A 6-(2,6-dimethylphenyl)-2-(2,6-diisopropylphenyl)iminopyridine dibromo nickel(II) complex was synthesized, characterized by X-ray diffraction analysis and tested in ethylene polymerization using diethylaluminumchloride as the cocatalyst. Low molecular weight (Mn∼103g mol-1) polyethylene oils were obtained under a variety of reaction conditions. Detailed NMR analysis showed the formation of hyperbranched macromolecules (branching density >100 branches per 1000 carbons) with a high fraction of “branches on branch” and one unsaturation per chain, resulting in polymer features comparable to those of polymers produced by α-diimine Pd(II) catalysts. The DFT model of the catalytic species showed that the ortho-2,6-dimethylphenyl substituent of the pyridine group destabilizes the ethylene coordination to the metal centre but does not encumber both axial coordination site. So the polymerization performance of 1 can be addressed to the catalytic pocket generated by the coordinated ligand that favors both chain transfer and chain walking over propagation.

Synthesis of hyperbranched low molecular weight polyethylene oils by an iminopyridine nickel(ii) catalyst

BALDUCCI, GABRIELE;
2017-01-01

Abstract

A 6-(2,6-dimethylphenyl)-2-(2,6-diisopropylphenyl)iminopyridine dibromo nickel(II) complex was synthesized, characterized by X-ray diffraction analysis and tested in ethylene polymerization using diethylaluminumchloride as the cocatalyst. Low molecular weight (Mn∼103g mol-1) polyethylene oils were obtained under a variety of reaction conditions. Detailed NMR analysis showed the formation of hyperbranched macromolecules (branching density >100 branches per 1000 carbons) with a high fraction of “branches on branch” and one unsaturation per chain, resulting in polymer features comparable to those of polymers produced by α-diimine Pd(II) catalysts. The DFT model of the catalytic species showed that the ortho-2,6-dimethylphenyl substituent of the pyridine group destabilizes the ethylene coordination to the metal centre but does not encumber both axial coordination site. So the polymerization performance of 1 can be addressed to the catalytic pocket generated by the coordinated ligand that favors both chain transfer and chain walking over propagation.
2017
Pubblicato
http://pubs.rsc.org/en/Content/ArticleLanding/2017/PY/C7PY01215B
File in questo prodotto:
File Dimensione Formato  
2017-10-24-published.pdf

Accesso chiuso

Descrizione: articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
c7py01215b1.pdf

Accesso chiuso

Descrizione: Supplementary information
Tipologia: Altro materiale allegato
Licenza: Digital Rights Management non definito
Dimensione 657.08 kB
Formato Adobe PDF
657.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2911608_2017-10-24-published-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri
2911608_c7py01215b1-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 626.01 kB
Formato Adobe PDF
626.01 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2911608
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 34
social impact