We investigated the CNS and skeletal muscle tissue from a woman clinically diagnosed with amyotrophic lateral sclerosis (ALS) at the age of 22. Neuropathologic evaluation showed upper and lower motor neuron loss, corticospinal tract degeneration, and skeletal muscle denervation.Analysis of the patient's DNA revealed a AGT>GGT change resulting in a S375G substitution in the C-terminal region of TDP-43. This variant was previously reported as being benign. Considering the early onset and severity of the disease in this patient, we tested the effects of this genetic variant on TDP-43 localization, pre-mRNA splicing activity, and toxicity, in parallel with the effects on known neighboring disease-associated mutations. In cell lines, expressed in culture, S375G TDP-43 appeared to be more significantly localized in the nucleus and to exert higher toxicity than wild-type TDP-43. Strikingly, a phosphomimic mutant at the same residue (S375E) showed a strong tendency to accumulate in the cytoplasm, especially under stress conditions, and molecular dynamics simulations suggest that phosphorylation of this residue can disrupt TDP-43 intermolecular interactions. The results of the current study highlight the importance of phosphorylation and regulation of TDP-43 nuclear-cytoplasmic shuttling/redistribution, in relation to the pathogenetic mechanisms involved in different forms of ALS. This article is protected by copyright. All rights reserved.

Dysregulation of TDP-43 Intracellular Localization and Early-Onset ALS are Associated with a TARDBP S375G Variant

Romano, Maurizio;Buratti, Emanuele
2018-01-01

Abstract

We investigated the CNS and skeletal muscle tissue from a woman clinically diagnosed with amyotrophic lateral sclerosis (ALS) at the age of 22. Neuropathologic evaluation showed upper and lower motor neuron loss, corticospinal tract degeneration, and skeletal muscle denervation.Analysis of the patient's DNA revealed a AGT>GGT change resulting in a S375G substitution in the C-terminal region of TDP-43. This variant was previously reported as being benign. Considering the early onset and severity of the disease in this patient, we tested the effects of this genetic variant on TDP-43 localization, pre-mRNA splicing activity, and toxicity, in parallel with the effects on known neighboring disease-associated mutations. In cell lines, expressed in culture, S375G TDP-43 appeared to be more significantly localized in the nucleus and to exert higher toxicity than wild-type TDP-43. Strikingly, a phosphomimic mutant at the same residue (S375E) showed a strong tendency to accumulate in the cytoplasm, especially under stress conditions, and molecular dynamics simulations suggest that phosphorylation of this residue can disrupt TDP-43 intermolecular interactions. The results of the current study highlight the importance of phosphorylation and regulation of TDP-43 nuclear-cytoplasmic shuttling/redistribution, in relation to the pathogenetic mechanisms involved in different forms of ALS. This article is protected by copyright. All rights reserved.
2018
21-nov-2018
Pubblicato
https://onlinelibrary.wiley.com/doi/abs/10.1111/bpa.12680
File in questo prodotto:
File Dimensione Formato  
Newell_et_al-2019-Brain_Pathology.pdf

Accesso chiuso

Descrizione: Articolo - free at link: https://onlinelibrary.wiley.com/doi/full/10.1111/bpa.12680
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2933987_Newell_et_al-2019-Brain_Pathology-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2933987
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact