Spoke-type interior permanent magnet (IPM) machines are an attractive topology for high performance electric motors, especially designed for vehicle traction applications. In this paper, a special design for a spoke-type IPM motor is presented to enhance motor flux-weakening capability in the operation over a wide speed range. The proposed design consists of a simple and robust mechanical device that includes radially-displaceable rotor yokes, connected to the shaft by means of springs. At high speed, the centrifugal force prevails over the elastic one due to springs, causing the mobile yokes to displace radially and to establish a partial magnetic short circuit between permanent magnets. This increases permanent magnet leakage flux and consequently reduces the air-gap field. As a result, a mechanical flux weakening effect is achieved at high speed, which helps significantly reduce the demagnetizing d-axis current to be injected by the inverter, along with the related copper losses and demagnetization issues. The proposed design is investigated in the paper using an analytical model whose parameters are computed by finite-element analysis (FEA). The effectiveness of the solution being set forth is successfully proven by some testing on a laboratory prototype. Experimental results are compared to analytical predictions showing a satisfactory accordance.

Modeling, Analysis and Testing of a Novel Spoke-Type Interior Permanent Magnet Motor with Improved Flux Weakening Capability

TESSAROLO, ALBERTO;MEZZAROBBA, MARIO;MENIS, ROBERTO
2015-01-01

Abstract

Spoke-type interior permanent magnet (IPM) machines are an attractive topology for high performance electric motors, especially designed for vehicle traction applications. In this paper, a special design for a spoke-type IPM motor is presented to enhance motor flux-weakening capability in the operation over a wide speed range. The proposed design consists of a simple and robust mechanical device that includes radially-displaceable rotor yokes, connected to the shaft by means of springs. At high speed, the centrifugal force prevails over the elastic one due to springs, causing the mobile yokes to displace radially and to establish a partial magnetic short circuit between permanent magnets. This increases permanent magnet leakage flux and consequently reduces the air-gap field. As a result, a mechanical flux weakening effect is achieved at high speed, which helps significantly reduce the demagnetizing d-axis current to be injected by the inverter, along with the related copper losses and demagnetization issues. The proposed design is investigated in the paper using an analytical model whose parameters are computed by finite-element analysis (FEA). The effectiveness of the solution being set forth is successfully proven by some testing on a laboratory prototype. Experimental results are compared to analytical predictions showing a satisfactory accordance.
2015
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7109975&isnumber=7109964
File in questo prodotto:
File Dimensione Formato  
Modeling, Analysis and Testing of a Novel Spoke-Type Interior Permanent Magnet Motor with Improved Flux Weakening Capability.pdf

Accesso chiuso

Descrizione: pdf editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Flux_weakening.pdf

accesso aperto

Descrizione: pdf post-print
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 3.89 MB
Formato Adobe PDF
3.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2829487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 58
social impact