The metal content in galaxies provides important information on the physical processes responsible for galaxy formation, but little was known for galaxies at z > 3, when the Universe was less than 15% of its current age. We report on our metallicity survey of galaxies at z > 3 using SINFONI at the VLT. We find that at z > 3, low-mass galaxies obey the same fundamental relation between metallicity, mass and star formation rate as at 0 < z < 2.5; however, at z > 3 massive galaxies deviate from this relation, being more metal-poor. In some of these massive galaxies we can even map the gas metallicity. We find that galaxies at z > 3.3 have regular rotation, though highly turbulent, and inverted abundance gradients relative to local galaxies, with lower abundances near the centre, close to the most active regions of star formation. Overall the results suggest that prominent inflow of pristine gas is responsible for the strong chemical evolution observed in galaxies at z > 3.

AMAZE and LSD: Metallicity and Dynamical Evolution of Galaxies in the Early Universe

MATTEUCCI, MARIA FRANCESCA;
2011-01-01

Abstract

The metal content in galaxies provides important information on the physical processes responsible for galaxy formation, but little was known for galaxies at z > 3, when the Universe was less than 15% of its current age. We report on our metallicity survey of galaxies at z > 3 using SINFONI at the VLT. We find that at z > 3, low-mass galaxies obey the same fundamental relation between metallicity, mass and star formation rate as at 0 < z < 2.5; however, at z > 3 massive galaxies deviate from this relation, being more metal-poor. In some of these massive galaxies we can even map the gas metallicity. We find that galaxies at z > 3.3 have regular rotation, though highly turbulent, and inverted abundance gradients relative to local galaxies, with lower abundances near the centre, close to the most active regions of star formation. Overall the results suggest that prominent inflow of pristine gas is responsible for the strong chemical evolution observed in galaxies at z > 3.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2537747
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact