Micro and nanomechanical resonators represent a promising platform for proteins label-free detection because of their extreme sensitivity, fast response and low cost. Micro-pillars are columnar resonators that can be easily arranged in dense arrays of several thousand sensors in a squared mm. To exploit such a large density, however, a method for tracking independently micropillars resonance frequency is required. Here we present a detection method based on CCD imaging and software image analysis, which can measure the resonance frequency of tens of pillars in parallel. Acquiring simultaneously the frequency shift of up to 40 sensors and applying a proper statistical analysis, we were able to overcome the variability of the single measures improving the device sensitivity at low analyte concentration range. As a proof of concept, this method has been tested for the detection of a tumor marker, the Prostate Specific Membrane Antigen (PSMA). Pillars have been functionalized with an antibody against PSMA. The tumor marker (PSMA) has been detected in a range of concentrations between 300 pM and 100 nM, in buffer and in diluted bovine serum. The sensitivity of our method was limited only by the affinity constant of the antigen–antibody recognition. Moreover, this detection technique demonstrated to be effective in the 1–6 nM range, which is the window of PSMA concentration of clinical interest.

Parallel optical read-out of micromechanical pillars applied to prostate specific membrane antigen detection

TOFFOLI, VALERIA;BORIN, DANIELE;CARRATO, SERGIO;LAZZARINO, MARCO
2015-01-01

Abstract

Micro and nanomechanical resonators represent a promising platform for proteins label-free detection because of their extreme sensitivity, fast response and low cost. Micro-pillars are columnar resonators that can be easily arranged in dense arrays of several thousand sensors in a squared mm. To exploit such a large density, however, a method for tracking independently micropillars resonance frequency is required. Here we present a detection method based on CCD imaging and software image analysis, which can measure the resonance frequency of tens of pillars in parallel. Acquiring simultaneously the frequency shift of up to 40 sensors and applying a proper statistical analysis, we were able to overcome the variability of the single measures improving the device sensitivity at low analyte concentration range. As a proof of concept, this method has been tested for the detection of a tumor marker, the Prostate Specific Membrane Antigen (PSMA). Pillars have been functionalized with an antibody against PSMA. The tumor marker (PSMA) has been detected in a range of concentrations between 300 pM and 100 nM, in buffer and in diluted bovine serum. The sensitivity of our method was limited only by the affinity constant of the antigen–antibody recognition. Moreover, this detection technique demonstrated to be effective in the 1–6 nM range, which is the window of PSMA concentration of clinical interest.
2015
Pubblicato
https://www.sciencedirect.com/science/article/pii/S0956566315301214?via=ihub
File in questo prodotto:
File Dimensione Formato  
2015_bab.pdf

Accesso chiuso

Descrizione: articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2840656_2015_bab-PostPrint.pdf

accesso aperto

Descrizione: PostPrint VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.67 MB
Formato Adobe PDF
2.67 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2840656
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact