We study the phases of a Schwarzschild black hole in the Anti-deSitter background geometry. Exploiting fluid/gravity duality, we construct the Maxwell equal area isotherm   in the temperature-entropy plane, in order to eliminate negative heat capacity BHs. The construction we present here is reminiscent of the isobar cut in the pressure-volume plane which eliminates unphysical part of the Van der Walls curves below the critical temperature. Our construction also modifies the Hawking-Page phase transition. Stable BHs are formed at the temperature , while pure radiation persists for . turns out to be below the standard Hawking-Page temperature and there are no unstable BHs as in the usual scenario. Also, we show that, in order to reproduce the correct BH entropy , one has to write a black hole equation of state, that is, , in terms of the geometrical volume In this paper we study the phases of a Schwarzschild black hole in the Anti deSitter background geometry. Exploiting fluid/gravity duality we construct the Maxwell equal area isotherm T=T* in the temperature-entropy plane, in order to eliminate negative heat capacity BHs. The construction we present here is reminiscent of the isobar cut in the pressure-volume plane which eliminates unphysical part of the Van der Walls curves below the critical temperature. Our construction also modifies the Hawking-Page phase transition. Stable BHs are formed at the temperature T > T*, while pure radiation persists for T< T*. T* turns out to be below the standard Hawking-Page temperature and there are no unstable BHs as in the usual scenario. Also, we show that in order to reproduce the correct BH entropy S=A/4, one has to write a black hole equation of state, i.e. P=P(V), in terms of the geometrical volume V=4\pi r^3/3. \end{abstract}

Maxwell’s Equal Area Law and the Hawking-Page Phase Transition

SPALLUCCI, EURO;
2013-01-01

Abstract

We study the phases of a Schwarzschild black hole in the Anti-deSitter background geometry. Exploiting fluid/gravity duality, we construct the Maxwell equal area isotherm   in the temperature-entropy plane, in order to eliminate negative heat capacity BHs. The construction we present here is reminiscent of the isobar cut in the pressure-volume plane which eliminates unphysical part of the Van der Walls curves below the critical temperature. Our construction also modifies the Hawking-Page phase transition. Stable BHs are formed at the temperature , while pure radiation persists for . turns out to be below the standard Hawking-Page temperature and there are no unstable BHs as in the usual scenario. Also, we show that, in order to reproduce the correct BH entropy , one has to write a black hole equation of state, that is, , in terms of the geometrical volume In this paper we study the phases of a Schwarzschild black hole in the Anti deSitter background geometry. Exploiting fluid/gravity duality we construct the Maxwell equal area isotherm T=T* in the temperature-entropy plane, in order to eliminate negative heat capacity BHs. The construction we present here is reminiscent of the isobar cut in the pressure-volume plane which eliminates unphysical part of the Van der Walls curves below the critical temperature. Our construction also modifies the Hawking-Page phase transition. Stable BHs are formed at the temperature T > T*, while pure radiation persists for T< T*. T* turns out to be below the standard Hawking-Page temperature and there are no unstable BHs as in the usual scenario. Also, we show that in order to reproduce the correct BH entropy S=A/4, one has to write a black hole equation of state, i.e. P=P(V), in terms of the geometrical volume V=4\pi r^3/3. \end{abstract}
2013
http://www.hindawi.com/journals/jgrav/2013/525696/
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2731691
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact