In the paper, a novel technique for the direct torque control (DTC) of an induction motor is proposed, which overcomes the trouble of high torque ripple afflicting the conventional DTC technique. With the novel technique, the inverter voltage vector selected from the switching table is applied for the time interval needed by the torque to reach the upper (or the lower) limit of the band, where the time interval is calculated from a suitable modeling of the torque dynamics. By this approach, the control system emulates the operation of a torque hysteresis controller of analog type since the application time of the inverter voltage vector is dictated by the allowed torque excursion and not by the sampling period. It is shown by experimental results that the technique yields a considerable reduction of the torque ripple. A further and ultimate reduction is obtained by compensating for the delay inherent in the discrete-time operation of the control system. The outcome is that the torque ripple of the motor is constrained within the hysteresis band of the torque controller, for a band of customary value. An ancillary merit of the technique is the almost full elimination of the average torque error inherent in the conventional technique. If the hysteresis band is shrunk, the torque ripple is bound to swing out the band limits. Under this circumstance, an extension of the technique is developed, which helps keep the torque ripple at minimum. To assess the characteristics of the proposed DTC technique, the following quantities: average torque error, rms value of the torque ripple, and inverter switching frequency are measured for different stator flux angular speeds and hysteresis bands of the torque and flux controllers. As a comparison, the same quantities are given for the conventional DTC technique.

Band-Constrained Technique for Direct Torque Control of Indusction Motor

MENIS, ROBERTO
2004-01-01

Abstract

In the paper, a novel technique for the direct torque control (DTC) of an induction motor is proposed, which overcomes the trouble of high torque ripple afflicting the conventional DTC technique. With the novel technique, the inverter voltage vector selected from the switching table is applied for the time interval needed by the torque to reach the upper (or the lower) limit of the band, where the time interval is calculated from a suitable modeling of the torque dynamics. By this approach, the control system emulates the operation of a torque hysteresis controller of analog type since the application time of the inverter voltage vector is dictated by the allowed torque excursion and not by the sampling period. It is shown by experimental results that the technique yields a considerable reduction of the torque ripple. A further and ultimate reduction is obtained by compensating for the delay inherent in the discrete-time operation of the control system. The outcome is that the torque ripple of the motor is constrained within the hysteresis band of the torque controller, for a band of customary value. An ancillary merit of the technique is the almost full elimination of the average torque error inherent in the conventional technique. If the hysteresis band is shrunk, the torque ripple is bound to swing out the band limits. Under this circumstance, an extension of the technique is developed, which helps keep the torque ripple at minimum. To assess the characteristics of the proposed DTC technique, the following quantities: average torque error, rms value of the torque ripple, and inverter switching frequency are measured for different stator flux angular speeds and hysteresis bands of the torque and flux controllers. As a comparison, the same quantities are given for the conventional DTC technique.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1696820
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact