RC frames can occur either at the 

member level or at the beam-column joints. In the current context, the verification focuses only on shear 

failure in columns and beams. The shear force demand is directly obtained from the simulation at the 

end of each time step, while the shear capacity is assessed using the expressions provided by Eurocode 

2 (BS EN, 2004, p. 2). The shear strength of elements with transversal reinforcement is evaluated as the 

minimum between a shear-tension value, calculated using relation (64) associated with the failure of 

transversal reinforcement, and a shear-compression value, determined using (65) related to the failure 

of the concrete core. The ultimate shear strength is then determined as the minimum of these two values. 

𝑉𝑐,𝑠 = 0.9 𝑑 
𝐴𝑠𝑥
𝑠
 𝑓𝑦𝑤(cot 𝛼 + cot 𝛳) sin 𝛼 (76) 

𝑉𝑐,𝑐 = 0.9 𝑑 𝑏𝑤  𝛼𝑐 𝑓𝑐𝑑
′  (cot 𝛼 + cot 𝛳) (1 + 𝑐𝑜𝑡2𝛳)⁄  (77) 

𝑉𝑐 = 𝑚𝑖𝑛(𝑉𝑐,𝑠; 𝑉𝑐,𝑐) (78) 

where, in addition to parameters introduced with relation (73): 

d is the effective section height; 

bw is the minimum section width; 

s is the spacing between two consecutive transverse reinforcements; 

σcp  fc⁄ ≤0.2fc is the average compressione stress on the section; 

α is the angle of inclination of the transverse reinforcement with respect to the axis of the beam; 

β is the angle of inclination of the compressed strut (taken as 45°); 
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fc
'
 is the reduced compressive strength of the core concrete (taken as 0.5 𝑓𝑐); 

αc is a augmentation factor equal to:  

- 1 for not compressed elements 

- 1 + 𝜎𝑐𝑝 𝑓𝑐⁄  if  0 ≤ 𝜎𝑐𝑝 ≤ 0.25𝑓𝑐   

- 1.25 if 0.25𝑓𝑐 ≤ 𝜎𝑐𝑝 ≤ 0.5𝑓𝑐  

- 2.5(1 − 𝜎𝑐𝑝 𝑓𝑐⁄ ) if  0.5𝑓𝑐 ≤ 𝜎𝑐𝑝 ≤ 𝑓𝑐   

Given the presence of bent rebars, these are taken into account by considering equivalent stirrups 

characterised by the spacing 𝑠, calculated through equations (67), (68) e (69): 

𝑆𝑠𝑡 =
𝜋
𝜑𝑠𝑡
2

4
𝑛𝑏,𝑠𝑡𝑓𝑦𝑤

𝑖𝑠𝑡
 

(79) 

𝑆𝑏𝑟 =
𝜋
𝜑𝑏𝑟
2

4
𝑛𝑏,𝑏𝑟𝑓𝑦𝑤

𝑖𝑏𝑟
 

(80) 

𝑠 =
𝜋
𝜑𝑠𝑡
2

4
𝑛𝑏,𝑠𝑡𝑓𝑦𝑤

𝑆𝑠𝑡 + 𝑆𝑏𝑟
 

(81) 

where: 

Sst is the slip force per unit length due to stirrups; 

Sbr is the slip force per unit length due to bent rebars; 

ist, φst
, nb,st are the spacing, diameter, and arms of the stirrups; 

ibr, φbr
, nb,br are the spacing, diameter, and arms of the bent rebars; 

The final verification is determined by considering demands and capacities in the two bending planes: 

𝜌𝑉 = (
𝑉𝑦,𝑑

𝑉𝑦,𝑐
)

2

+ (
𝑉𝑧,𝑑
𝑉𝑧,𝑐

)

2

 (82) 

7.5 Seismic vulnerability and impact of the infills presence 

This section examines the results of the analyses conducted to assess the seismic responses of both bare 

and infilled frame structures. Initially, the focus is on the structural behaviour in terms of modal 

response, aiming to highlight variations in vibration period and mode characteristics resulting from the 

inclusion of infills within the frame. Subsequently, dynamic nonlinear analyses are conducted, 

considering the set of ground accelerations introduced in Section 7.4.1. The seismic vulnerabilities of 

the structures are discussed and evaluated in terms of shear-displacement cycles, global failure 

mechanisms, and verification of brittle and ductile behaviours in beams and columns. 
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 Modal Analysis 

Modal analysis is performed on the three structures (bare frame, real infilled frame and full infilled 

frame). Periods and participating masses of the first three modes are presented in Table 59, and the 

corresponding deformed shapes are illustrated in Figure 192. The outcomes reveal the notable influence 

of the infills presence. In particular, the fundamental period of the real infilled frame is approximately 

30% of that observed in the bare frame and results closer to that of the full infilled frame case. Moreover, 

the introduction of infills induces a shift in the characteristics of the vibration modes. Indeed, while the 

fundamental period of the bare frame is essentially towards Y direction, the stiffening effects induced 

by infills in this direction result in the first period of the infilled frames being along the X direction. 

Additionally, the bare frame exhibits rotational components within the 2nd and 3rd periods, with a 

significant participating mass in the X direction. In contrast, the infilled frame is characterised by the 

majority of translational mass in both the X and Y directions within the first two periods, which are 

purely translational, while the third period is purely rotational. Overall, the presence of infills regularises 

the modal response of the structures, even considering the real irregular distribution of infills. However, 

the reduction in periods may lead to higher seismic actions. 

Table 59 Modal analysis results 

Mode Period [s] 
Participating mass [%] 

X Y 

Bare frame 

1 0.869 0.0 75.5 

2 0.585 33.9 0.6 

3 0.499 41.7 0.4 

Real Infilled frame 

1 0.263 86.8 0.0 

2 0.233 0.1 85.4 

3 0.129 0.0 0.9 

Full Infilled frame 

1 0.199 82.7 0.1 

2 0.176 0.1 80.0 

3 0.110 0.0 0.3 
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(a) 

 
 

(b) 

  

(c) 

 
 

Figure 192 Deformed shapes corresponding to fundamental vibration modes: (a) bare frame; (b) real 

infilled frame; (c) full infilled frame 

 Nonlinear dynamic analyses 

Nonlinear dynamic analyses are firstly performed on all the three structures subjecting them to the 

Montenegro Earthquake (records 199, Figure 188). This earthquake is represented by the records with 

the highest Peak Ground Acceleration (PGA) in both directions, among the accelerograms provided in 

section 7.4.1. 

As regards the bare frame, the outcomes highlight a poor structural response, characterised by low 

lateral strength and stiffness, entering the plastic phase right from the beginning of the analysis.  Figure 

193 presents the cycles of base shear versus relative horizontal displacement (calculated as the 

difference between the displacement in a control node at the centre of the top floor and the 
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x 
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corresponding one at the base) in both the X and Y directions. Additionally, Figure 194 provides the 

deformed shapes of the structure at maximum displacements in the two directions (equal to 203 mm 

and 385 mm in X and Y, respectively), revealing notable deformability especially on the third floor. 

The decoupled motion of the last two floors from the first two results in the highly irregular shear-

displacement cycles.  

  
(a) (b) 

Figure 193 Base shear vs. horizontal relative displacement cycles for bare frame in (a) X-direction and (b) 

Y-direction, with the structure subjected to the Montenegro earthquake (records 199). 

(a) 

 

(b) 

 

Figure 194 Deformed shape corresponding to the maximum displacement in X and Y directions 

(Montenegro earthquake-records 199; deformed shape x20) 
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The seismic response dramatically changes when masonry infills are included in the analyses. The 

impact is evident in Figure 195, where the responses of the analysed structures, including the bare frame 

response, are compared in terms of shear base versus relative displacement cycles. The increase in 

strength and stiffness due to the presence of infills is substantial. The real infilled frame attains a 

maximum force that is nearly three times that of the bare frame in both directions. Additionally, the full 

infilled frame remains substantially in the elastic phase throughout the entire duration of the analysis, 

demonstrating significantly higher stiffness and strength compared to the real infilled structure. The 

real infilled frame, however, exhibits very low ductility, evidenced by the sudden collapse of the ground 

floor at around 40% of the time-history, resulting in the termination of the analysis. Remarkably, the 

soft story mechanism, observed in the deformed shape of the structure at the last step reached, reported 

in Figure 196, is triggered by the collapse of several infill macroelements at the ground floor, as depicted 

in Figure 197. 

  
(a) (b) 

Figure 195 Base shear vs. horizontal relative displacement cycles for bare frame (BF), full infilled frame 

(Full-IF) and real infilled frame (Real-IF) in (a) X-direction and (b) Y-direction, with the structures 

subjected to the Montenegro earthquake (records 199) 
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Figure 196 Deformed shape at the last step reached (Montenegro earthquake-records 199; deformed 

shape x20) 

   

    

Figure 197 Axonometric views of macroelements diagonal spring damage at the last step reached on the 

real configuration of infills (Montenegro earthquake-records 199) 

Maximum chord rotation and shear demand/capacity ratios within RC members, along with the 

maximum lateral drifts, are presented in Figure 198 to Figure 202 for comparisons between the bare 

frame and the real infilled frame. 
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Concerning the bare frame, demand/capacity ratios for chord rotation of columns (Figure 198) 

consistently exceed 1 for the second and third-floor elements, in some elements for the first storey, and 

none on the fourth storey. In contrast, for the infilled structure, the values are consistently lower than 

those of the bare frame, and they are significant only on the first floor, with six elements having a ratio 

close to one, while on the other storeys, the ratios are quasi-zero.  

Regarding the shear ratios of columns (Figure 199), the situation is different. On the first floor, every 

element is not verified in both the bare and infilled structure. Remarkably, the highest ratio, equal to 

9.5, is registered within the real infilled-frame, while the maximum ratio recorded within the bare frame 

is 7.9. The ratios generally tend to decrease on the upper floors, with generally lower ratios observed 

for the infilled-frame. 

Lateral drift values (Figure 200) follow the same trend as column chord rotations, with significant drift 

observed only at the ground floor for the infilled frame and notably large values, especially on the 

second and third storey, within the bare frame, reaching up to 5%. 

For the beams, the situation is satisfactory concerning chord rotation ratios (Figure 201), as no elements 

fail to meet verification in both structures. However, several elements are not verified for shear (Figure 

202) in both structures, with verification ratios generally higher for the bare frame. 

Columns chord rotation ratios 

 

  

  

Figure 198 Columns chord rotation verification ratios for bare and real infilled frames (Montenegro 

earthquake-records 199) 
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Columns shear ratios 

 

  

  

Figure 199 Columns shear verification ratios for bare and real infilled frames (Montenegro earthquake-

records 199) 

Lateral drifts 

 

  

  

Figure 200 Lateral drifts for bare and real infilled frames (Montenegro earthquake-records 199) 
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Beams chord rotation ratios 

 

  

  

Figure 201 Beams chord rotation verification ratios for bare and real infilled frames (Montenegro 

earthquake-records 199) 

Beams shear rotation ratios 

 

  

  

Figure 202 Beams shear verification ratios for bare and real infilled frames (Montenegro earthquake-

records 199) 
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The remaining analyses are then conducted by subjecting the bare frame and real infilled frame to the 

rest of the accelerograms, characterised by lower PGAs. For each analysis, the averages of the ratios 

are calculated and reported from Figure 203 to Figure 207, since the final seismic assessment must be 

made on the overall response from all the accelerograms (as outlined in Chapter 7.4.1). Notably, all the 

ratios are significantly lower than those of the Montenegro earthquake alone, as the rest of the 

accelerograms have a significantly lower impact on the seismic responses. 

Specifically, each column results verified for the chord rotation (Figure 203) in both bare and infilled 

frame. However, it is noteworthy that many columns are not verified for shear (Figure 204). Particularly, 

for the infilled frame, the ratios on the first storey are notably high, with a maximum of 6.7 for column 

46, while the maximum value in the bare frame is 3.2 on column 31. Additionally, at the higher storeys, 

many other elements are not verified. 

Regarding the lateral drifts (Figure 205), significant values are observed in the infilled frame only at 

the ground storey (maximum value of 0.6%), while and larger drifts are observed for the bare frame, 

especially on the second and third storeys (maximum value of 1.3%). 

Moreover, similarly to the analysis with the single Montenegro earthquake, the situation for the beams 

is generally better, featuring low ratios for the chord rotation verification (Figure 206), with a maximum 

of 0.2 for the bare frame and 0.04 for the infilled frame. 

However, higher shear values (Figure 207) are observed, and many beams do not meet verification 

criteria in both structures. The maximum shear ratio within the bare frame is 3.54 for beam 31 at the 

third storey, while the maximum ratio for the infilled frame is 1.54 for beam 28 at the first storey. 

 

 

 

 

 

 



 .5 Seismic vulnerability and impact of the infills presence 

255 

Columns chord rotation ratios 

 

 
 

  

Figure 203 Average columns chord rotation verification ratios for bare and real infilled frames 

Columns shear ratios 

 

  

  

Figure 204 Average columns shear verification ratios for bare and real infilled frames 
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Lateral drifts 

 

  

  

Figure 205 Average lateral drifts for bare and real infilled frames. 

Beams chord rotation ratios 

 

  

  

Figure 206 Average beams chord rotation verification ratios for bare and real infilled frames 
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Beams shear ratios 

 

  

  

Figure 207 Average beams shear verification ratios for bare and real infilled frames 

Overall, substantial differences exist in the responses between the bare and infilled frames also in terms 

of local member responses. The primary vulnerabilities of the structure, whether considering the bare 

frame or the real infilled frame, are associated with the shear capacities of the members. Notably, a 

significant concern pertains to the shear response of the columns at the first storey, more within the 

infilled frame than the bare frame, evidenced by the higher shear verification ratios. The irregular infill 

configuration results in a particular weakness at this level, leading to the onset of the soft-storey 

mechanism after the failure of masonry infills and to high force demands on the columns. Situations 

related to the shear response of the columns in the upper storeys can be comparable between the bare 

frame and the infilled frame. On the contrary, regarding the shear response of the beams, the presence 

of infill appears to have a beneficial effect, resulting in lower verification ratios. This is also observed 

in the chord rotation verifications of each member. 

7.6 Summary and conclusions 

In this chapter, the enhanced macroelement strategy has been applied to a realistic scenario involving 

the seismic assessment of an irregular RC structure, designed primarily to withstand vertical loads but 
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not horizontal ones. A detailed 3D numerical description has been developed, incorporating the 

macroelement strategy for the infill modelling, elastic-plastic beam-column elements based on a fibre 

plasticity approach for RC members, and a system of elastic links for floors. To enhance computational 

efficiency, the partitioning approach utilised throughout the thesis has been employed. 

The structure has been evaluated under different conditions, considering it as a bare structure, with the 

actual configuration of infills, and, as a limiting case, with infills completely covering it. These 

configurations have been examined through nonlinear dynamic analyses, considering natural 

spectrumcompatible accelerograms. 

The analysis results have highlighted how the presence of masonry infill significantly affects the 

dynamic response, impacting modal characteristics, shear-displacement curves, global failure 

mechanisms, and member capacities. While masonry infill panels generally have a positive impact on 

the response of infilled frames by increasing the overall strength, this must be considered alongside 

potential structural irregularities arising from an uneven distribution of infills. Indeed, these 

irregularities may, in turn, lead to brittle failure and soft-storey mechanisms, triggered by failures of 

infill panels. 

Therefore, it is emphasised that for an accurate description of the response in existing RC structures not 

originally designed to withstand earthquakes, these components should not be treated merely as non-

structural elements, as commonly practiced in the profession, since they strongly influence the structural 

behaviour. Instead, they must be thoroughly considered in the seismic assessment through the adoption 

of a reliable modeling strategy. The enhanced macroelement modeling represents a valuable tool, 

allowing for the representation of infills within a highly reliable and computationally efficient strategy. 

It is capable of precisely accounting for the various sources of irregularities that may arise due to the 

distribution of infills, such as portions of structures with solid infills, infills with openings of various 

characteristics, or parts with no infills. 
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CHAPTER 8  

CONCLUSIONS AND FUTURE WORK 

 

8.1 Summary 

This thesis was driven by a dual objective: to examine advanced finite element modelling strategies for 

masonry wall structures and to provide a reliable yet efficient tool that can accurately capture the actual 

seismic response of real-sized structures subjected to earthquake loading. The research focused on 

evaluating the responses of both unreinforced masonry (URM) and masonry-infilled frame structures. 

The first part of the work involved a detailed comparison between mesoscale and macroscale 

approaches for representing masonry structures. The aim was to assess their ability to predict the 

hysteretic responses of URM structures under in-plane cyclic loading, with focus on the objective 

calibration of mechanical parameters to evaluate ease, accuracy, and computational demand of the 

modelling strategies. 

Subsequently, advanced strategies were examined for the modelling of masonry-infilled frames under 

horizontal actions, employing a multi-dimensional partitioned strategy. Considerable attention was 

dedicated again to the material characterisation, further assessed through parametric analyses, 

considering the specific features of this structural typology. The influence of openings was also 

examined by assessing openings with varying configurations and dimensions. 

Finally, to provide a more efficient and reliable tool, ensuring an accurate representation of the actual 

response of masonry wall structures, a novel enhanced three-dimensional macroelement was developed. 

A comprehensive validation, covering applications on both URM and masonry-infilled frame 

structures, was carried out. The macroelement strategy was also applied in a real-world scenario, 
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evaluating the seismic vulnerability of a 4-story irregular reinforced-concrete structure designed 

without seismic provisions. 

8.2 Conclusions 

 Mesoscale and macroscale modelling for cyclic analysis of URM structures 

The mesoscale approach proposed in (Macorini and Izzuddin, 2011; Minga et al., 2018) and a 

continuum macroscale approach utilising the concrete damage plasticity material law developed in 

(Chisari et al., 2020), were assessed for their ability to predict the hysteretic response under in-plane 

cyclic loading simulating earthquake actions. The results indicated that, despite its computational 

robustness, the macroscale approach led to widely variable results, while the mesoscale results were 

less scattered, although with a greater computational burden. The main findings are summarised below. 

Regarding the mesoscale approach:  

• it allows for a straightforward calibration, aligning capacity curves (compared with the 

experimental shear-displacement cycles envelopes), load-displacement diagrams (considering 

the completed part of the analyses), and damage progression with experimental results, without 

needs for additional material calibration refinement. 

• it results in low response variability with changes in less-known parameters; 

• it is characterised by a high computational cost, making the analysis of larger structures 

challenging, even with the use of a partitioning strategy. 

Concerning the continuum finite element macroscale modelling: 

• a “standard calibration”, as an initial attempt to calibrate the material parameters, may results 

in simulations significantly distant from experimental outcomes in terms of capacity curve, 

load-displacement cycles, failure mode predictions, and dissipated energy; 

• the variation of not easily quantifiable parameters can substantially impact the response of the 

models; 

• a refined material calibration may lead to a good prediction of the hysteretic behaviour of real 

structures, such as the analysed façade with openings. 

• capturing the S-shaped typical flexural load-displacement cycles of a slender panel is 

challenging;  
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• analyses are moderately time-consuming and exhibit greater numerical robustness compared to 

mesoscale models, enabling the completion of the entire cyclic analyses for panels and façade 

with openings. 

Hence, the utilisation of a macroscale strategy, even with sophisticated material laws, to assess the 

cyclic response of masonry structures in the absence of experimental characterisation at the macroscale 

level—particularly for shear response and determining global tensile strength—should be approached 

cautiously. It is advisable to calibrate a macroscale model by initially employing a more reliable small-

sized mesoscale model, within a multiscale strategy as suggested by Chisari et al. (2020) and Pantò et 

al. (2022). The mesoscale model can be validated based on non-invasive tests on mortar joints (such as 

triplet shear tests or cross tension tests), coupled with compression strength evaluation (which could be 

conducted with a moderately invasive flat-jack test), and subsequently used for the calibration of the 

macroscale model. 

 Advanced modelling of masonry-infilled frame structures 

The response of masonry-infilled frames under monotonic horizontal actions was analysed by adopting 

a multi-dimensional partitioned strategy, employing both mesoscale and continuum macroscale 

approaches for the modelling of the infill.  

The analyses outcomes show that the adopted modelling strategies produce an accurate response when 

compared to experimental outcomes, effectively representing both the global response and the local 

behaviour. The global response, i.e. the capacity curve, is accurately captured with precise predictions 

of initial stiffness, progressive stiffness decrease after frame-infill detachment, maximum strength, and 

post-peak phase. The local behaviour is correctly reproduced, encompassing failure mechanisms in the 

infill (such as diagonal cracking, leading to progressive pre-peak stiffness decrease, and corner 

crushing, resulting in maximum strength attainment), frame (development of plastic hinges), and frame-

infill interfaces (frame-infill detachment resulting from opening and sliding of the edge interfaces, 

leading to the development of diagonal struts).  

Notably, unlike cyclic analyses of URM structures, the utilisation of the continuum macroscale strategy 

for modelling masonry infill allows for the correct prediction of the infilled frame response (noteworthy, 

in this phase, infilled frames were investigated only under horizontal monotonic actions). This is likely 

because the response of the infill, especially its maximum strength, is primarily governed by 

compression strength and is less dependent on tensile strength, which governs more the pre-peak phase. 
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The compressive strength, known experimentally for the vertical direction (perpendicular to the bed-

joint), is utilised in the model to estimate the horizontal compressive strength, with the same value 

adopted for the vertical interfaces of the mesoscale model. As a result, the predictions of the two models 

are consistent, and the corner crushing mechanism is accurately represented. 

Several sensitivity analyses, conducted on both the models, allow to recognise the most influential 

parameters, specifically highlighting the strength parameters for the frame-infill interfaces (cohesion, 

friction coefficient and tensile bond strength) and the compression strength characteristics (compression 

strength and crushing energy) of the infills. 

Finally, it is shown how openings can significantly influence the response of infilled frames, impacting 

the capacity curve by reducing pre-peak stiffness and maximum strength. Furthermore, the presence of 

openings affects the progression of the stress state and damage, which may vary significantly compared 

to the solid infill case. Notably, there is a distinct impact on the response between window infills and 

door infills. Remarkably, the response of window-infilled frames is notably affected by window 

dimensions—larger openings lead to a higher decrease in pre-peak stiffness and maximum strength. 

Conversely, the responses of door-infilled frames show no significant variation with changing opening 

dimensions, maintaining maximum strength consistently close to the residual strength of the solid 

infilled frame. Furthermore, in both cases, the presence of openings affects the decrease of pre-peak 

stiffness more than the decrease of maximum strength. 

 A novel enhanced 3D macrolement for URM and infilled frame structures modelling 

The second part of the thesis regarded the development of an enhanced macro-element model, building 

upon the foundation established by the element introduced in a prior study (Minga et al., 2020). The 

novel macroelement incorporates a more sophisticated constitutive law for both in-plane and out-of-

plane springs, through the implementation of the cyclic hysteretic model of (Tomaževič and Lutman, 

1996), which allows to more realistically capture shear strength and stiffness degradation. Another 

noteworthy advancement involves the definition of the post-peak branch in the skeleton curve, in such 

a way to ensure the mesh objectivity. Furthermore, to realistically predict the actual interaction between 

frame and infill in the infilled frames, the possibility to differentiate mechanical properties between 

external, generally weaker, and internal frame-infill interfaces was introduced. 

The enhanced macroelement underwent comprehensive validation against several experimental 

outcomes, demonstrating its potential to accurately predict structural responses while maintaining high 
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computational efficiency. In-plane tests on URM structures, including two single panels and the façade 

with openings, as well as out-of-plane tests on walls subjected to two-way bending with or without 

openings and vertical loads, were accurately reproduced. The numerical-experimental alignment 

regarding base shear vs. lateral displacement monotonic and cyclic responses, as well as damage 

patterns, was consistently precise. Additionally, a 3D URM model, representing half of a full-scale 

URM building experimentally tested under earthquake loading, underwent nonlinear dynamic analyses. 

The obtained response was accurate and consistent with results from more sophisticated mesoscale and 

macro models, but with significantly lower computational demands. The macroelement strategy was 

also validated for masonry-infilled frame structures, evaluating both solid and perforated infilled 

frames. The approach for infilled frames modelling demonstrated its reliability, effectively capturing 

every typical mechanism and providing excellent simulation of monotonic and cyclic experimental 

tests. 

Given its reliability, the enhanced macroelement strategy was also employed to assess the seismic 

vulnerability of a real 4-story irregular RC existing building, originally not designed to withstand 

earthquake loading. The aim was to examine the influence of the presence of masonry infills on the 

seismic response of the structure. The analysis results highlighted the significant impact of the infills, 

emphasising the importance of properly considering them in the assessment of existing RC frames 

through the utilisation of a reliable modelling strategy. Indeed, the presence of infills may represent a 

significant source of irregularity, potentially triggering detrimental torsional vibration components and 

ultimately leading to dangerous soft-story mechanisms, as observed in the analysis carried out. 

Irregularities can arise from an irregular configuration of masonry infills, as well as from the presence 

of openings. Moreover, even modifications to non-structural element configurations during the service 

life of a building may lead to unexpected structural responses. Therefore, infill presence should always 

be considered and not neglected, as is common in professional practice nowadays. The macroelement 

strategy represents a valuable approach for this aim, given its excellent balance between accuracy and 

efficiency. 

8.3 Future works 

Future developments dealing with the first part of the research, which focused on comparing mesoscale 

and macroscale strategies within cyclic analysis of brick masonry walls, will primarily aim to develop 

further robust multiscale relationships (as already proposed by Chisari et al., 2020, and Pantò et 

al.,2022). The focus is to consider low-invasive material tests whose outcomes enable the calibration of 

small-scale mesoscale models, serving as virtual experimental tests. These, in turn, will enable the 
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calibration of a more computationally efficient macroscale model, applicable to large-sized structures. 

Additionally, conducting further analyses on larger structures within the macroscale framework can 

offer valuable insights into how the variability observed in individual components influences their 

overall hysteretic response. Moreover, the analyses conducted highlighted that the concrete damage 

plasticity model, despite being widely used for masonry structures, has deficiencies that still provide 

opportunities for the development of more accurate models. 

Regarding advanced modelling of masonry-infilled frames, future developments will delve into further 

evaluating the influence of opening presence. This analysis will consider other significant variables, 

including the eccentricity of the openings, the presence of reinforcements, the confinement level of the 

infill, and the ratio between frame stiffness and infill stiffness, as well as the height-to-width ratio of 

the frame.  

The enhanced macroelement strategy, which has demonstrated its great reliability in modelling both 

URM and masonry-infilled frames, can be further deepened and improved. This could include: 

• Further investigation into the relationship between the ultimate displacement of the diagonal 

spring, which defines the post-peak branch, and masonry characteristics. 

• Evaluation of the correlation between interface characteristics and the adopted mesh 

discretisation. 

• Development of a calibration strategy for the out-of-plane spring that is independent of a 

mesoscale model, deemed as virtual test. 

• Implementation of a co-rotational approach to consider geometric nonlinearity, aiming to 

accurately assess the out-of-plane behaviour, especially for slender masonry panels often found 

in masonry infills; this approach would also help to evaluate the crucial interaction between in-

plane and out-of-plane responses, which can have a significant impact under extreme loading 

conditions. 

• In-depth assessment of modelling infills as macroelements, comparing the results with more 

sophisticated mesoscale and continuum macroscale strategies, and evaluating different 

conditions (e.g., position and dimensions of openings, presence of reinforcements, confinement 

level). 

• Further enhancement by exploring the possibility of connecting multiple masonry leaves in 

parallel, particularly beneficial for representing infills with interstitial space. 
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Finally, the conducted analyses demonstrate that considering infills as non-structural elements is 

misleading, resulting in inaccurate predictions of the structural response. In general, this represents 

a point on which the scientific community is increasingly in agreement. Therefore, even from a 

regulatory perspective, a step forward should be taken by making their inclusion in safety 

assessments mandatory. Within this context, the macroelement could offer a valuable approach and 

thus should be considered for implementation in specialised structural software. 
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