We study a chiral spin liquid wave function defined as a Gutzwiller projected BCS state with a complex pairing function. After projection, spontaneous dimerization is found for any odd but finite number of chains, thus satisfying the Lieb-Schultz-Mattis theorem, whereas for an even number of chains there is no dimerization. The two-dimensional thermodynamic limit is consistently reached for a large number of chains since the dimer order parameter vanishes in this limit. This property clearly supports the possibility of a spin liquid ground state in two dimensions with a gap to all physical excitations and with no broken translation symmetry.

Chiral spin liquid wave function and the Lieb-Schultz-Mattis theorem

Becca, F.;
2003-01-01

Abstract

We study a chiral spin liquid wave function defined as a Gutzwiller projected BCS state with a complex pairing function. After projection, spontaneous dimerization is found for any odd but finite number of chains, thus satisfying the Lieb-Schultz-Mattis theorem, whereas for an even number of chains there is no dimerization. The two-dimensional thermodynamic limit is consistently reached for a large number of chains since the dimer order parameter vanishes in this limit. This property clearly supports the possibility of a spin liquid ground state in two dimensions with a gap to all physical excitations and with no broken translation symmetry.
2003
Pubblicato
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.91.257005
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2939720
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact