AIM: During radiotherapy, in patients with implantable cardioverter-defibrillators (ICDs) malfunctions are considered more likely if doses more than 2 Gy reach the ICD site; however, most malfunctions occur with high-energy (>10 MV) radiations, and the risk is less defined using 6-MV linear accelerators. The purpose of the study is to experimentally evaluate the occurrence of malfunctions in ICDs radiated with a 6-MV linear accelerator at increasing photon doses. METHODS: Thirty-two ICDs from all manufacturers (31 explanted and one demo) were evaluated; all devices with a sufficient battery charge underwent multiple radiations with a 6-MV photon beam reaching a cumulative dose at ICD site of 0.5, 1, 2, 3, 5 and 10 Gy and interrogated after every session. All antitachycardia therapies were left enabled; two ICDs were connected to a rhythm simulator (one simulating a complete atrioventricular block without ventricular activity) and visually monitored by external ECG and the ICD programmer during radiation. RESULTS: Thirteen ICDs were excluded before radiation because of battery depletion; after radiation up to the cumulative dose at the cardiac implantable electronic device site of 10 Gy, in the remaining 19 devices, programmation and battery charge remained unchanged and no switch to safety mode was observed; oversensing, pacing inhibition or inappropriate antitachycardia therapy were neither recorded nor visually observed during radiation. CONCLUSION: With a low-energy accelerator, neither malfunctions nor electromagnetic interferences were detected radiating the ICDs at doses usually reaching the ICD pocket during radiotherapy sessions. In this context, magnet application to avoid oversensing and inappropriate therapy seems, therefore, useless.

Radiotherapy and risk of implantable cardioverter-defibrillator malfunctions: experimental data from direct exposure at increasing doses

Zecchin, Massimo;Artico, Jessica;Morea, Gaetano;Severgnini, Mara;Bianco, Elisabetta;De Luca, Antonio;Salvatore, Luca;Milan, Vittorino;Cannatà, Antonio;Sinagra, Gianfranco
2018-01-01

Abstract

AIM: During radiotherapy, in patients with implantable cardioverter-defibrillators (ICDs) malfunctions are considered more likely if doses more than 2 Gy reach the ICD site; however, most malfunctions occur with high-energy (>10 MV) radiations, and the risk is less defined using 6-MV linear accelerators. The purpose of the study is to experimentally evaluate the occurrence of malfunctions in ICDs radiated with a 6-MV linear accelerator at increasing photon doses. METHODS: Thirty-two ICDs from all manufacturers (31 explanted and one demo) were evaluated; all devices with a sufficient battery charge underwent multiple radiations with a 6-MV photon beam reaching a cumulative dose at ICD site of 0.5, 1, 2, 3, 5 and 10 Gy and interrogated after every session. All antitachycardia therapies were left enabled; two ICDs were connected to a rhythm simulator (one simulating a complete atrioventricular block without ventricular activity) and visually monitored by external ECG and the ICD programmer during radiation. RESULTS: Thirteen ICDs were excluded before radiation because of battery depletion; after radiation up to the cumulative dose at the cardiac implantable electronic device site of 10 Gy, in the remaining 19 devices, programmation and battery charge remained unchanged and no switch to safety mode was observed; oversensing, pacing inhibition or inappropriate antitachycardia therapy were neither recorded nor visually observed during radiation. CONCLUSION: With a low-energy accelerator, neither malfunctions nor electromagnetic interferences were detected radiating the ICDs at doses usually reaching the ICD pocket during radiotherapy sessions. In this context, magnet application to avoid oversensing and inappropriate therapy seems, therefore, useless.
2018
Pubblicato
https://journals.lww.com/jcardiovascularmedicine/Abstract/2018/04000/Radiotherapy_and_risk_of_implantable.4.aspx
File in questo prodotto:
File Dimensione Formato  
10.2459@JCM.0000000000000623.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 304.77 kB
Formato Adobe PDF
304.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2920293
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact