The application of high-throughput sequencing technologies to non-model organisms has brought new opportunities for the identification of bioactive peptides from genomes and transcriptomes. From this point of view, marine invertebrates represent a potentially rich, yet largely unexplored resource for de novo discovery due to their adaptation to diverse challenging habitats. Bioinformatics analyses of available genomic and transcriptomic data allowed us to identify myticalins, a novel family of antimicrobial peptides (AMPs) from the mussel Mytilus galloprovincialis, and a similar family of AMPs from Modiolus spp., named modiocalins. Their coding sequence encompasses two conserved N-terminal (signal peptide) and C-terminal (propeptide) regions and a hypervariable central cationic region corresponding to the mature peptide. Myticalins are taxonomically restricted to Mytiloida and they can be classified into four subfamilies. These AMPs are subject to considerable interindividual sequence variability and possibly to presence/absence variation. Functional assays performed on selected members of this family indicate a remarkable tissue-specific expression (in gills) and broad spectrum of activity against both Gram-positive and Gram-negative bacteria. Overall, we present the first linear AMPs ever described in marine mussels and confirm the great potential of bioinformatics tools for the de novo discovery of bioactive peptides in non-model organisms.

Myticalins: A novel multigenic family of linear, cationic antimicrobial peptides from marine mussels (Mytilus spp.)

Mardirossian, Mario;Gambato, Stefano;Florian, Fiorella;Tossi, Alessandro;Pallavicini, Alberto
;
Gerdol, Marco
2017-01-01

Abstract

The application of high-throughput sequencing technologies to non-model organisms has brought new opportunities for the identification of bioactive peptides from genomes and transcriptomes. From this point of view, marine invertebrates represent a potentially rich, yet largely unexplored resource for de novo discovery due to their adaptation to diverse challenging habitats. Bioinformatics analyses of available genomic and transcriptomic data allowed us to identify myticalins, a novel family of antimicrobial peptides (AMPs) from the mussel Mytilus galloprovincialis, and a similar family of AMPs from Modiolus spp., named modiocalins. Their coding sequence encompasses two conserved N-terminal (signal peptide) and C-terminal (propeptide) regions and a hypervariable central cationic region corresponding to the mature peptide. Myticalins are taxonomically restricted to Mytiloida and they can be classified into four subfamilies. These AMPs are subject to considerable interindividual sequence variability and possibly to presence/absence variation. Functional assays performed on selected members of this family indicate a remarkable tissue-specific expression (in gills) and broad spectrum of activity against both Gram-positive and Gram-negative bacteria. Overall, we present the first linear AMPs ever described in marine mussels and confirm the great potential of bioinformatics tools for the de novo discovery of bioactive peptides in non-model organisms.
2017
Pubblicato
http://www.mdpi.com/1660-3397/15/8/261/pdf
File in questo prodotto:
File Dimensione Formato  
marinedrugs-15-00261.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 7.63 MB
Formato Adobe PDF
7.63 MB Adobe PDF Visualizza/Apri
marinedrugs-15-00261-s001.pdf

accesso aperto

Descrizione: supplementary material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 335.38 kB
Formato Adobe PDF
335.38 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2918791
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 49
social impact