As electric vehicles gain acceptance, an increasing number of households consider the possibility of buying the bundle including an electric car, a photovoltaic system, and a battery storage unit. Apart from the attractive environmental benefits, a relevant uncertainty concerns the economic convenience of such a choice. Since many variables play a role, we set up a total cost of ownership model to evaluate whether, and under which conditions, the bundle is cost-competitive relative to buying an electric car only (and charging it from the electrical grid) or a conventional combustion engine car. By combining, for the first time, such an economic model with an energy model and a driving profile model, we find that the degree of electricity self-production used to charge the electric car might be very high, varying from 90% to 62%, depending on the annual distance traveled. The cost of such electricity varies widely and can be lower than the grid electricity price when fiscal incentives are available and for long annual distances traveled. A smart charging practice based on both economic factors and weather forecast can greatly enhance self-sufficiency, i.e., independence from the electrical grid. We estimate that, given the current Italian financial incentives, 10,000 km/year are needed to make the electric car cost-competitive with respect to an equivalent petrol-fueled one. Such threshold increases to more than 25,000 km/year if financial incentives are removed.

Modeling the total cost of ownership of an electric car using a residential photovoltaic generator and a battery storage unit-an Italian case study

Scorrano M.;Danielis R.;Pastore S.;Lughi V.;Massi Pavan A.
2020-01-01

Abstract

As electric vehicles gain acceptance, an increasing number of households consider the possibility of buying the bundle including an electric car, a photovoltaic system, and a battery storage unit. Apart from the attractive environmental benefits, a relevant uncertainty concerns the economic convenience of such a choice. Since many variables play a role, we set up a total cost of ownership model to evaluate whether, and under which conditions, the bundle is cost-competitive relative to buying an electric car only (and charging it from the electrical grid) or a conventional combustion engine car. By combining, for the first time, such an economic model with an energy model and a driving profile model, we find that the degree of electricity self-production used to charge the electric car might be very high, varying from 90% to 62%, depending on the annual distance traveled. The cost of such electricity varies widely and can be lower than the grid electricity price when fiscal incentives are available and for long annual distances traveled. A smart charging practice based on both economic factors and weather forecast can greatly enhance self-sufficiency, i.e., independence from the electrical grid. We estimate that, given the current Italian financial incentives, 10,000 km/year are needed to make the electric car cost-competitive with respect to an equivalent petrol-fueled one. Such threshold increases to more than 25,000 km/year if financial incentives are removed.
2020
Pubblicato
https://www.mdpi.com/1996-1073/13/10/2584
File in questo prodotto:
File Dimensione Formato  
energies-13-02584-v2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 4.54 MB
Formato Adobe PDF
4.54 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2967451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact