Several applications utilizing either synchrotron or conventional light sources require fast and efficient pixelated detectors. In order to cover a wide range of experiments, this work investigates the possibility to use InGaAs/InAlAs quantum well devices as photon detectors for a broad range of energies. Owing to their direct, low-energy band gap and high electron mobility, such devices may be used also at room temperature as multi-wavelength sensors from visible light to hard X-rays. Furthermore, internal charge-amplification mechanism can be applied for very low signal levels, while the high carrier mobility allows the design of very fast photon detectors with sub-nanosecond response times.Samples were grown by solid source molecular beam epitaxy on GaAs substrates. Metamorphic In0.75Ga0.25As/ In0.75Al0.25As heterostructures were obtained by relaxing the strain due to the lattice mismatch in the substrate by means of a composition-graded buffer layer. A two-dimensional electron gas forming in an In0.75Ga0.25As quantum well is sandwiched between In0.75Al0.25As barriers and is modulation-doped by a Si δ on its top. The samples have been pixelated by using standard photolithographic techniques. In order to fit commercially available readout chips, a pixelated sensor with pixel size of 172 × 172 μ m2 is currently under development. A small-scale version of the pixelated quantum well sensor has been preliminary tested with 100-fs-wide laser pulses and X-ray synchrotron radiation. The reported results indicate that these sensors respond with 100-ps rise-times to ultra-fast laser pulses. Synchrotron X-ray tests show how these devices exhibit high charge collection efficiencies, which can be imputed to the charge-multiplication effect of the 2D electron gas inside the well.

Fast, multi-wavelength, efficiency-enhanced pixelated devices based on InGaAs/InAlAs quantum-well

GANBOLD, TAMIRAA;ANTONELLI, MATIAS;CUCINI, RICCARDO;CAUTERO, GIUSEPPE;
2015-01-01

Abstract

Several applications utilizing either synchrotron or conventional light sources require fast and efficient pixelated detectors. In order to cover a wide range of experiments, this work investigates the possibility to use InGaAs/InAlAs quantum well devices as photon detectors for a broad range of energies. Owing to their direct, low-energy band gap and high electron mobility, such devices may be used also at room temperature as multi-wavelength sensors from visible light to hard X-rays. Furthermore, internal charge-amplification mechanism can be applied for very low signal levels, while the high carrier mobility allows the design of very fast photon detectors with sub-nanosecond response times.Samples were grown by solid source molecular beam epitaxy on GaAs substrates. Metamorphic In0.75Ga0.25As/ In0.75Al0.25As heterostructures were obtained by relaxing the strain due to the lattice mismatch in the substrate by means of a composition-graded buffer layer. A two-dimensional electron gas forming in an In0.75Ga0.25As quantum well is sandwiched between In0.75Al0.25As barriers and is modulation-doped by a Si δ on its top. The samples have been pixelated by using standard photolithographic techniques. In order to fit commercially available readout chips, a pixelated sensor with pixel size of 172 × 172 μ m2 is currently under development. A small-scale version of the pixelated quantum well sensor has been preliminary tested with 100-fs-wide laser pulses and X-ray synchrotron radiation. The reported results indicate that these sensors respond with 100-ps rise-times to ultra-fast laser pulses. Synchrotron X-ray tests show how these devices exhibit high charge collection efficiencies, which can be imputed to the charge-multiplication effect of the 2D electron gas inside the well.
2015
http://iopscience.iop.org/journal/1748-0221/page/extraproc39
File in questo prodotto:
File Dimensione Formato  
jinst1003.pdf

Accesso chiuso

Descrizione: pdf contributo pubblicato
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 597.5 kB
Formato Adobe PDF
597.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2838227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact