Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV γ-rays and TeV neutrinos on a timescale of several months. We perform the first systematic search for γ-ray emission in Fermi Large Area Telescope data in the energy range from 100 {MeV} to 300 {GeV} from the ensemble of 147 SNe Type IIn exploding in a dense CSM. We search for a γ-ray excess at each SNe location in a one-year time window. In order to enhance a possible weak signal, we simultaneously study the closest and optically brightest sources of our sample in a joint-likelihood analysis in three different time windows (1 year, 6 months, and 3 months). For the most promising source of the sample, SN 2010jl (PTF 10aaxf), we repeat the analysis with an extended time window lasting 4.5 years. We do not find a significant excess in γ-rays for any individual source nor for the combined sources and provide model-independent flux upper limits for both cases. In addition, we derive limits on the γ-ray luminosity and the ratio of γ-ray-to-optical luminosity ratio as a function of the index of the proton injection spectrum assuming a generic γ-ray production model. Furthermore, we present detailed flux predictions based on multi-wavelength observations and the corresponding flux upper limit at a 95% confidence level (CL) for the source SN 2010jl (PTF 10aaxf).

SEARCH FOR EARLY GAMMA-RAY PRODUCTION IN SUPERNOVAE LOCATED IN A DENSE CIRCUMSTELLAR MEDIUM WITH THE FERMI LAT

BARBIELLINI AMIDEI, GUIDO;LONGO, FRANCESCO;Orlando, E.;
2015-01-01

Abstract

Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV γ-rays and TeV neutrinos on a timescale of several months. We perform the first systematic search for γ-ray emission in Fermi Large Area Telescope data in the energy range from 100 {MeV} to 300 {GeV} from the ensemble of 147 SNe Type IIn exploding in a dense CSM. We search for a γ-ray excess at each SNe location in a one-year time window. In order to enhance a possible weak signal, we simultaneously study the closest and optically brightest sources of our sample in a joint-likelihood analysis in three different time windows (1 year, 6 months, and 3 months). For the most promising source of the sample, SN 2010jl (PTF 10aaxf), we repeat the analysis with an extended time window lasting 4.5 years. We do not find a significant excess in γ-rays for any individual source nor for the combined sources and provide model-independent flux upper limits for both cases. In addition, we derive limits on the γ-ray luminosity and the ratio of γ-ray-to-optical luminosity ratio as a function of the index of the proton injection spectrum assuming a generic γ-ray production model. Furthermore, we present detailed flux predictions based on multi-wavelength observations and the corresponding flux upper limit at a 95% confidence level (CL) for the source SN 2010jl (PTF 10aaxf).
2015
http://iopscience.iop.org/article/10.1088/0004-637X/807/2/169/pdf
File in questo prodotto:
File Dimensione Formato  
search for early gamma.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2842850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 22
social impact