The photoionization dynamics of OsO4 and RuO4, chosen as model systems of small-size mononuclear heavy-metal complexes, has been theoretically studied by the time-dependent density functional theory (TDDFT). Accurate experimental measurements of photoionization dynamics as a benchmarking test for the theory are reported for the photoelectron asymmetry parameters of outer valence ionizations of OsO4, measured in the 17-90 eV photon energy range. The theoretical results are in good agreement with the available experimental data. The observed dynamical behavior of partial cross sections and asymmetry parameters has been related to both the coupling to the continuum of discrete excited states, giving strong modulations in the photon energy dependency, and the atomic composition of the initial ionized states, which determines the rate of decay of ionization probability for increasing excitation energies. Overall, an extensive analysis of the photoionization dynamics for valence and core orbitals is presented, showing good agreement with all the available experimental data. This provides confidence for the validity of the TDDFT approach in describing photoionization of heavy transition element compounds, with the perspective of being used for larger systems. Further experimental work is suggested for RuO4 to gather evidence of the sensitivity of the theoretical method to the nature of the metal atom.

Photoionization Dynamics of the Tetraoxo Complexes OsO4 and RuO4

Toffoli D.
;
Decleva P.;Salvador F.;Dri C.;Cautero G.;
2020-01-01

Abstract

The photoionization dynamics of OsO4 and RuO4, chosen as model systems of small-size mononuclear heavy-metal complexes, has been theoretically studied by the time-dependent density functional theory (TDDFT). Accurate experimental measurements of photoionization dynamics as a benchmarking test for the theory are reported for the photoelectron asymmetry parameters of outer valence ionizations of OsO4, measured in the 17-90 eV photon energy range. The theoretical results are in good agreement with the available experimental data. The observed dynamical behavior of partial cross sections and asymmetry parameters has been related to both the coupling to the continuum of discrete excited states, giving strong modulations in the photon energy dependency, and the atomic composition of the initial ionized states, which determines the rate of decay of ionization probability for increasing excitation energies. Overall, an extensive analysis of the photoionization dynamics for valence and core orbitals is presented, showing good agreement with all the available experimental data. This provides confidence for the validity of the TDDFT approach in describing photoionization of heavy transition element compounds, with the perspective of being used for larger systems. Further experimental work is suggested for RuO4 to gather evidence of the sensitivity of the theoretical method to the nature of the metal atom.
2020
Pubblicato
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c00683
File in questo prodotto:
File Dimensione Formato  
acs.inorgchem.0c00683.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11368_2971452_print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2971452
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact