In the present invention nanocomposite materials in form of three-dimensional structure formed by a polymeric matrix consisting of a polysaccharidic composition of neutral or anionic polysaccharides and a branched cationic polysaccharides, in which metallic nanoparticles are uniformly dispersed and stabilized, are described. Using appropriate techniques of gelification or by means of an appropriate dehydration, the nanocomposite materials are three-dimensional matrices having different shapes in hydrated form as hydrogels, or in non-hydrated form. These nanocomposite materials have a broad-spectrum of strong bactericidal activity, but do not show any cytotoxicity. The particular antibacterial properties associated with metallic particle nano-scale and the presence of biological signals on the polymeric chains along with the lack of cytotoxicity may be exploited in developing new-generation biomaterials provided with antimicrobial properties and for many other applications in biomedical, pharmaceutical and food field.

THREE-DIMENSIONAL NANOCOMPOSITE MATERIALS CONSISTING OF A POLYSACCHARIDIC MATRIX AND METALLIC NANOPARTICLES, PREPARATION AND USE THEREOF

DONATI, IVAN;MARSICH, ELEONORA;TRAVAN, Andrea;PAOLETTI, SERGIO
2009-01-01

Abstract

In the present invention nanocomposite materials in form of three-dimensional structure formed by a polymeric matrix consisting of a polysaccharidic composition of neutral or anionic polysaccharides and a branched cationic polysaccharides, in which metallic nanoparticles are uniformly dispersed and stabilized, are described. Using appropriate techniques of gelification or by means of an appropriate dehydration, the nanocomposite materials are three-dimensional matrices having different shapes in hydrated form as hydrogels, or in non-hydrated form. These nanocomposite materials have a broad-spectrum of strong bactericidal activity, but do not show any cytotoxicity. The particular antibacterial properties associated with metallic particle nano-scale and the presence of biological signals on the polymeric chains along with the lack of cytotoxicity may be exploited in developing new-generation biomaterials provided with antimicrobial properties and for many other applications in biomedical, pharmaceutical and food field.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2833586
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact