The earthquake (Mw 6 from the SHEEC defined by the MDPs) that occurred in the central part of Slovenia on 14 April, 1895, affected a broad region, causing deaths, injuries, and destruction. This event was much studied but not fully explained; in particular, its causative source model is still debated. The aim of this work is to contribute to the identification of the seismogenic source of this destructive event, calculating peak ground velocity values through the use of different ground motion prediction equations (GMPEs) and computing a series of ground motion scenarios based on the result of an inversion work proposed by Jukić in 2009 and on various fault models in the surroundings of Ljubljana: Vič, Želimlje, Borovnica, Vodice, Ortnek, Mišjedolski, and Dobrepolje faults. The synthetic seismograms, at the basis of our computations, are calculated using the multi-modal summation technique and a kinematic approach for extended sources, with a maximum peak ground velocity value of 1 Hz. The qualitative and quantitative comparison of these simulations with the macroseismic intensity database allows us to discriminate between various sources and configurations. The quantitative validation of the seismic source is done using ad hoc ground motion to intensity conversion equations (GMICEs), expressly calculated for this study. This study allows us to identify the most probable causative source model of this event, contributing to the improvement of the seismotectonic knowledge of this region. The candidate fault that has the lowest values of average differences between observed and calculated intensities and chi-squared is a strike slip fault with a toward-north rupture as the Ortnek fault.

The 1895 Ljubljana earthquake: can the intensity data points discriminate which one of the nearby faults was the causative one?

Lara Tiberi
;
Giovanni Costa;Peter Suhadolc
2018-01-01

Abstract

The earthquake (Mw 6 from the SHEEC defined by the MDPs) that occurred in the central part of Slovenia on 14 April, 1895, affected a broad region, causing deaths, injuries, and destruction. This event was much studied but not fully explained; in particular, its causative source model is still debated. The aim of this work is to contribute to the identification of the seismogenic source of this destructive event, calculating peak ground velocity values through the use of different ground motion prediction equations (GMPEs) and computing a series of ground motion scenarios based on the result of an inversion work proposed by Jukić in 2009 and on various fault models in the surroundings of Ljubljana: Vič, Želimlje, Borovnica, Vodice, Ortnek, Mišjedolski, and Dobrepolje faults. The synthetic seismograms, at the basis of our computations, are calculated using the multi-modal summation technique and a kinematic approach for extended sources, with a maximum peak ground velocity value of 1 Hz. The qualitative and quantitative comparison of these simulations with the macroseismic intensity database allows us to discriminate between various sources and configurations. The quantitative validation of the seismic source is done using ad hoc ground motion to intensity conversion equations (GMICEs), expressly calculated for this study. This study allows us to identify the most probable causative source model of this event, contributing to the improvement of the seismotectonic knowledge of this region. The candidate fault that has the lowest values of average differences between observed and calculated intensities and chi-squared is a strike slip fault with a toward-north rupture as the Ortnek fault.
2018
30-mag-2018
Pubblicato
https://link.springer.com/article/10.1007/s10950-018-9743-z?wt_mc=alerts.TOCjournals&utm_source=toc&utm_medium=email&utm_campaign=toc_10950_22_4
File in questo prodotto:
File Dimensione Formato  
Tiberi2018_Article_The1895LjubljanaEarthquakeCanT.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF Visualizza/Apri
10950_2018_9743_MOESM1_ESM.doc

accesso aperto

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 450 kB
Formato Microsoft Word
450 kB Microsoft Word Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2927571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact