In light of improving the bioavailability of poorly water-soluble drugs, this work focused on the comparison among different nimesulide formulations resorting to in vitro absorption experiments through everted rat intestine. The performance of a nimesulide ethanol–triacetin solution, an activated system made up by cogrinding nimesulide/polyvinylpyrrolidone and simple solid nimesulide were compared with that of a reference nimesulide solution. Although ethanol—triacetin solution showed a better performance than the solid nimesulide because wettability problems connected with nimesulide were completely zeroed, the activated system showed a better performance than the reference solution one. This was due to the fact that the activated system allowed to overcome both the wettability and solubility problems connected with nimesulide. Moreover, as proved by intestinal pictures taken before and after permeation experiments, we observed the adhesion of polymeric particles to intestinal villi, this giving origin to a thin layer, surrounding the intestine, characterized by a nimesulide concentration higher than that in the release environment bulk. A proper mathematical model, based on Fick’s second law, was developed to model drug absorption in the case of solution and activated system. In this manner, we could calculate nimesulide permeability through the intestinal wall, and we could better define the nature of the above-mentioned thin layer surrounding the intestine. Finally, the mathematical model was used to verify the theoretical correctness of the widely employed technique consisting in data correction for dilution when sample withdrawal and replacement were needed to measure drug concentration in the receiver environment. _2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:540–552, 2004

In vitro nimesulide absorption from different formulations

VOINOVICH, DARIO;GRASSI, Mario
2004-01-01

Abstract

In light of improving the bioavailability of poorly water-soluble drugs, this work focused on the comparison among different nimesulide formulations resorting to in vitro absorption experiments through everted rat intestine. The performance of a nimesulide ethanol–triacetin solution, an activated system made up by cogrinding nimesulide/polyvinylpyrrolidone and simple solid nimesulide were compared with that of a reference nimesulide solution. Although ethanol—triacetin solution showed a better performance than the solid nimesulide because wettability problems connected with nimesulide were completely zeroed, the activated system showed a better performance than the reference solution one. This was due to the fact that the activated system allowed to overcome both the wettability and solubility problems connected with nimesulide. Moreover, as proved by intestinal pictures taken before and after permeation experiments, we observed the adhesion of polymeric particles to intestinal villi, this giving origin to a thin layer, surrounding the intestine, characterized by a nimesulide concentration higher than that in the release environment bulk. A proper mathematical model, based on Fick’s second law, was developed to model drug absorption in the case of solution and activated system. In this manner, we could calculate nimesulide permeability through the intestinal wall, and we could better define the nature of the above-mentioned thin layer surrounding the intestine. Finally, the mathematical model was used to verify the theoretical correctness of the widely employed technique consisting in data correction for dilution when sample withdrawal and replacement were needed to measure drug concentration in the receiver environment. _2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:540–552, 2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1695223
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
social impact