Recent studies suggest that a circulating protein called TRAIL (TNF-related apoptosis inducing ligand) may have an important role in the treatment of type 2 diabetes. It has been shown that TRAIL deficiency worsens diabetes and that TRAIL delivery, when it is given before disease onset, slows down its development. The present study aimed at evaluating whether TRAIL had the potential not only to prevent, but also to treat type 2 diabetes. Thirty male C57BL/6J mice were randomized to a standard or a high-fat diet (HFD). After 4 weeks of HFD, mice were further randomized to receive either placebo or TRAIL, which was delivered weekly for 8 weeks. Body weight, food intake, fasting glucose, and insulin were measured at baseline and every 4 weeks. Tolerance tests were performed before drug randomization and at the end of the study. Tissues were collected for further analyses. Parallel in vitro studies were conducted on HepG2 cells and mouse primary hepatocytes. TRAIL significantly reduced body weight, adipocyte hypertrophy, free fatty acid levels, and inflammation. Moreover, it significantly improved impaired glucose tolerance, and ameliorated non-alcoholic fatty liver disease (NAFLD). TRAIL treatment reduced liver fat content by 47% in vivo as well as by 45% in HepG2 cells and by 39% in primary hepatocytes. This was associated with a significant increase in liver peroxisome proliferator-activated receptor (PPAR) γ (PPARγ) co-activator-1 α (PGC-1α) expression both in vivo and in vitro, pointing to a direct protective effect of TRAIL on the liver. The present study confirms the ability of TRAIL to significantly attenuate diet-induced metabolic abnormalities, and it shows for the first time that TRAIL is effective also when administered after disease onset. In addition, our data shed light on TRAIL therapeutic potential not only against impaired glucose tolerance, but also against NAFLD.

TRAIL reduces impaired glucose tolerance and NAFLD in the high-fat diet-fed mouse

Bernardi, Stella
;
Bossi, Fleur;Fabris, Bruno
2018-01-01

Abstract

Recent studies suggest that a circulating protein called TRAIL (TNF-related apoptosis inducing ligand) may have an important role in the treatment of type 2 diabetes. It has been shown that TRAIL deficiency worsens diabetes and that TRAIL delivery, when it is given before disease onset, slows down its development. The present study aimed at evaluating whether TRAIL had the potential not only to prevent, but also to treat type 2 diabetes. Thirty male C57BL/6J mice were randomized to a standard or a high-fat diet (HFD). After 4 weeks of HFD, mice were further randomized to receive either placebo or TRAIL, which was delivered weekly for 8 weeks. Body weight, food intake, fasting glucose, and insulin were measured at baseline and every 4 weeks. Tolerance tests were performed before drug randomization and at the end of the study. Tissues were collected for further analyses. Parallel in vitro studies were conducted on HepG2 cells and mouse primary hepatocytes. TRAIL significantly reduced body weight, adipocyte hypertrophy, free fatty acid levels, and inflammation. Moreover, it significantly improved impaired glucose tolerance, and ameliorated non-alcoholic fatty liver disease (NAFLD). TRAIL treatment reduced liver fat content by 47% in vivo as well as by 45% in HepG2 cells and by 39% in primary hepatocytes. This was associated with a significant increase in liver peroxisome proliferator-activated receptor (PPAR) γ (PPARγ) co-activator-1 α (PGC-1α) expression both in vivo and in vitro, pointing to a direct protective effect of TRAIL on the liver. The present study confirms the ability of TRAIL to significantly attenuate diet-induced metabolic abnormalities, and it shows for the first time that TRAIL is effective also when administered after disease onset. In addition, our data shed light on TRAIL therapeutic potential not only against impaired glucose tolerance, but also against NAFLD.
2018
22-nov-2017
Pubblicato
http://www.clinsci.org/content/132/1/69.long
File in questo prodotto:
File Dimensione Formato  
CS20171221.full.pdf

Open Access dal 06/01/2019

Descrizione: Accepted manuscript
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri
69.full.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
cs20171221_supp1.pdf

Accesso chiuso

Descrizione: Supplementary data
Tipologia: Altro materiale allegato
Licenza: Digital Rights Management non definito
Dimensione 323.93 kB
Formato Adobe PDF
323.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2912717
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact