A parametric investigation of radiative heat transfer is carried out, including the effects of conjugate heat transfer between fluid and solid media. The thermal radiation is simulated using the P1-model. The numerical model and the thermal coupling strategy, suitable for a transient solver, is described. Such numerical coupling requires that the radiative equation is solved several times at each iteration; hence, the computational cost of the radiative model is a crucial issue. The P1-model is adopted because of its particularly fast computation. First, a collection of benchmark cases is presented and used to carefully validate the radiation model against literature results and to analyse the model prediction limits. Despite the simplicity of the model, it satisfactorily reproduces the thermal radiation effects. Some lack of accuracy is identified in particular cases. Second, a number of benchmark cases are described and adopted to investigate fluid–solid thermal interaction in the presence of radiation. Three cases are designed, to couple radiation with: pure conduction, conduction and forced convection, conduction and natural convection. In all the cases, the surface radiative heat transfer strongly influences the system thermodynamics, leading to a significant increase of the fluid–solid interface temperature. The main non-dimensional numbers, related to the mutual influence of the different heat transfer modes, are introduced and employed in the analyses. A new conduction-radiation parameter is derived in order to study the conductive boundary layer in absence of convective heat transfer.

Numerical simulation of conjugate heat transfer and surface radiative heat transfer using the P1 thermal radiation model: Parametric study in benchmark cases

CINTOLESI, CARLO;PETRONIO, ANDREA;ARMENIO, VINCENZO
2017-01-01

Abstract

A parametric investigation of radiative heat transfer is carried out, including the effects of conjugate heat transfer between fluid and solid media. The thermal radiation is simulated using the P1-model. The numerical model and the thermal coupling strategy, suitable for a transient solver, is described. Such numerical coupling requires that the radiative equation is solved several times at each iteration; hence, the computational cost of the radiative model is a crucial issue. The P1-model is adopted because of its particularly fast computation. First, a collection of benchmark cases is presented and used to carefully validate the radiation model against literature results and to analyse the model prediction limits. Despite the simplicity of the model, it satisfactorily reproduces the thermal radiation effects. Some lack of accuracy is identified in particular cases. Second, a number of benchmark cases are described and adopted to investigate fluid–solid thermal interaction in the presence of radiation. Three cases are designed, to couple radiation with: pure conduction, conduction and forced convection, conduction and natural convection. In all the cases, the surface radiative heat transfer strongly influences the system thermodynamics, leading to a significant increase of the fluid–solid interface temperature. The main non-dimensional numbers, related to the mutual influence of the different heat transfer modes, are introduced and employed in the analyses. A new conduction-radiation parameter is derived in order to study the conductive boundary layer in absence of convective heat transfer.
2017
Pubblicato
http://www.sciencedirect.com/science/article/pii/S0017931016326692
File in questo prodotto:
File Dimensione Formato  
Cintolesi et al..pdf

Open Access dal 09/11/2018

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2895806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 24
social impact