Three-dimensional models of exoinulinase from Bacillus stearothermophilus and endoinulinase from Aspergillus niger were built up by means of homology modeling. The crystal structure of exoinulinase from Aspergillus awamori was used as a template, which is the sole structure of inulinase resolved so far. Docking and molecular dynamics simulations were performed to investigate the differences between the two inulinases in terms of substrate selectivity. The analysis of the structural differences between the two inulinases provided the basis for the explanation of their different regio-selectivity and for the understanding of enzyme-substrate interactions. Surface analysis was performed to point out structural features that can affect the efficiency of enzymes also after immobilization. The computational analysis of the three-dimensional models proved to be an effective tool for acquiring information and allowed to formulate an optimal immobilized biocatalyst even more active that the native one, thus enabling the full exploitation of the catalytic potential of these enzymes.

Endo- and exo-inulinases: enzyme-substrate interaction and rational immobilization

BASSO, ALESSANDRA;SPIZZO, PATRIZIA;FERRARIO, VALERIO;SAVKO, NINA;BRAIUCA, PAOLO;EBERT, CYNTHIA;GARDOSSI, Lucia
2010-01-01

Abstract

Three-dimensional models of exoinulinase from Bacillus stearothermophilus and endoinulinase from Aspergillus niger were built up by means of homology modeling. The crystal structure of exoinulinase from Aspergillus awamori was used as a template, which is the sole structure of inulinase resolved so far. Docking and molecular dynamics simulations were performed to investigate the differences between the two inulinases in terms of substrate selectivity. The analysis of the structural differences between the two inulinases provided the basis for the explanation of their different regio-selectivity and for the understanding of enzyme-substrate interactions. Surface analysis was performed to point out structural features that can affect the efficiency of enzymes also after immobilization. The computational analysis of the three-dimensional models proved to be an effective tool for acquiring information and allowed to formulate an optimal immobilized biocatalyst even more active that the native one, thus enabling the full exploitation of the catalytic potential of these enzymes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2296559
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 36
social impact