The adsorption of metal–phthalocyanine (MPc) layers (M = Fe, Co, Cu) assembled on graphene/Ir(111) is studied by means of temperature-programmed X-ray photoemission spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS). The balance between interaction forces among the organometallic molecules and the underlying graphene gives rise to flat-lying molecular layers, weakly interacting with the underlying graphene. Further MPc layers pile up face-on onto the first layer, up to a few nanometers thickness, as deduced by NEXAFS. The FePc, CoPc, and CuPc multilayers present comparable desorption temperatures, compatible with molecule–molecule interactions dominated by van der Waals forces between the π-conjugated macrocycles. The MPc single layers desorb from graphene/Ir at higher temperatures. The CuPc single layer desorbs at lower temperature than the FePc and CoPc single layers, suggesting a higher adsorption energy of the FePc and CoPc single layers on graphene/Ir with respect to CuPc, with increasing molecule–substrate interaction in the order ECuPc < EFePc ECoPc.

Energetics and Hierarchical Interactions of Metal–Phthalocyanines Adsorbed on Graphene/Ir(111)

BARALDI, Alessandro;
2013-01-01

Abstract

The adsorption of metal–phthalocyanine (MPc) layers (M = Fe, Co, Cu) assembled on graphene/Ir(111) is studied by means of temperature-programmed X-ray photoemission spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS). The balance between interaction forces among the organometallic molecules and the underlying graphene gives rise to flat-lying molecular layers, weakly interacting with the underlying graphene. Further MPc layers pile up face-on onto the first layer, up to a few nanometers thickness, as deduced by NEXAFS. The FePc, CoPc, and CuPc multilayers present comparable desorption temperatures, compatible with molecule–molecule interactions dominated by van der Waals forces between the π-conjugated macrocycles. The MPc single layers desorb from graphene/Ir at higher temperatures. The CuPc single layer desorbs at lower temperature than the FePc and CoPc single layers, suggesting a higher adsorption energy of the FePc and CoPc single layers on graphene/Ir with respect to CuPc, with increasing molecule–substrate interaction in the order ECuPc < EFePc ECoPc.
2013
http://pubs.acs.org/doi/abs/10.1021/la401850v?prevSearch=%255BContrib%253A%2Bbaraldi%255D&searchHistoryKey=
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2716282
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 43
social impact