TAR DNA binding protein (TDP43), a highly conserved heterogeneous nuclear ribonucleoprotein, was found to down-regulate splicing of the exon 9 cystic fibrosis transmembrane conductance regulator (CFTR) through specific binding to a UG-rich polymorphic region upstream of the 3′ splice site. Despite the emergence of new information regarding the protein's nuclear localization and splicing regulatory activity, TDP43's role in cells remains elusive. To investigate the function of human TDP43 and its homologues, we cloned and characterized the proteins from Drosophila melanogaster and Caenorhabditis elegans. The proteins from human, fly, and worm show striking similarities in their nucleic acid binding specificity. We found that residues at two different positions, which show a strong conservation among TDP43 family members, are linked to the tight recognition of the target sequence. Moreover, our results suggest that Drosophila TDP43 is comparable to human TDP43 in regulating exon splicing

Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function

ROMANO, MAURIZIO;
2005-01-01

Abstract

TAR DNA binding protein (TDP43), a highly conserved heterogeneous nuclear ribonucleoprotein, was found to down-regulate splicing of the exon 9 cystic fibrosis transmembrane conductance regulator (CFTR) through specific binding to a UG-rich polymorphic region upstream of the 3′ splice site. Despite the emergence of new information regarding the protein's nuclear localization and splicing regulatory activity, TDP43's role in cells remains elusive. To investigate the function of human TDP43 and its homologues, we cloned and characterized the proteins from Drosophila melanogaster and Caenorhabditis elegans. The proteins from human, fly, and worm show striking similarities in their nucleic acid binding specificity. We found that residues at two different positions, which show a strong conservation among TDP43 family members, are linked to the tight recognition of the target sequence. Moreover, our results suggest that Drosophila TDP43 is comparable to human TDP43 in regulating exon splicing
2005
http://www.sciencedirect.com/science/article/pii/S0022283605002044
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1699845
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 162
  • Scopus 288
  • ???jsp.display-item.citation.isi??? 284
social impact