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Cavity-mediated thermal control of metal- 
to-insulator transition in 1T-TaS2

Giacomo Jarc1,2, Shahla Yasmin Mathengattil1,2, Angela Montanaro1,2,3, Francesca Giusti1,2, 
Enrico Maria Rigoni1,2, Rudi Sergo2, Francesca Fassioli3,4, Stephan Winnerl5, Simone Dal Zilio6, 
Dragan Mihailovic7, Peter Prelovšek7, Martin Eckstein8 & Daniele Fausti1,2,3 ✉

Placing quantum materials into optical cavities provides a unique platform for 
controlling quantum cooperative properties of matter, by both weak and strong 
light–matter coupling1,2. Here we report experimental evidence of reversible cavity 
control of a metal-to-insulator phase transition in a correlated solid-state material.  
We embed the charge density wave material 1T-TaS2 into cryogenic tunable terahertz 
cavities3 and show that a switch between conductive and insulating behaviours, 
associated with a large change in the sample temperature, is obtained by mechanically 
tuning the distance between the cavity mirrors and their alignment. The large thermal 
modification observed is indicative of a Purcell-like scenario in which the spectral 
profile of the cavity modifies the energy exchange between the material and the 
external electromagnetic field. Our findings provide opportunities for controlling  
the thermodynamics and macroscopic transport properties of quantum materials by 
engineering their electromagnetic environment.

Optical driving with ultrashort pulses has been extensively used to 
dynamically control the properties of complex quantum materials4–9. 
Yet, several theoretical proposals indicate that the control of materials 
functionalities can be obtained by modifying their electromagnetic 
environment, embedding the materials into optical cavities, even 
in the absence of a driving field1,2. Predictions range from enhanced 
superconductivity through cavity-mediated electron pairing10–15, 
cavity control of the competing order between charge density wave 
and superconducting phases16, cavity control of excitons17, enhanced 
ferroelectricity18–20 and cavity control of magnetic orders21. Experi-
mentally, it has been demonstrated that vacuum fields in the strong 
coupling regime1 can change material functionalities as, for example, 
the magneto-transport in two-dimensional materials22, the topologi-
cal protection of the integer quantum Hall effect23 or the magnetic 
order in unconventional superconductors24.

Cavity control of phase transformations in complex systems can be 
achieved by distinct physical mechanisms. On the one hand, the selec-
tive coupling of the cavity modes to the excitations of a given phase can 
renormalize its free energy with respect to that of other ones, thereby 
modifying the temperature at which the phase transition occurs. On 
the other hand, a cavity can reshape the exchange of energy between a 
material and the thermal reservoir of photons in which the material is 
immersed25. By engineering the density of states of the electromagnetic 
environment at the sample position through tunable optical cavities, it 
is possible to modify the absorption and emission of the sample26–29 and, 
in turn, its temperature (Tint). Figure 1a shows the two aforementioned 
cavity-mediated mechanisms.

In this work, we investigate the metal-to-insulator phase transition in 
the transition metal dichalcogenide 1T-TaS2 embedded in low-energy 

terahertz (THz) and sub-THz cryogenic cavities (Fig. 1a). 1T-TaS2 exhib-
its a temperature-dependent charge order that originates from the 
competition of Coulomb repulsion, lattice strain, interlayer hopping 
and Fermi-surface nesting30–32. At ambient temperature, 1T-TaS2 is in 
a nearly commensurate charge density wave (NC-CDW) phase with 
metallic character, featuring hexagonal-shaped polaron domains30,33,34 
forming a David’s star pattern35–37 (Fig. 1c). By lowering the temperature 
below about 180 K, a transition to an insulating commensurate charge 
density wave (C-CDW) state occurs31,38. We note that the free-energy 
landscape of 1T-TaS2 is much more complicated than the simple diagram 
in Fig. 1a: the phase transitions in 1T-TaS2 are several and sensitive to 
the thermal history of the sample. On heating from the C-CDW phase, 
an additional intermediate trigonal (T) phase with in-plane charge 
stripes occurs at around 220 K and persists up to around 280 K, when 
the NC-CDW is re-established39.

THz spectroscopy is a powerful tool for tracking the metal-to- 
insulator transition because it can measure contactless the quasi-static 
dielectric response associated with the presence of conductive 
charges characteristic of a metallic state (see Methods and ref. 3 for 
further details on the experimental set-up). Here we use broadband 
time-domain THz spectroscopy to track the charge order in the sam-
ple for different cavity settings. We demonstrate that a bidirectional 
switch between the metallic and insulating phases can be obtained 
by tuning the cavity length and adjusting the alignment of its mirrors 
while keeping the cryogenic temperature of the sample support and  
mirrors fixed.

A simultaneous measurement of the actual temperature of the sam-
ple inside the cavity (Tint) and THz transmission is not possible. At a 
practical level, the placement of a physical thermometer within the 
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cavity would absorb the THz pulses and make the transmission meas-
urements unfeasible. At a fundamental level, any object placed within 
the optical cavity will perturb the cavity environment and therefore 
the response of the light–matter assembly. For this reason, we have 
designed an experimental protocol in which, for the THz characteriza-
tion, we measure the temperature on the cold-finger support of the 
sample outside of the cavity, denoted as Text (Fig. 1a). This protocol 
enables us to identify an effective critical temperature Tc

eff for the phase 
transition, which is defined as the temperature of the support at which 
the phase transition is observed. In a separate measurement campaign, 
we place a micrometric thermocouple and measure the temperature 
at the sample position for different experimental configurations (with 
and without the sample), which we denote as Tint, while simultaneously 
monitoring the external temperature Text.

THz spectroscopy of 1T-TaS2

Figure 1b shows the THz linear transmission of 1T-TaS2 in free space on 
heating and cooling as a function of the temperature of the sample 
support (Text). This captures the first-order transition between  
the NC-CDW metallic phase and the C-CDW insulating phase. The phase 
transition results in (1) an increase in the low-frequency transmission 
(0.2 THz < ω < 1.5 THz) below the effective critical temperature, which 
is consistent with a transition to an insulating behaviour (Drude- 
like response of free carriers vanishes in the insulating phase40,41); and 
(2) the emergence below Tc

eff  of infrared-active optical phonons at 
1.58 THz, 2.04 THz and 2.35 THz, which are screened by the free 

carriers and, therefore, not visible in the metallic phase (Fig. 1c, inset, 
reports time-domain THz traces representative of the two phases). We 
will use the temperature dependence of the integrated low-frequency 
transmission (0.2 THz < ω < 1.5 THz) as a marker that tracks the charge- 
order dynamics in 1T-TaS2 and hence the metal-to-insulator phase 
transition (Fig. 1c). The low-frequency transmission is directly mapped 
to the evolution of the Drude optical conductivity σ1(ω) representative 
of the free carriers response (Supplementary Information). Analogous 
transition temperatures can be obtained by tracking the temperature 
dependence of the transmission at the phonon frequency (Methods). 
The temperature dependence of the integrated low-frequency trans-
mission (0.2 THz < ω < 1.5 THz) of the material in free space is shown 
in Fig. 1c. The difference between the results obtained on heating and 
cooling the sample in free space marks the hysteresis associated with 
the first-order phase transition. The phase transition in free space 
occurs at Text = 181 K on heating and at 143 K on cooling from the metal-
lic phase. Note that the smooth transition observed can be ascribed to 
the presence of intrinsic inhomogeneities and strain in the system, 
which may smear out the first-order transition42–44 (Methods). The 
effective critical temperature Tc

eff  measured in our set-up differs from 
the literature value31 by about 35 K. This discrepancy is attributed to 
the difference between the internal temperature of the sample (Tint) 
and the temperature of the cold finger of the cryostat (Text), as a con-
sequence of the small thermal conductivity of the silicon nitride mem-
branes holding the 1T-TaS2 sample3. A finite-elements simulation of the 
thermal profile of the membrane is in quantitative agreement with  
the measured temperature shift (Methods).
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Fig. 1 | Mechanisms of cavity control of quantum material states and THz 
characterization of 1T-TaS2 metal-to-insulator transition. a, Schematic of a 
material embedded in the middle of a tunable optical cavity with controllable 
fundamental frequency ωc and alignment. Coupling of the excitations of the 
material with the cavity mode can act on the thermodynamics of the sample in 
two different scenarios. On the one hand, it can renormalize the free energy of 
one material phase with respect to the other (bottom left). On the other hand, 
as a function of ωc the cavity can reshape the emission and absorption of the 
material, subsequently rescaling its local temperature Tint(ωc) with respect to 
the temperature measured on the sample support (Text) (bottom right). b, THz 

linear transmission spectra in free space at different temperatures across 
1T-TaS2 metal-to-insulator transition (temperature scans performed by cooling 
(top) and heating (bottom)). To highlight the phase transition, each spectrum 
has been subtracted from the 280 K THz transmission. c, Temperature 
dependence of the integrated low-frequency transmission (0.2 THz < ω < 1.5 THz), 
marking the metal-to-insulator transition and its hysteresis. Insets: the time- 
domain THz fields are shown for the metallic and the insulating phases, together 
with the illustration of the in-plane lattice modulations characteristic of the 
insulating C-CDW phase and of the metallic NC-CDW phase. a.u., arbitrary units.
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1T-TaS2 characterization in cryogenic THz cavities
Figure 2 shows the THz linear transmission as a function of the 
sample-holder temperature (cooling in Fig. 2a and heating in Fig. 2b) 
of 1T-TaS2 in free space and embedded in the centre of an optical cavity 
with resonant frequency ωc = 11.5 GHz and quality factor Q ≈ 4  
(Methods). The placement of the sample in this cavity results in a 
modification of Tc

eff  for the metal-to-insulator transition, which is 
observed at 136 K on heating and 109  K on cooling. The modification 
of Tc

eff  depends also on the thermal cycle. A change of Tc
eff  of 44 K is 

observed if the critical temperature is approached from the insulating 
state (heating), whereas a shift of 33 K is obtained starting from the 
metallic phase (cooling), resulting in a shrinking of the hysteresis of 
about 11 K. We highlight that Tc

eff  is independent of the input intensity 
of the THz field, which, therefore, acts only as a probe and does not 
introduce a detectable thermal load on the sample (see Supplementary 
Fig. 15 for measurements with different THz field strengths).

Next, we varied the cavity geometry and measured Tc
eff as a function 

of the alignment of the cavity mirrors. We quantify the cavity misalign-
ment as the sum of the misalignment angles of the two cavity mirrors 
Θ with respect to the configuration of the parallel mirrors. The tem-
perature dependence of the low-frequency THz transmission (0.2 THz < 
ω < 1.5 THz integration range) at different mirror alignments is shown 
in Fig. 3a for the temperature scans performed by heating and cooling 
the cold-finger sample holder. Misaligning the mirrors modifies Tc

eff, 
which approaches the free-space value when the cavity is highly mis-
aligned (Fig. 3a). In Fig. 3a (inset), we show that a switch between the 
metallic and the dielectric linear response is obtained at fixed Text by 
solely changing the cavity alignment. As any misalignment of the  
cavity mirrors reduces the photon lifetime within the cavity (and hence 
the quality factor), the sensitivity of Tc

eff not only to the presence of the 
cavity but also to the alignment of the mirrors is suggestive of a 
cavity-mediated effect. This is further supported by the fact that mis-
aligning the cavity mirrors not only changes the effective critical tem-
perature but also increases the hysteresis of the metal-to-insulator 
transition towards its free-space value.

Figure 3b reports the THz transmission as a function of the cavity 
fundamental frequency at a fixed cold-finger temperature (Text = 150 K). 
The results indicate that the cavity-mediated change of Tc

eff  can  

overcome the free-space hysteresis, thus enabling a reversible touch-
less control of the metal-to-insulator phase transition. On reducing 
the distance between the mirrors, we detected the phase transition 
between the metallic and the insulating phases to occur at a cavity 
frequency of 25.0 GHz. This is highlighted in the THz time-domain 
traces of Fig. 3b (insets) by the screening of the infrared-active phonon 
modes of the C-CDW insulating phase. After the system had fully 
switched to the insulating state, we decreased the cavity fundamental 
frequency and detected a switch to the metallic phase at a lower cavity 
frequency (13.6 GHz). This results in the cavity frequency-dependent 
hysteresis highlighted in Fig. 3b.

The detailed dependence of Tc
eff  on the cavity fundamental mode is 

presented in Fig. 4a. We measured the effective transition temperature 
for cavity frequencies ranging from 11.5 GHz to 570 GHz. Importantly, 
the maximum cavity frequency used lies below the frequency of  
the lowest infrared-active mode of the C-CDW phase (1.58 THz as  
shown in Fig. 1c). We made this choice to disentangle possible effects  
because of the coupling to the infrared-active optical phonons of  
the CDW.

Figure 4a summarizes the dependence of the measured Tc
eff (heating 

and cooling) on the cavity resonant frequency. The results indicate a 
non-monotonic trend of Tc

eff as a function of cavity resonant frequency 
with respect to the free-space condition. Whereas long-wavelength 
cavities (up to about 25 GHz) stabilize the nearly commensurate metal-
lic phase, higher energy cavities effectively favour the insulating C-CDW 
phase with respect to the material in free space (represented in Fig. 4 
as the zero-frequency point). Overall, we showed a shift of 75 K by mov-
ing from the lowest energy cavity used in the experiment (11.5 GHz) 
towards the highest energy cavity (570 GHz).

We note that the value of Tc
eff  in the cavity with the lowest frequency 

achievable in our set-up is approximately 30 K below the Tc
eff measured 

in free space (Fig. 4a). This anomalous behaviour cannot be rationalized 
by incoherent radiation heating because of the presence of the mirrors. 
Crucially, the exclusion of an incoherent heating mechanism is con-
firmed by the fact that the dependence of Tc

eff  on the cavity geometry 
is qualitatively similar for measurements with cavity mirrors at differ-
ent temperatures (Supplementary Figs. 4 and 5). This is in contrast 
with a scenario in which thermal radiation is transmitted incoherently 
to the sample (incoherent radiation heating), which would give 
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Fig. 2 | Renormalization of the effective critical temperature of the 
metal-to-insulator phase transition within the cavity. a,b, Temperature- 
dependent THz transmission on cooling (a) and heating (b) for a sample held  
in free space (left) and one placed in the middle of the 11.5-GHz cavity (right).  
c, Comparison of the hysteresis in free space and within the 11.5-GHz cavity 
plotted as the integrated cavity transmission in the range 0.2 THz < ω < 1.5 THz. 

The free-space data have been arbitrarily translated along the horizontal axis to 
overlap with the cavity-integrated transmission. In the cavity, a renormalization 
of the effective critical temperature of 44 K towards lower temperatures is 
measured on heating and 33 K on cooling the sample. This results in a shrinking 
of the effective phase-transition hysteresis of 11 K within the cavity.
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opposite trends with hot and cold cavity mirrors (see finite-elements 
simulation of incoherent radiation heating with hot and cold mirrors 
in Supplementary Figs. 6 and 7 and discussion therein).

Having established that the observed effect cannot be rationalized by 
incoherent radiation heating, in the following we focus on understand-
ing if the observation could be explained by cavity-mediated heating 
or cooling or by a free-energy renormalization (the two scenarios pre-
sented in the introduction, Fig. 1a). To determine whether the cavity 
is influencing the temperature at the sample position (that is, inside 
the cavity), we performed an independent measurement campaign to 
simultaneously measure Tint and Text. To this purpose, a micrometric 
custom-designed Cr–Al junction was used (Methods).

Figure 4b shows, for representative cavity frequencies, the dif-
ference between the temperature measured within the cavity (Tint, 
in thermal contact with the sample) and the temperature of the 
cold finger (Text) as a function of Tint. On changing the cavity mode, 
we showed a non-monotonic trend of the differential temperature 
Tint − Text with respect to the free-space configuration. Whereas lower 
frequency cavities induce coherent heating of the sample, the cou-
pling with higher energy cavity modes decreases the temperature of 
the sample with respect to the free-space conditions. By tracking the 
Text at which Tint = 210 K (nominal critical temperature of 1T-TaS2), we 
showed a non-monotonic trend as a function of the cavity frequency 
(Fig. 4b, inset), which is qualitatively consistent with the observation in  
Fig. 4a.

There are two important aspects: (1) The observed anomalous 
non-monotonic trend of Tint − Text, as well as its dependence on 
the cavity frequency, depends on the presence of the sample (the 
temperature difference is much smaller and monotonic when the  
thermocouple is mounted within the membranes without the sam-
ple) (Supplementary Fig. 1a,b). (2) We repeated the measurements 
with mirrors at 290 K, revealing, apart from a rigid shift, a trend with 
cavity frequency analogous to the one observed with cryogenic  
mirrors (Supplementary Fig. 8). Crucially, a decrease in Tint on clos-
ing the cavity, regardless of the temperature of the mirrors, is incom-
patible with an incoherent radiative scenario and points towards a  
cavity-mediated effect.

In light of the temperature measurements of Fig. 4b, the cavity 
frequency-dependent hysteresis in Fig. 3b can be rediscussed in terms 
of an effective renormalization of the sample temperature in the pres-
ence of the cavity. By keeping fixed the cold-finger temperature (Text), 
the local temperature of the sample (Tint) decreases on increasing the 
cavity frequency (Supplementary Fig. 8). Therefore, closing the cavity 
effectively corresponds to cooling down the sample that is thus driven 
to the insulating state (Fig. 3b, blue curve). The effect is reversed when, 
starting from the insulating state, the cavity frequency is decreased 
(red curve). Closing and opening the cavity, leading to the hysteretic 
behaviour in Fig. 3b, can then be interpreted as an effective change 
in the sample temperature induced by the cavity environment that is 
different in the two phases. Similarly, the alignment dependence of 
Fig. 3a can be linked to a mirror-controlled change in the temperature 
of the cavity-confined material (Supplementary Fig. 9).

Changing the cavity frequency leads not only to a renormalization 
of Tc

eff  but also to an effective shrinking of the hysteresis of the phase 
transition. This is demonstrated in Fig. 4c in which we plot the com-
parison of the phase-transition hysteresis for a low- and high-frequency 
cavity (ωc

low = 16.7 GHz and ωc
high = 337 GHz). The measured changes in 

the effective critical temperature on heating and cooling therefore 
depend not only on the cavity length but also on the thermal history 
of the sample (Supplementary Fig. 2). The observed modification of 
the cavity hysteresis hints at a possible scenario in which the coupling 
between 1T-TaS2 and the cavity modes is the driving force of the effec-
tive renormalization of the transition temperature. This coupling is 
expected to be different in the two phases, displaying a profoundly 
different dielectric response.

Discussion
The cavity-dependent effect on Tc

eff  can be rationalized within a ther-
modynamic picture considering how the free energies of the metallic 
phase (Fm) and of the dielectric phase (Fd) vary with the external tem-
perature for different cavities (Fig. 4d). The crossing temperature 
between the free energies of the two phases sets the critical tempera-
ture of the metal-to-insulator transition. For simplicity, we assume Fd 
to be weakly dependent on temperature and cavity geometry, and 
subsequently consider the temperature dependence of Fm to be respon-
sible for the phase transition. Figure  4d shows the schematic 
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Fig. 3 | Dependence of the effective critical temperature on the cavity 
geometry. a, Dependence of the metal-to-insulator phase transition as a 
function of the cavity alignment for the 11.5-GHz cavity. The hysteresis is 
plotted for each misalignment angle Θ as the integrated low-frequency 
transmission (0.2 THz < ω < 1.5 THz). Inset; THz fields detected at the output  
of the coupled 11.5-GHz cavity at a fixed temperature (Text = 154 K) as a function 
of the mirror alignments. Transition from the dielectric to the metallic 
behaviour is detected passing from the misaligned to the aligned configuration. 
b, Reversible cavity control of the metal-to-insulator transition at fixed external 
temperature (Text = 150 K). The hysteresis as a function of the cavity fundamental 
mode is plotted as the evolution of the integrated low-frequency THz 
transmission (0.2 THz < ω < 1.5 THz). Insets: evolution of the time-domain THz 
fields transmitted for different values of the cavity frequency ranging from 
50.0 GHz to 11.5 GHz (opening cavity case) and from 11.5 GHz to 50.0 GHz 
(closing cavity case), demonstrating the reversible switching between the  
two phases.
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temperature dependence of Fm and Fd in low- and high-frequency 
cavities, consistent with the experimental observation in Fig. 4c.

This thermodynamical picture can be connected to the two proposed 
mechanisms leading to a cavity-induced modification of Tc

eff discussed 
in Fig. 1a. In the first scenario, the coupling of the cavity modes with 
the sample changes the energy spectrum of the collective modes in 
the sample. In this figure, the cavity induces a decrease in the free 
energy of the metallic phase with respect to the insulating phase, result-
ing in an effective shift of the observed transition temperature (Fig. 4d, 
black vertical arrow). The experimental observation would thus suggest 
that lowering the cavity resonance could cause a decrease in the free 
energy of the metallic phase and a reduction in the slope of its tem-
perature dependence, consistent with a cavity-driven shrinking of the 
hysteresis.

To test whether the free-energy scenario is consistent with the experi-
mental trends, we resort to a Dicke-based model with a single-cavity 
mode coupled to a continuum absorption spectrum within the GHz 
spectral range, in which the conductivity measurements suggest an 
increased dielectric response45,46 (Methods). Importantly, under a har-
monic approximation of the solid modes, the free-energy difference 
ΔFm between the light–matter hybrid and the isolated systems can be 
understood solely in terms of the frequency-dependent polarizability of 
the solid, irrespective of the microscopic nature of its collective modes. 
The model indicates that the free energy of the metallic state Fm is low-
ered on lowering the cavity frequency, which is qualitatively consistent 
with the decrease in the effective critical temperature on reducing the 
cavity frequency observed experimentally (Fig. 4a). The coupling to a 
single-cavity mode quantitatively gives only a non-extensive contribu-
tion to the free energy47. The total effect on the free energy depends 

on the phase space of the relevant cavity modes that can be shifted 
within the solid spectrum. Taking into account this phase-space fac-
tor, extremely large couplings would be needed for the free-energy 
changes to explain the observed shifts in the transition temperature 
(see Methods for quantitative estimations).

In the second mechanism shown in Fig. 1a, the cavity controls the 
temperature of the sample and consequently the difference between 
the external temperature (Text) and the sample temperature (Tint). The 
reshaping of the electromagnetic density of the states driven by the 
cavity can induce a change in the emission spectrum of the sample 
and hence its temperature48 (this scenario is represented in Fig. 4d 
as a renormalization of the temperature axis, blue horizontal arrow). 
Shorter cavities move the electromagnetic modes to higher frequencies 
and could effectively decouple the optically active solid modes from 
the external field, analogous to the Purcell effect49. The sample is not 
only in thermal contact with the cold finger through the membranes, 
but it is also in contact with the external photon bath at Tph = 300 K 
(Fig. 1a, bottom right panel). We assume that the thermal transfer from 
the cold finger to the sample depends only on the difference between 
Text and Tint through a cavity-independent thermal coupling constant. 
Conversely, the thermal load on the sample because of the contact with 
the external photon bath is mediated by the cavity through a coupling 
constant depending on the cavity geometry (fundamental frequency ωc 
and quality factor Q) and on the sample dielectric loss within the cavity 
range. To qualitatively illustrate the mechanism, we model the infrared 
spectrum of 1T-TaS2 as a broad continuum absorption band lying in 
the GHz range and use the Purcell-based model to extract an effective 
temperature of the sample Tint(ωc, Q) depending on the cavity geometry 
(Methods). We show that on increasing the cavity frequency—that is, 
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Fig. 4 | Cavity-mediated thermodynamics of the metal-to-insulator phase 
transition in 1T-TaS2. a, Dependence of the effective critical temperature on 
the cavity fundamental frequency of the heating and cooling temperature 
scans. The zero-frequency point represents the effective critical temperature 
measured in free space; the red dashed line indicates the literature critical 
temperature31 for the heating temperature scan and the blue dashed line the 
cooling temperature scan. The error bar associated with each temperature is 
the standard deviation of the effective critical temperatures estimated for 
three consecutive scans. b, Difference between the temperature measured  
on the sample (Tint) and on the cold finger (Text) as a function of the sample 
temperature for different values of the cavity fundamental frequency. 
Temperatures have been measured by heating the sample from the C-CDW 

phase. Inset: the effective critical temperature, defined as the cold-finger 
temperature at which the sample reaches the nominal critical temperature 
Tint = 215 K, as a function of the cavity mode. c, Comparison of the phase- 
transition hysteresis of 1T-TaS2 within a low-frequency cavity (ωc

low = 16.7 GHz) 
and a high-frequency cavity (ωc

high = 337 GHz). d, Schematic temperature 
dependence of the free energy of the metallic (Fm) and the dielectric (Fd) phase 
at the cavity frequencies ωc

low and ωc
high used in c, The activation energy for 

switching the phase is indicated by Δ. The shift of the apparent transition 
temperature could be rationalized with a cavity-mediated renormalization  
of the free energy of the metallic state (black vertical arrow) or with a scaling  
of the sample effective temperature in analogy with the Purcell effect (blue 
horizontal arrow).
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by decoupling the electromagnetic active transitions in the sample 
from the cavity fundamental mode—the cavity induces a cooling of 
the sample, the effective temperature of which (Tint) reaches that of 
the cold finger (Text) at high cavity frequencies (Methods). This trend 
is qualitatively consistent with the effective critical-temperature trend 
observed experimentally with both THz (Fig. 4a) and temperature 
measurements (Fig. 4b).

In contrast to the first scenario, the phase-space restriction is no 
longer valid in this second mechanism (Fig. 1a), in which an open system 
is considered and thermal exchanges between material, cold finger 
and photon bath can happen. This, together with the experimental 
evidence that the cavity can coherently modify the sample temperature 
as a function of the frequency (Fig. 4b), suggests that the Purcell-based 
mechanism may be the dominant effect in the reported observation. 
Nevertheless, it is interesting to note that both mechanisms predict the 
correct dependence of the effective critical temperature on the cavity 
frequency. This may provide a useful guide for future quantitative theo-
ries, which should also take into account the open nature of the system 
as well as the nonlinear interaction between the modes in the solid.

In conclusion, we have demonstrated that the metal-to-insulator 
transition in 1T-TaS2 embedded in low-energy THz cavities can be 
reversibly controlled by the cavity geometry. The evidence points to 
a scenario in which the cavity electrodynamics modifies the effective 
sample temperature. Our results provide a previously unknown con-
trol parameter in the phase diagram of quantum materials and enable 
adjusting the equilibrium collective properties in correlated materials 
by engineering their electromagnetic environment.
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Methods

Experimental details
Experimental set-up. The experimental set-up3 is shown in Extended 
Data Fig. 1a. The cryogenic THz cavity shown in the inset consists of two 
cryo-cooled piezo-controlled semi-reflecting mirrors between which 
the sample is inserted. The movement of both cavity mirrors is ensured 
by three piezo actuators (N472−11V, Physik Instrumente) having a travel 
range of 7 mm and a minimum incremental motion of 50 nm with a  
designed resolution of 5 nm. The mirrors are mounted on copper hold-
ers, and they are cryo-cooled using copper braids directly connected 
to the cold finger of the cryostat. To ensure the tuning of the distance 
of the mirrors at cryogenic temperatures, the piezo actuators are ther-
mally decoupled from the mirror supports. The thermal decoupling 
is realized by placing a PEEK disk between the piezo actuators and the 
mirror holders, on which the piezoelectrics act, and three ceramic cylin-
ders. The chamber shown in Extended Data Fig. 1a (inset) is mounted on 
a flow cryostat with a temperature feedback circuit enabling tempera-
ture scans at fixed cavity lengths. The temperature is read both on the 
sample holder and on the mirror holders. The deviation in temperature 
is less than 1 K for a measurement at a fixed temperature.

The cavity semi-reflecting mirrors were fabricated by evaporating 
a thin bilayer of titanium-gold (2–15 nm) on a 2-mm crystalline quartz 
substrate. We measured the transmission amplitude of a single-cavity 
mirror to be 15% in the THz spectral range of the experiment with no 
apparent spectral features.

The approximately 10-μm thick 1T-TaS2 sample is mounted between 
the two mirrors in a copper sample holder directly connected to the 
cold finger of the cryostat and sealed between two silicon nitride mem-
branes (grown by low-pressure chemical vapour deposition) with a 
window size of 11 × 11 mm2 and a thickness of 2 μm. The membranes are 
supported on a 13 × 13 mm2 silicon frame and do not show any spectral 
dependence in the THz spectral range used.

We used broadband THz spectroscopy to characterize the metal- 
to-insulator transition for different cavity settings. Single-cycle THz 
pulses are generated by the acceleration of the photoinduced carri-
ers in a large-area GaAs-based photoconductive antenna. The pho-
toexcitation is achieved by pumping the photoconductive antenna 
with an ultrashort laser pulse (50 fs pulse duration, 745 nm central 
wavelength, 6 μJ per pulse energy) from a commercial 50-kHz pulsed 
laser + optical parametric amplifier system (Pharos + Orpheus-F, Light 
Conversion). The collimated THz beam emitted is then focused on 
the sample mounted inside the cavity (Extended Data Fig. 1a, inset). 
We estimated the THz spot diameter at the focus position to be about 
1.5 mm, which is smaller than the lateral dimensions of the 1T-TaS2 
crystal (4 mm × 4 mm). The field transmitted through the sample is 
probed by standard electro-optical sampling in a 0.5-mm ZnTe crys-
tal with a weak read-out pulse (50 fs pulse duration, 745 nm central 
wavelength, <100 nJ per pulse energy). We present in Extended Data 
Fig. 1b the measured electric field of the generated THz pulse and its 
calculated Fourier spectrum in Extended Data Fig. 1c. The input field 
is a nearly single-cycle THz pulse with a spectral content up to 6 THz, 
as highlighted in the logarithmic scale plot in Extended Data Fig. 1c 
(inset). We estimated the signal-to-noise of the detected THz field to 
be 4.6 × 104 and a temporal phase stability of less than or equal to 30 fs.

Sample preparation. The single crystals from which flakes are exfoliat-
ed are grown from the elements (purity of Ta = 99.95% and S = 99.999%) 
by the vapour-phase transport method at 850 °C with 1.5 mg cm−3 excess 
S, quenched from the growth temperature to a room temperature water 
bath to retain the 1T polytype.

Single-crystal X-ray diffraction analysis confirms that the pure single 
1T phase is retained after the quench (a = b = 3.357, c = 5.91), with the 
Ta:S composition ratio determined by energy-dispersive X-ray spec-
troscopy to be 33:66 ± 1 atomic %. Scanning tunnelling microscopy 

measurements show rare-earth impurities on the surface-layer con-
tent consistent with the impurity concentrations given by the supplier  
(Alfa Aesar, Merck).

Measurement protocols and data analysis
Characterization of the empty cavity. To estimate the quality factor of 
the cavity, we characterized the response of the empty cavity—that is, 
when the THz field passes through only the silicon nitride membranes 
within the mirrors. The quality factor quantifies the photon lifetime 
inside the cavity and, subsequently, the coupling strength between 
the cavity mode and the targeted material excitation, which is ruled 
by the bare cavity dissipations.

The two cavity mirrors were set parallel to each other and perpen-
dicular to the THz beam by aligning the multiple reflections of the 
pump optical beam, which propagates collinearly with the THz beam.

In Extended Data Fig. 2, we show the time-domain THz field trans-
mitted through the Fabry–Pérot cavity (Extended Data Fig. 2a) and the 
corresponding spectral content (Extended Data Fig. 2b) for three repre-
sentative values of the cavity fundamental mode ωc among the one used 
in the experiment (ωc = 53, 77 and 106 GHz). The cavity transmission 
spectra plotted in Extended Data Fig. 2b were obtained by taking the 
ratio of the Fourier spectrum of the time-domain traces (Extended Data 
Fig. 2a) and the reference free-space spectrum (Extended Data Fig. 1d). 
The cavity transmission spectra exhibit the interference Fabry–Pérot 
modes with a tunable fundamental frequency set by the cavity length.

For the three representative cavities shown in Extended Data Fig. 2, 
we estimated the quality factors Q to be 3.3, 3.6 and 3.5 for the 53-, 77-, 
and 106-GHz cavities, respectively. The quality factors were calculated 
as the ratio of the fundamental cavity frequency and its bandwidth 
defined as the full width at half maximum of the transmission peak of 
the fundamental mode.

This estimation shows that, for all the cavity lengths that we studied, 
the bare quality factor (and hence the incoherent photon losses) can 
be considered independent of the cavity frequency.

Characterization of the sample thermalization time. To show that 
all the measurements have been performed in a stationary regime, 
we estimated the thermalization time of the sample by delaying the 
THz acquisition by different amounts of time. As shown in Extended 
Data Fig. 3, no substantial variation in the effective critical tempera-
ture and the slope of the phase transition occurs for Δt ≥ 2 min. This 
is because all the measured THz traces in the experiment are the 
result of a 20-min integration time at each temperature step with a 
5-min waiting time before the first THz acquisition. Therefore, we 
can safely rule out that the observed inhomogeneous-like feature of 
the phase transition is because of a measurement waiting time less 
than the sample thermalization, and it can be probably ascribed to 
intrinsic inhomogeneities of the sample, which can smear out the 
phase transition43. Another factor that could be responsible for the 
smearing out of the metal-to-insulator transition in single-crystal 
1T-TaS2 samples is substrate strain. Strain plays an important part in 
the metal-to-insulator transition and can shift and broaden the tran-
sition temperature substantially44. Furthermore, when mounted on 
membranes, the homogeneity of the temperature, in particular the 
in-plane one, may also broaden the transition.

Determination of the effective critical temperature. Here we present 
the method used to extract the effective critical temperatures from the 
THz transmission data.

Extended Data Fig. 4a shows the temperature evolution of the inte-
grated low-frequency transmission (0.2 THz < ω < 1.5 THz) associ-
ated with the onset of the metallicity. Extended Data Fig. 4b shows 
the temperature evolution of the transmitted spectral weight around 
the 1.58-THz phonon integrated into the range of 1.53–1.62 THz. This 
integration range corresponds to the phonon bandwidth.
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To estimate the effective critical temperature at each cavity length, 

we interpolated the metallic and phononic temperature responses and 
calculated the derivative of the interpolated curve. The temperature 
derivative obtained for the free-space sample is shown in Extended 
Data Fig. 4a,b (bottom panels) for the metallic and phononic responses, 
respectively.

We set the effective critical temperature of the phase transition (Tc
eff) 

to be the maximum of the derivative of the interpolated curve. The 
error associated with each Tc

eff  is the standard deviation of the effec-
tive critical temperatures estimated for three consecutive scans.  
The robustness of this procedure is validated by the fact that the effec-
tive critical temperatures estimated from the metallic response are 
compatible with those estimated from the phonon spectral response.

Theoretical models
Free-energy picture. We introduce here the phenomenological model 
providing a qualitative estimation of the renormalization of the free 
energy of the metallic NC state due to cavity electrodynamics.

Let us consider a solid with given dielectric properties, characterized 
by the polarizability α(ω), which determines the response of the trans-
verse polarization density to the electric field, ω ε α ω ω( ) = ( ) ( )0P E . The 
polarizability α(ω) is related to the relative dielectric function ε(ω) as 
ε(ω) = 1 + α(ω). A non-zero polarizability implies that there are modes 
in the solid that can hybridize with the electromagnetic field, which in 
turn leads to a change in the free energy when the system is put in the 
cavity. To understand the effect of the cavity on the free energy of the 
system, we evaluate the difference

F F F F∆ = − − (1)tot mat cav

between the total free energy of the coupled system (Ftot) and the free 
energies of the uncoupled solid (Fmat) and of the electromagnetic field 
(Fcav). A key observation is that as long as the solid is approximately 
described by a harmonic theory, ΔF can be determined from the 
knowledge of the experimentally accessible dielectric function alone, 
independent of microscopic details such as the precise nature of the 
electromagnetically active modes. In short, in a harmonic theory, we 
can exactly integrate the modes of the solid, so that the resulting effec-
tive action of the cavity, which then determines ΔF, is given in terms of 
the linear response functions of matter.

We will make a further simplification in line with the present exper-
imental setting and assume that the volume Vm of the solid is small 
compared with the cavity volume V, that is, Vm/V ≪ 1. This approxima-
tion is valid for the experimental setting because the cavities used have 
fundamental frequencies in the low THz region, and the sample thick-
ness is about 10 μm. With this approximation, as shown below, for a 
single-cavity mode with fundamental frequency ωc, the free-energy 
renormalization ΔF due to the light–matter coupling (equation (1)) is 
given by F ω T f ω T∆ ( , ) = ( , )

V
Vc c

m , where

∫f ω T ω α ω ω
b ω T ω b ω T ω

ω ω
( , ) =

1
π

d ″( )
( , ) − ( , )

−
. (2)c 0

∞
c c

c
2 2

In equation (2), b ω T( , ) = (e − 1)ω T/ −1 is the Bose function and α″(ω) is 
the imaginary part of the solid polarizability (dielectric loss).

The change in total free energy ΔF is a thermodynamically extensive 
quantity, which arises from the coupling to a continuum of cavity modes 
with transverse momentum q and a discrete mode index n (Extended 
Data Fig. 5a). For simplicity, instead of summing equation (2) over all 
cavity modes ω ω≡ q nc , , we will first analyse the single-mode result (equa-
tion (2)) for the lowest cavity frequency (ωc = πc/L, where L is the cavity 
length) to understand the qualitative functional dependence of ΔF on 
the temperature and the cavity parameters. To estimate the order of 
magnitude of the total effect of all modes, we will multiply the result 

with a phase-space factor that counts the number of modes Nmodes that 
are affected by the cavity.

To analyse the free-energy renormalization (equation (2)), we 
assume that the solid polarizability α(ω) gives rise to a broad contin-
uum absorption band that can be fitted by the response of a strongly 
damped oscillator:

α ω α
ω ωγ

( ) = (0)
Ω

Ω − − i
, (3)

2

2 2

where Ω corresponds to the central frequency of the mode of the mate-
rial, γ is the linewidth and α(0) is the contribution of the mode to the 
static polarizability. The latter also measures the total spectral weight 
in the absorption band and therefore serves as a phenomenological 
measure of the effective coupling strength. The dielectric loss α″(ω) 
adopted for the estimations is shown in Extended Data Fig. 5b. We set 
a central frequency Ω = 15 GHz and a frequency damping γ = 20 GHz so 
that no significant contribution to the solid dielectric loss is present 
in the THz region (ω > 0.1 THz).

We show in Extended Data Fig. 5c the dependence of the free-energy 
renormalization of the metallic phase (equation (2)) as a function of the 
cavity frequency ωc when the latter is swept through the mode centred 
at Ω. The model indicates that the free energy of the metallic state is 
lowered on lowering the cavity frequency, which is qualitatively consist-
ent with the decrease in the effective critical temperature on reducing 
the cavity frequency observed experimentally. The renormalization of 
the metallic free energy is larger for larger temperatures, indicating 
that it is related to the thermal population of the low-energy mode. We 
stress that the temperature in the experiment is well above Ω. Extended 
Data Fig. 5d shows the free-energy renormalization as a function of 
temperature for different cavity frequencies ωc below and above the 
resonance ωc = Ω. The free energy of the metallic phase is lowered and 
becomes steeper when the cavity frequency is lowered (that is, open-
ing the cavity). This trend is consistent with the interpretation of the 
experimental observation in the main text highlighted in Fig. 4d.

However, the absolute changes in the total free energy are expected 
to be rather small. As mentioned above, the single-mode result 
∆F ω T f ω T( , ) = ( , )

V
Vc c

m  should be integrated over all modes or, for a sim-
ple estimate, multiplied with a phase-space factor Nmodes. If the latter is 
simply taken to account for all modes below a certain cutoff ωcut in a 
volume V, we have N V λ= /modes cut

3 , up to constants of order 1. Therefore, 
the free-energy change N f ω T× ( , )

V
Vmodes c

m  per volume Vm is given by the 
amount f(ωc, T) per volume λcut

3 . The changes of f(ωc, T) on modifying 
the cavity frequency are of the order of α(0)Ω (Extended Data Fig. 5c,d), 
thus corresponding to an energy density α λ(0)Ω/ cut

3 . This value has to 
be compared with the condensation energy density of the phase transi-
tion, which is Q ≈ 6 J mm−3 ≈  3.6 × 1010 eV μm−3 (ref. 50). With Ω in the 
submillielectronvolt range, very large couplings α(0) would be needed, 
even with a cutoff λcut in the optical range (which is an upper bound, as 
optical frequencies are hardly affected by the present cavity setting).

We, therefore, conclude that although the free-energy renormaliza-
tion in the cavity ΔF follows the correct trend (lowering the free energy 
of the nearly commensurate phase as the cavity is opened), it is not 
sufficient to explain the experimental observation. Although it will 
be interesting to investigate future theoretical interpretations that go 
beyond the harmonic theory, this puts more emphasis on the second 
mechanism (Purcell-like effect) discussed in this study.

Finally, let us conclude with the derivation of equation (2). Let 
us start with a general harmonic model in which one mode of the  
electromagnetic field couples to a continuum of modes in the solid. 
The Hamiltonian is a general Dicke-type Hamiltonian:
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where X and Π are the canonical quadratures of the electromagnetic 
field, and pa and xa are the quadratures of the modes in the solid. The 
solid normal modes have frequencies Ωa in the absence of the coupling 
to the cavity field. The electromagnetic field quadrature Π is related 
to the vector potential (which is spatially homogeneous throughout 
the solid) according to the relation

A n
ε V

ˆ = ˆ
1

Π, (5)
0

where V indicates the cavity mode volume and n̂ the polarization direc-
tion. The electric field is connected to the vector potential by the tem-
poral derivative E A= − .̇ The complete square light–matter coupling in 
equation (4), with coupling constants γa, corresponds to a minimal 
coupling of the modes in the solid to the vector potential. The coupling 
between the solid oscillators and the single-cavity mode scales as κγa 
where κ2 = Vm/V is the volume fraction of the cavity filled with the solid. 
Note that, as mentioned above, the final result for ΔF will be expressed 
in terms of the polarizability, so that the detailed choice of the param-
eters Ωa and γa does not enter.

The aim is now to calculate the free-energy difference ΔF within this 
model. Denoting by ηα and ηα

(0) the normal modes energies of the cou-
pled and uncoupled systems, respectively, the free-energy difference 
(equation (1)) is simply given by

∑F
β

∆ =
1

[ln(1 − e ) − ln(1 − e )], (6)
α

βη βη− −α α
(0)

where βln(1 − e )/βη−  is the free energy of an oscillator with frequency η. 
The ηα

2 are given by the eigenvalues of the dynamical matrix D corre-
sponding to the Hamiltonian (equation (4))
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sequence of the coupling with the solid degrees of freedom. We deter-
mine these normal modes perturbatively in the solid volume fraction 
κ2 ≪ 1. The perturbative expansion for the cavity mode (entry 0 in equa-
tion (7)) reads
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whereas for the matter modes, we have
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We can then linearize equation (6) in δη, leading to ∆F κ b η δη= ∑ ( )α α α
2 (0) , 

and insert the perturbative expressions of the cavity (equation (8)) 
and solid (equation (9)) eigenmodes. With some straightforward 
manipulations, this gives the result of equation (2), with the function 
α″(ω) of the form

∑α ω
γ

δ ω δ ω″( ) = π
| |

2 Ω
[ ( − Ω ) − ( + Ω )]. (10)
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a

a
a a
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Finally, we need to confirm that equation (10) is precisely the imag-
inary part of the polarizability within the model of equation (4).  
A simple link is made using the dielectric loss. When the system is  

driven with a time-dependent field, the absorbed energy per volume 
is the time average of E Pt t( )∂ ( )t . With the above definition of the polar-
izability, the loss under a field ∗A t n A A( ) = ˆ ( e + e )ω

ωt
ω

ωt−i i  is

Γ ω ω ε α ω A( ) = 2 ″( )| | . (11)ω
3

0
2

By contrast, in equation (4), we can calculate the energy absorption 
due to a time-dependent classical vector potential, which using equa-
tion (5) is introduced by replacing Vε A tΠ → Π + ( )0 . Fermi’s golden 
rule (or equivalently the Kubo linear response formalism) gives
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with the spectral function

χ ω δ ω δ ω″ ( ) =
π

2Ω
[ ( − Ω ) − ( + Ω )] (13)aa

a
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of the single mode a. Comparing equations (11) and (12) shows that 
equation (10) is the result of the polarizability.

Control of dissipations through cavity electrodynamics. Here we 
discuss the Purcell-like scenario, that is, the mechanism in which the 
observed changes in the effective critical temperature could be related 
to a cavity control of the dissipations, analogous to the Purcell effect. In 
this scenario, the reshaping of the electromagnetic density of states at 
the sample position because of the cavity electrodynamics could result 
in a modification of the thermal load of the sample and subsequently 
of its temperature.

To estimate this effect, we proceed as indicated in Extended Data 
Fig. 6a. The sample is not only in thermal contact with the cold finger 
through the membranes, but it is also in thermal contact with the exter-
nal photon bath at Tph = 300 K. We assume that the thermal transfer from 
the cold finger to the sample depends only on the difference between 
the cold-finger temperature (Text) and the sample effective tempera-
ture (Tint). Conversely, we assume that the thermal load on the sample 
because of the contact with the external photon bath is mediated by the 
cavity, similar to the Purcell effect. With these hypotheses, we can write 
two rate equations describing, respectively, the cavity-independent 
heat flow between the cold finger and the sample:

Q K T T= ( − ) , (14)ext−int ext−int ext int

and the cavity-mediated heat transfer between the sample and the 
external photon bath:

Q ω Q K ω Q T T( , ) = ( , ) ( − ) . (15)ph−int c ph−int c ph int

In the previous equations, Kext−int represents the cavity-independent 
coupling constant between the cold finger and the sample, whereas 
Kph−int(ωc, Q) is the coupling constant between the sample and the 
photon bath, which depends on the cavity geometry—that is, on the 
fundamental frequency ωc and on the quality factor Q.

The coupling constant Kph−int(ωc, Q) between the sample and the pho-
ton bath can be expressed as the joint density of states of the solid 
ρSolid(ω) and of the cavity ρCavity(ωc, Q)(ω), with the latter multiplied 
by the Boltzmann distribution (kB) at the photon-bath temperature 
Tph = 300 K:

∫K ω Q ω ρ ω Q ω ρ ω( , ) = d ( , )( ) ( )e . (16)
ω

k T
ph−int c 0

∞

Cavity c Solid

−
B ph
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Considering a continuum broad mode centred at Ω = 15 GHz and  

with a spectral linewidth γ = 20 GHz (as for the free-energy model 
described in the previous section), the solid density of states associ-
ated with the excitations of the material can be expressed through the 
dielectric loss per unit frequency as

ρ ω
α ω

α
γω

ω γω
( ) =

″( )
Ω

= (0)
Ω

( − Ω ) + ( )
. (17)Solid 2 2 2 2

Conversely, the multimode cavity density of states takes the form
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ω nω γ
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where γcav represents the linewidth of the bare cavity, which is related 
to the quality factor Q by the relation Q = ωc/γcav. The quality factor of 
the empty cavity is set by the experimental conditions (see section 
‘Characterization of the empty cavity’).

In Extended Data Fig. 6b, we present a plot of the solid density of 
state and of the cavity density of states multiplied by the Boltzmann 
distribution at the photon-bath temperature Tph = 300 K.

Under stationary conditions, the thermal flow from the cold fin-
ger to the sample Qext−int equals the cavity-mediated heat transfer 
between the sample and the photon bath Qph−int(ωc, Q), that is, Qext−int +  
Qph−int(ωc, Q) = 0. At equilibrium, we can subsequently calculate an effec-
tive sample temperature Tint(ωc, Q), which takes the form

T ω Q
K ω Q T K T

K ω Q K
( , ) =

( , ) +

( , ) +
. (19)int c

ph−int c ph ext−int ext

ph−int c ext−int

The temperature ratio between the sample and the cold finger  
Tint(ωc, Q)/Text as a function of the cavity fundamental frequency is plot-
ted in Extended Data Fig. 6c for different cold-finger temperatures. We 
stress that the renormalization of the sample effective temperature 
scales with the cavity–solid joint density of states Kph−int(ωc, Q), and 
hence with the total spectral weight within the solid absorption band 
α(0). A larger renormalization of the temperature of the sample is there-
fore expected for a larger oscillator strength of the modes of the solid.

Although the density of states of the electromagnetic field can be 
enhanced inside the optical cavity with respect to free space, poten-
tially enhancing radiative transitions in materials in resonance with 
the cavity, shorter cavities move the electromagnetic modes to higher 
frequencies and could effectively decouple the optically active modes 
of the material from the external field, similar to the Purcell effect.

We note that, on increasing the cavity frequency—that is, by reducing 
the coupling of the electromagnetic active modes from the cavity fun-
damental mode, the model predicts a decrease in the temperature 
ratio Tint(ωc, Q)/Text, consistent with a decrease in the effective tem-
perature of the sample (Fig. 4b). This trend is qualitatively consistent 
with that observed experimentally with THz spectroscopy (Fig. 4a)—
that is, an increase in the effective critical temperature (Tc

eff) on increas-
ing the cavity frequency.

Moreover, on lowering the cavity frequency, the coupling between 
the active optical transitions in the material and light can be enhanced 
within a frequency range, and the cavity may effectively enhance the 
absorption of the external blackbody radiation from the sample51, 
heating the sample with respect to free-space conditions. Our meas-
urements indicate that the cavity frequency range explored in the 
experiments is higher compared with that of the relevant absorption 
modes in the solid.

As highlighted in Extended Data Fig. 6c, the cavity-mediated modifi-
cation of the sample photon-bath dissipations is more efficient at lower 
cold-finger temperatures—that is, when the difference between the 
temperature of the photon thermal bath (Tph) and Text is larger. As the 
phase transition on cooling 1T-TaS2 occurs at a lower temperature with 

respect to the phase transition on heating it, we expect the Purcell-like 
effect to be more efficient in shifting the apparent cooling critical tem-
perature with respect to that of heating. This prediction could justify 
the effective shrinking of the hysteresis observed by sweeping the 
cavity mode from lower to higher frequencies (Fig. 4c).

In Extended Data Fig. 6d, we show that the trend presented in 
Extended Data Fig. 6c is qualitatively independent of the thermal 
coupling constant between the sample and the cold finger Kext−int. A 
change in Kext−int in the cavity frequency range used acts only as a scal-
ing factor of the cavity frequency trend. The results shown in Extended 
Data Fig. 6d have been calculated for a representative cold-finger tem-
perature Text = 80 K.

Last, we point out that the renormalization of the sample effective 
temperature induced by the cavity is more efficient when the thermal 
coupling between the sample and the cold finger is smaller. At very 
high thermal couplings Kext−int, we expect the contribution to the tem-
perature of the sample of the cavity-dependent interaction with the 
photon bath, and hence the renormalization of Tint, to be negligible.

Further studies are needed to provide a quantitative estimate of the 
cavity-dependent total radiative heat load experienced by the sample 
in the optical cavity. An increased sensitivity in this respect could be 
provided by cavity design featuring a better thermal isolation between 
the sample and the cold finger.

Temperature measurements within the cavity
The temperature indicated in all the reported measurements is the 
cold-finger read-out. When performing THZ optical measurements, this 
choice is mandatory because any thermosensitive device introduced 
in the cavity would not only impede the THz transmission but also 
modify the sample environment. By contrast, measuring the actual 
temperature of the sample is crucial to discriminate between the two 
cavity-mediated scenarios that we proposed (see section ‘Theoretical 
models’).

To this aim, we directly measured the temperature—of both the mem-
brane and the sample—in the cavity by sealing a custom-made 20 μm 
Cr–Al junction within the membranes. In Extended Data Fig. 7, we show 
a picture of the thermocouple arrangement within the sample mount. 
Importantly, to not have offsets in the temperature read-out, all the 
wires connecting the junction to the output of the head of the cryostat 
were made of Cr and Al of around 120 μm. The only discontinuity point 
is represented by the gold male–female connectors at the output of the 
sample holder, which, as we verified, give no temperature discrepancy.

We highlight that, in this experimental setting, the THz optical meas-
urements cannot be performed; it is therefore not possible to monitor 
the THz response of the sample as a function of its actual (measured) 
temperature. All the temperature measurements discussed below must 
be then considered a separate characterization of the temperature of 
the sample in a cavity geometry that is nevertheless identical to that 
which is used in all the THz measurements discussed in the paper.

Finite-elements simulations of incoherent heating
To estimate the effect of the incoherent thermal radiation within the 
cavity, we performed finite-elements simulations using the COMSOL 
MULTIPHYSICS software. By simulating the incoherent thermal load at 
the membrane position, we obtained the thermal profile of the mem-
brane for different cavity configurations.

Let us model the membrane as a grey body having emissivity  
ε, reflectivity ρ, absorptivity α and temperature T, and let us assume the 
incoherent radiative properties of the membrane to be fully described 
by these four parameters ε, ρ, α and T. The net inward heat flux Q at a 
certain point x on the surface of the membrane is given by the differ-
ence between the total arriving radiative flux G (irradiation) and the 
total outgoing radiative flux J (radiosity):

Q x G x J x( ) = ( ) − ( ) . (20)



The radiosity J is the sum of the reflected and emitted radiation from 
the membrane and can be described through the Stefan–Boltzmann 
equation as

J x ρG x εσT( ) = ( ) + . (21)4

By imposing that the membrane is in thermodynamical equilibrium 
with the surroundings—that is, the emissivity ε is equal to the absorp-
tivity α—we can rewrite the reflectivity ρ as

α ε ρ= = 1 − . (22)

Thus, the net inward radiative flux of the membrane can be expressed 
only as a function of G, ε and T as

Q x ε G x σT( ) = ( ( ) − ) . (23)4

Equation (23) has been used in COMSOL as a radiation boundary 
condition for the surface of the membrane.

The total surface radiation G includes radiation from both the ambi-
ent surroundings and other surfaces. A generalized equation for the 
irradiative flux is

G x G x F x σT( ) = ( ) + ( ) , (24)m amb amb
4

where Gm is the mutual irradiation arriving from other surfaces in the 
modelled geometry, Tamb = 300 K is the temperature of the surround-
ing environment schematized as a radiative black body and Famb is the 
ambient view factor. The latter parameter describes the portion of the 
view from each point that is covered by ambient conditions. Conversely, 
Gm is determined by the geometry and the local temperatures of the 
surrounding surface boundaries. Including the expression of the irra-
diation G in equation (23), the general expression of the net radiative 
load at the specific point x on the membrane is

Q x ε G x F x σT σT( ) = ( ( ) + ( ) − ) . (25)m amb amb
4 4

This equation has been used by COMSOL to compute the net radia-
tive transfer at each point x on the surface of the membrane. Equa-
tion (25) results in a linear equation system in Q(x) that must be solved 
in parallel with the heat transfer equation for the temperature T :

Q x k T x( ) = − ∇ ( ) (26)2

to extract the thermal profile of the membrane T(x). In equation (26), 
k represents the thermal conductivity of the membrane.

First, we discuss the simulated thermal profile of a single silicon 
nitride membrane held in free space. For simplicity, we assumed a 
two-dimensional circular geometry for the membrane. We imposed 
the boundary conditions to have the edge of the membrane at the same 
temperature as that of the cold finger. The thermal profile along the 
radial coordinate of the free-space membrane will therefore be con-
trolled by the balance between the emissivity ε of the membrane and the 
thermal load due to ambient black body radiation at Tamb = 300 K. For 
the simulations, we set the silicon nitride emissivity at ε = 0.3 (ref. 52) 
supposing no wavelength dependence across the mid-infrared, in which 
the blackbody radiation of the membrane within the temperature range 

(80−300 K) is located. Extended Data Fig. 8 shows the simulated ther-
mal profile of the membrane in free space, together with a cut along 
the radial direction.

We highlight that by setting the cold-finger temperature at the tem-
perature at which the phase transition in 1T-TaS2 is observed in free 
space (Text = 180 K), we can retrieve a temperature in the middle of the 
membrane (and hence at the sample position) corresponding to Tc 
reported in the the literature. The simulation, therefore, confirms 
the assumption that the measured rigid shift of the free-space critical 
temperature (Fig. 1b,c) with respect to that reported in the literature 
has to be attributed to the high thermal impedance of the silicon nitride 
membranes between which the sample is embedded, which does not 
enable them to efficiently re-radiate the ambient blackbody radiation.

As shown in Extended Data Fig. 9, the simulations confirm that the 
incoherent thermal load on the membranes is not significantly influ-
enced by the distance between the cryogenic mirror mounts. This 
further excludes a trivial scenario in which the geometrical variation 
of the cavity mounts screens the ambient radiation and subsequently 
changes the temperature of the membrane.

Data availability
Raw hysteretic curves as a function of the cavity frequency (Fig. 4a) 
as well as the raw single THz scans of Figs. 3b and 4c are provided in 
the Supplementary Information. Further datasets collected for this 
study are available from the corresponding author upon reasonable 
request.
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Extended Data Fig. 1 | Experimental set-up. a. Sketch of the THz time domain 
spectrometer. In the inset, the photograph of the tunable cryogenic cavity 
composed of two cryo-cooled moving mirrors within which the sample is 
embedded. b. Free-space nearly single-cycle THz field employed in the 
experiments detected trough Electro-Optical Sampling (EOS) in a 0.5 mm  

ZnTe crystal. c. Fourier transform of the nearly single-cycle THz field in free 
space. In the inset, the Fourier spectrum is plotted in logarithmic scale to 
highlight the spectral content of the THz field up to ∼ 6 THz. The black dashed 
line in the logarithmic plot indicates the noise level.



Extended Data Fig. 2 | THz characterization of the empty cavity. a. Time domain THz fields measured at the output of the empty cavity for three representative 
cavity frequencies ωc indicated in legend. b. Cavity transmission spectra calculated from the fields shown in a. proving the tunability of the cavity fundamental mode.
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Extended Data Fig. 3 | Dependence of the observed metal-to-insulator 
phase transition on the waiting time. The temperature evolution of the low 
frequency transmission (0.2 THz < ω < 1.5 THz) is plotted for different waiting 
times before starting the THz acquisition.



Extended Data Fig. 4 | Determination procedure of the effective critical 
temperature of the metal-to-insulator transition. a. In the top panel  
the temperature evolution of the integrated low frequency transmission 
(0.2 THz < ω < 1.5 THz integration range) upon heating and cooling (circled 
markers). The solid line is the result of an interpolation. In the lower panel  

the derivative of the interpolated curve whose maximum sets the effective 
critical temperature of the phase transition. b. In the top panel the temperature 
evolution of the integrated 1.58 THz phonon transmission (1.53 THz < ω < 1.62 THz 
integration range) and its interpolation. In the lower panel the derivative of 
the interpolated phonon response across the phase transition.
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Extended Data Fig. 5 | Cavity-induced renormalization of the free energy  
of the metallic phase. a. Free energy model setting. Upper panels: coplanar 
cavity with a thin slab of matter (thickness d) inside a cavity of length L. Lower 
panels: Sketch of the cavity modes dispersion and of the absorption solid band 
(green shaded region centered at ωdiss). As L is increased, modes are pulled 
inside and below the absorption band of the solid. The cavity fundamental 
mode is indicated with ω L( ).c  b. Dielectric loss spectrum α ω″( ) (Ω = 15 GHz, 

γ = 20 GHz) employed for the calculations. The spectrum has been normalized 
by the static contribution to the polarizability α(0). c. Renormalization of the 
metallic free energy ∆Fm as a function of the cavity frequency for different 
temperatures. The cavity frequencies ωc are normalized by Ω = 15 GHz.  
d. Renormalization of the metallic free energy ∆Fm as a function of the 
temperature for different cavity frequencies above and below resonance ω = Ωc .



Extended Data Fig. 6 | Cavity control of sample dissipations. a. Schematic 
representation of the thermal loads on the sample determined by its coupling 
with the cold finger through the cavity-independent factor Kext−int and with the 
photon thermal bath through the cavity-dependent factor K ω Q( , )cph−int .  
b. Density of states of the solid (peaked at the mode frequency Ω) and of the cavity 
(peaked at multiples of the fundamental mode ωc). The cavity density of states 
is multiplied by the Boltzmann distribution at the temperature of the photon 
bath Tph = 300 K. c. Dependence of the temperature ratio T ω Q T( , ) / extcint  as a 

function of the cavity frequency for different temperatures of the cold finger 
Text. The absolute temperature renormalization scales with K ω Q( , )cph−int .  
d. Evolution of the temperature ratio T ω Q T( , ) / extcint  upon tuning the cavity 
frequency for different values of the cavity-independent coupling constant 
Kext −int at a fixed cold finger temperature Text = 80 K. The values of the cavity- 
independent constant Kext−int indicated in the legend have been normalized by 
K ω Q( , )cph−int  evaluated at ω = Ωc .
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Extended Data Fig. 7 | Temperature measurements set-up. Photograph of 
the micrometric Cr-Al junction sealed within the membranes and in thermal 
contact with the sample.



Extended Data Fig. 8 | Finite elements simulation of the membrane’s thermal dissipations in free space. a. Simulated 2D temperature profile of the 
membrane in free space. b. Radial dependence of the membrane’s temperature held in free space. The cold finger temperature has been set at Text = 180 K.
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Extended Data Fig. 9 | Finite elements simulation of membrane’s 
temperature as a function of the mirror mounts position. a. 3D thermal 
profile of the membrane for two representative distances between the mirror 

mounts (13 mm and 1.0 mm). b. Cut of membrane’s thermal profile along the 
radial direction for the two mounts distances presented in a. The cold finger 
temperature has been set at Text = 180 K, as well as the mounts temperature.
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