The problem of multidrug resistance requires the efficient and accurate identification of new classes of antimicrobial agents. Endogenous antimicrobial peptides produced by most organisms are a promising source of such molecules. We have exploited the high conservation of signal sequences in teleost and anuran antimicrobial peptides to search cDNA (expressed sequence tag) databases for likely candidates. Subject sequences were then analysed for the presence of potential antimicrobial peptides based on physicochemical properties (amphipathic helical structure, cationicity) and use of the D-descriptor model to predict the therapeutic index (relation between the minimum inhibitory concentration and the concentration giving 50% haemolysis). This analysis also suggested mutations to probe the role of the primary structure in determining potency and selectivity. Selected sequences were chemically synthesized and the antimicrobial activity of the peptides was confirmed. In particular, a short (21-residue) sequence, likely of sticklefish origin, showed potent activity and it was possible to tune the spectrum of action and/or selectivity by combining three directed mutations. Membrane permeabilization studies on both bacterial and host cells indicate that the mode of action was prevalently membranolytic. This method opens up the possibility for more effective searching of the vast and continuously growing expressed sequence tag databases for novel antimicrobial peptides, which are likely abundant, and the efficient identification of the most promising candidates among them.

Identification of antimicrobial peptides from teleosts and anurans in expressed sequence tag databases using conserved signal sequences.

TESSERA, VALENTINA;GUIDA, FILOMENA;TOSSI, ALESSANDRO
2012-01-01

Abstract

The problem of multidrug resistance requires the efficient and accurate identification of new classes of antimicrobial agents. Endogenous antimicrobial peptides produced by most organisms are a promising source of such molecules. We have exploited the high conservation of signal sequences in teleost and anuran antimicrobial peptides to search cDNA (expressed sequence tag) databases for likely candidates. Subject sequences were then analysed for the presence of potential antimicrobial peptides based on physicochemical properties (amphipathic helical structure, cationicity) and use of the D-descriptor model to predict the therapeutic index (relation between the minimum inhibitory concentration and the concentration giving 50% haemolysis). This analysis also suggested mutations to probe the role of the primary structure in determining potency and selectivity. Selected sequences were chemically synthesized and the antimicrobial activity of the peptides was confirmed. In particular, a short (21-residue) sequence, likely of sticklefish origin, showed potent activity and it was possible to tune the spectrum of action and/or selectivity by combining three directed mutations. Membrane permeabilization studies on both bacterial and host cells indicate that the mode of action was prevalently membranolytic. This method opens up the possibility for more effective searching of the vast and continuously growing expressed sequence tag databases for novel antimicrobial peptides, which are likely abundant, and the efficient identification of the most promising candidates among them.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2558682
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact