Photocatalytic pathways could prove crucial to the sustainable production of fuels and chemicals required for a carbon-neutral society. Electron-hole recombination is a critical problem that has, so far, limited the efficiency of the most promising photocatalytic materials. Here, we show the efficacy of anisotropy in improving charge separation and thereby boosting the activity of a titania (TiO2) photocatalytic system. Specifically, we show that H-2 production in uniform, one-dimensional brookite titania nanorods is highly enhanced by engineering their length. By using complimentary characterization techniques to separately probe excited electrons and holes, we link the high observed reaction rates to the anisotropic structure, which favors efficient carrier utilization. Quantum yield values for hydrogen production from ethanol, glycerol, and glucose as high as 65%, 35%, and 6%, respectively, demonstrate the promise and generality of this approach for improving the photoactivity of semiconducting nanostructures for a wide range of reacting systems.

Engineering titania nanostructure to tune and improve its photocatalytic activity

MONTINI, TIZIANO;FORNASIERO, Paolo;
2016-01-01

Abstract

Photocatalytic pathways could prove crucial to the sustainable production of fuels and chemicals required for a carbon-neutral society. Electron-hole recombination is a critical problem that has, so far, limited the efficiency of the most promising photocatalytic materials. Here, we show the efficacy of anisotropy in improving charge separation and thereby boosting the activity of a titania (TiO2) photocatalytic system. Specifically, we show that H-2 production in uniform, one-dimensional brookite titania nanorods is highly enhanced by engineering their length. By using complimentary characterization techniques to separately probe excited electrons and holes, we link the high observed reaction rates to the anisotropic structure, which favors efficient carrier utilization. Quantum yield values for hydrogen production from ethanol, glycerol, and glucose as high as 65%, 35%, and 6%, respectively, demonstrate the promise and generality of this approach for improving the photoactivity of semiconducting nanostructures for a wide range of reacting systems.
File in questo prodotto:
File Dimensione Formato  
cargnello2016.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
pnas.201524806SI.pdf

Accesso chiuso

Descrizione: Supporting information
Tipologia: Altro materiale allegato
Licenza: Digital Rights Management non definito
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2872936_cargnello2016-Post_print.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2872936
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 105
social impact