Multiheme cytochromes c (cyts c) are c-type cyts characterized by non-standard structural and spectroscopic properties. The relative disposition of the heme cofactors in the core of these proteins is conserved and they can be classified from their geometry in two main groups. In one group the porphyrin planes are arranged in a perpendicular fashion, while in the other they are parallel. Orientation of the heme groups is a key factor that regulates the intramolecular electron transfer pathway. A 16.5 kDa diheme cyt c, isolated from the bacterium Shewanella baltica OS155 (Sb-DHC), was cloned and expressed in E. coli and its structure was investigated by X-ray crystallography. Using high-resolution data (1.14 Å) collected at ELETTRA (Trieste), the crystal structure, with an orthorhombic cell (a = 40.81, b = 42.97, c = 82.07 Å), was solved using the homologous diheme from Rhodobacter sphaeroides (Rs-DHC) as the initial model. The electron density map of the refined structure (Rfact of 13.8% and Rfree of 15.4%) shows a two domain structure connected by a central unstructured region (N72-G87). The Sb-DHC, like its homologue (Rs-DHC), folds into a new cyt c class: the N-terminal globular domain, with its three α-helices, belongs to class I of c-type cyts, while the C-terminal domain includes a rare π-helix. The metal centre of the c-type heme groups is axially coordinated by two His residues and it is covalently bound to the protein through two Cys bonds.

High-resolution crystal structure of the recombinant diheme cytochrome c from Shewanella baltica (OS155)

DE MARCH, MATTEO;HICKEY, JAMES NEIL;GEREMIA, SILVANO
2015-01-01

Abstract

Multiheme cytochromes c (cyts c) are c-type cyts characterized by non-standard structural and spectroscopic properties. The relative disposition of the heme cofactors in the core of these proteins is conserved and they can be classified from their geometry in two main groups. In one group the porphyrin planes are arranged in a perpendicular fashion, while in the other they are parallel. Orientation of the heme groups is a key factor that regulates the intramolecular electron transfer pathway. A 16.5 kDa diheme cyt c, isolated from the bacterium Shewanella baltica OS155 (Sb-DHC), was cloned and expressed in E. coli and its structure was investigated by X-ray crystallography. Using high-resolution data (1.14 Å) collected at ELETTRA (Trieste), the crystal structure, with an orthorhombic cell (a = 40.81, b = 42.97, c = 82.07 Å), was solved using the homologous diheme from Rhodobacter sphaeroides (Rs-DHC) as the initial model. The electron density map of the refined structure (Rfact of 13.8% and Rfree of 15.4%) shows a two domain structure connected by a central unstructured region (N72-G87). The Sb-DHC, like its homologue (Rs-DHC), folds into a new cyt c class: the N-terminal globular domain, with its three α-helices, belongs to class I of c-type cyts, while the C-terminal domain includes a rare π-helix. The metal centre of the c-type heme groups is axially coordinated by two His residues and it is covalently bound to the protein through two Cys bonds.
2015
http://www.tandfonline.com/loi/tbsd20
File in questo prodotto:
File Dimensione Formato  
De March et. al - J. Bio. St. Dy. 2015 .pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 482.21 kB
Formato Adobe PDF
482.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2849712
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact