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Abstract: The HNF1A transcription factor, implicated in the regulation of pancreatic beta cells, as
well as in glucose and lipid metabolism, is responsible for type 3 maturity-onset diabetes of the
young (MODY3). HNF1A is also involved in increased susceptibility to polygenic forms of diabetes,
such as type 2 diabetes (T2D) and gestational diabetes (GD), while its possible role in type 1 diabetes
(T1D) is not known. In this study, 277 children and adolescents with T1D and 140 healthy controls
were recruited. The following SNPs in HNF1A gene were selected: rs1169286, rs1169288, rs7979478,
and rs2259816. Through linear or logistic regression analysis, we analyzed their association with
T1D susceptibility and related clinical traits, such as insulin dose-adjusted glycated hemoglobin
A1c (IDAA1c) and glycated hemoglobin (HbA1c). We found that rs1169286 was associated with
IDAA1c and HbA1c values (p-value = 0.0027 and p-value = 0.0075, respectively), while rs1169288
was associated with IDAA1c (p-value = 0.0081). No association between HNF1A SNPs and T1D
development emerged. In conclusion, our findings suggest for the first time that HNF1A variants
may be a risk factor for beta cell function and glycaemic control in T1D individuals.

Keywords: HNFA1 gene; beta cell function; glycaemic control; HbA1c

1. Introduction

HNF1A gene underlies the development of one of the most common forms of mono-
genic maturity-onset diabetes of the young (MODY), known as MODY3, a type of auto-
somal dominant diabetes with early onset. This rare type of diabetes is characterized by
impaired insulin secretion due to mutations in a transcription factor involved in beta cell
differentiation and function [1,2].

The HNF1A gene was also involved in the development of multifactorial forms of
diabetes, probably affecting beta cell function. Variants in this gene were reported to
contribute, for example, to increased susceptibility to type 2 Diabetes (T2D) [3,4] and
gestational diabetes (GD) [5–7].
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Generally, different HNF1A mutations lead to MODY3 diabetes than those involved in
T2D and GD susceptibility. In MODY3, HNF1A Single Nucleotide Polymorphism (SNPs)
act in the development of the disease already in heterozygosis by the need for sufficient
levels of protein with a dominant negative effect of the mutant allele [8,9], whereas, in
the T2D and GD susceptibility, HNF1A SNPs act in homozygosity, only partially affecting
HNF1A function [10].

T1D is a polygenic form of diabetes, an autoimmune multifactorial disorder with
impaired insulin production due to pancreatic beta cell destruction [11]. To date, there
are numerous genes known to be involved in the predisposition to the development of
T1D [12], but no effect of the HNFA1 gene is known. Moreover, very few studies have
already reported a possible role in T1D of other genes involved in the development of rarest
forms of MODY, namely NeuroD1 (MODY6), ABCC8 (MODY12), and KNCJ11(MODY13)
genes [13–15]. In addition to T1D susceptibility, Blasetti et al. [15] also found an association
between rs5210 SNP in the KCNJ11 gene and clinical features of T1D, such as BMI at onset
and insulin requirement. The authors also observed higher C-peptide at onset, suggesting a
degree of insulin resistance in rs5210 carrier and speculating on the similarity between T1D
and T2D. To our knowledge, no other studies on the possible influence of MODY genes on
clinical outcomes of T1D have been conducted. Nevertheless, the known impact of HNFA1
mutations on pancreatic beta cells makes it reasonable to presume that polymorphisms
in this gene may also be associated with key components in T1D pathogenesis, such as
hyperglycaemia and beta cell function.

Therefore, in the present work, we investigated the association of common genetic
variants in the HNF1A gene in young T1D individuals with T1D susceptibility and clinical
traits related to beta cell function and glycaemic control. Specifically, we used HbA1c as
a measure of glycaemic control, while IDAA1c was used as a marker of beta cell residual
function [16–18].

2. Materials and Methods
2.1. Participants

For this study, we recruited 277 T1D individuals at Diabetes Units of IRCCS Burlo
Garofolo (Trieste, Italy), Regina Margherita Children’s Hospital (Torino, Italy), University
Medical Center (Ljubljana, Slovenia), IRCCS San Raffaele (Milano, Italy) and Santa Chiara
Hospital (Trento, Italy). Inclusion criteria were diagnosis of T1D from at least 1 year,
age between 6 and 21 years, and absence of other types of diabetes mellitus (i.e., type 2,
monogenic diabetes, cystic fibrosis-related diabetes) [19].

We also enrolled 140 healthy controls (HC) from emergency departments. We excluded
individuals with T1D or T2D diabetes (or other diabetes forms), obesity and other metabolic
disorders, HbA1c > 6% (>42 mmol/mol), and family history of diabetes.

The ethics committee approved the protocol (CEUR-2018-Em-323-Burlo, KME-0120-
65/2019/4). All participants and their parents (for participants aged <18 years) gave written
informed consent before the enrolment.

2.2. Measurements and Protocol

For all participants, we collected demographic and anthropometric information, such
as age, gender, height, and weight [20]. Standard deviation scores of BMI (BMI SDS) were
calculated according to WHO reference charts [21] using the Growth Calculator 4 software,
distributed by Italian Society of Pediatric Endocrinology and Diabetology (SIEDP, Bologna,
Italy) (V0011, http://www.weboriented.it/gh4/, accessed on 27 August 2017). Moreover,
for T1D participants, medical history (i.e., age at diagnosis, disease duration) and clinical
information (i.e., insulin requirement, HbA1c) were collected. HbA1c was measured from
finger pricks using portable instrumentation at outpatient clinics (DCA 2000 Analyzer
System, Siemens, Munich, Germany).

According to HbA1c values, T1D participants were classified into two groups: HbA1c
values < 7% (<53 mmol/mol) and HbA1c ≥ 7% (≥53 mmol/mol) [22].

http://www.weboriented.it/gh4/
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IDAA1c was calculated as [HbA1c (%) + 4x insulin dose (units per kilogram per
24 h)] [23]. Then, participants were subdivided into two groups using IDAA1c ≤ 9 as a
cut-off, previously associated with better pancreatic beta cell reserve [23].

2.3. DNA Extraction, Genotyping, and SNPs Selection

For each sample, DNA was extracted from saliva using the EZ1 DNA investigator kit
(Qiagen, Milan, Italy) following the manufacturer’s protocols and then stored at −20 ◦C
before analysis.

Genotyping was conducted by Illumina Infinium Global Screening Array (GSA v3.0).
Genotype calling was performed with the GenomeStudio software (V2.0, Illumina, Inc.,

San Diego, CA, USA). During the quality control (QC) step, we excluded the following:
(1) samples with call rate < 95%, sex discrepancy, heterozygosity outside 6 standard deviations
(sd) from the mean, identity by descent (IBD) proportion > 0.4; (2) duplicate SNPs, SNPs with
missing call rate > 1% or with Hardy–Weinberg equilibrium (HWE) p-value < 1 × 10−6 [24].

For this study, we selected HNF1A SNPs in 12q23.31 location (GRCh37.p13 121416346-
121440315). Monomorphic SNPs and SNPs with Minor Allele Frequency (MAF) < 5%
were not considered. Linkage disequilibrium was calculated using PLINK software V1.9
(http://pngu.mgh.harvard.edu/purcell/plink/, accessed on 27 August 2017), and only
the following SNPs with r2 > 0.85 were selected: rs1169288, rs1169286, rs7979478, and
rs2259816 (Table 1).

Table 1. HNF1A Single Nucleotide Polymorphisms.

HNF1A SNPs Type Nucleotide Change
(Aminoacid Change) Chr:Position Reference

Allele
Alternative
Allele MAF

rs1169288 Missense Variant c.79A > C (p.Ile27Leu) 12:121416650 A C 36.0%

rs1169286 Intron c.326 + 2159T > C 12:121419056 T C 45.0%

rs7979478 Intron c.326 + 3366A > C 12:121420263 A G 56.5%

rs2259816 Synonymous Variant c.1620G > A
(p.Val540=) 12:121435587 G T 41.0%

Chr = Chromosome; MAF = Minor Allele Frequency.

2.4. Data Analysis

Participant characteristics were represented through percentages, means, and standard
deviation (SD). Differences among HC and T1D individuals were analyzed by chi-squared
tests to compare categorical data and t-tests to compare the means.

Association between diabetes susceptibility and HNF1A SNPs was analyzed by logistic
regression analyses, gender and age-adjusted, while association between related-clinical
traits and HNF1A SNPs was analyzed by logistic or linear regression analyses depending
on whether the dependent variable is categorical or continuous. In all models, gender, age,
and disease duration were included as covariates.

Statistical significance was set at p-value < 0.012, following Bonferroni correction
(0.05/selected SNPs). All statistical analyses were performed with R software (V4.2.2.,
www.r-project.org, accessed on 31 October 2022).

3. Results

In this study, we enrolled 140 HC and 277 participants with T1D; 57% of HC and 46%
of T1D were females (p-value = 0.044). The mean age was 12.5 ± 3.5 in HC and 13.2 ± 3.2
in T1D (p-value = 0.055). BMI SDS was higher in T1D individuals compared to HC
(p-value =< 0.0001). Characteristics of all participants and additional clinical characteristics
of T1D individuals are shown in Table 2.

http://pngu.mgh.harvard.edu/purcell/plink/
www.r-project.org
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Table 2. Healthy Controls (HC) and type 1 diabetes (T1D) participants’ characteristics.

HC
(n = 140)

T1D
(n = 277) p-Value

Sex,
(%, females) 57% 46% 0.044

Age
(years, mean ± SD) 12.5 ± 3.5 13.2 ± 3.2 0.055

Standardized BMI
(mean ± SD) −0.39 ± 1.1 0.16 ± 1.1 <0.0001

Disease duration
(years, mean ± SD) - 5.4 ± 3.6

HbA1c
(%, mean ± SD) - 7.8 ± 1.0

IDAA1c
(U/kg/die, mean ± SD) - 10.8 ± 1.6

Differences were computed by t-test and chi-square test, as appropriate.

In our sample, by comparing HNF1A SNPs frequencies between HC and T1D individ-
uals, we did not observe statistically significant differences.

When we evaluated HNF1A polymorphisms and related clinical traits among T1D
participants, we found an association of IDAA1c with rs1169286 T > C and rs1169288 A > C
(p-value = 0.0027, beta = −0.39; p-value = 0.008, beta = −0.35, respectively). Specifically,
TT carriers for rs1169286 and AA carriers for rs1169288 showed higher IDAA1c values
(Figure 1).
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Figure 1. IDAA1c values by HNFA1 SNPs. (a) Boxplot showing higher IDAA1c values in TT carriers
for rs1169286 (p-value = 0.0027); (b) boxplot showing higher IDAA1c values in AA carriers for
rs1169288 (p-value = 0.008).

rs1169286 SNP was also significantly associated with HbA1c values (p-value = 0.0075,
beta = −0.23); specifically, higher HbA1c values were found in TT carriers. Although also
for rs1169288 SNP AA carriers showed higher HbA1c values, the association did not reach
the statistical significance after Bonferroni’s correction (p-value = 0.03) (Figure 2).

We also compared the distribution of rs1169286 and rs1169288 SNPs in T1D individuals
classified according to IDAA1c and HbA1c values. For rs1169286, we found that the
TT genotype was less frequent in T1D individuals with IDAA1c ≤ 9 and HbA1c < 7%
(p-value = 0.0097 and p-value = 0.0052, respectively) (Table 3). The association of rs1169288
SNP with IDAA1c and HbA1c did not reach statistical significance.
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Figure 2. HbA1c values by HNF1A rs1169286 SNP. (a) Boxplot showing higher HbA1c values
in TT carriers for rs1169286 (p-value = 0.0077); (b) boxplot showing HbA1c values by rs1169288
(p-value = 0.03, not statistically significant).

Table 3. Distribution of rs1169286 and rs1169288 genotypes in T1D participants classified by IDAA1c
and HbA1c values.

Clinical
Parameters rs1169286 p-Value rs1169288 p-Value

IDAA1c TT TC CC 0.0097 AA AC CC 0.044

≤9 (n = 39) 15.0% 54.0% 31.0% 31.0% 49.0% 20.0%
>9 (n = 238) 33.0% 4.0% 1.0% 43.0% 44.0% 13.0%

HbA1c 0.0052 0.07

<7 (n = 64) 19.0% 51.0% 30.0% 37.5% 40.5% 22.0%
≥7 (n = 213) 34.0% 48.0% 18.0% 43.0% 45.0% 12.0%

Significant results were indicated in bold (p < 0.012). Differences were computed by logistic regression models
using sex, age, and disease duration as covariates.

4. Discussion

In this work, we analyzed the possible association of HNF1A SNPs with T1D and
related clinical traits for the first time. Although HNF1A SNPs were not associated with T1D
susceptibility, we detected an association of rs1169286 and rs1169288 SNPs with IDAA1c
and HbA1c levels. More specifically, our results showed higher IDAA1c and HbA1c levels
in TT individuals for the rs1169286 SNP. Moreover, higher IDAA1c was also found in AA
carriers for rs1169288.

rs1169288 and other SNPs in the HNF1A gene have been previously associated with
susceptibility to T2D and gestational diabetes [3–7], while, to our knowledge, no studies
have already reported an association of rs1169286 with any polygenic form of diabetes,
including T1D. Chiu et al. [25] reported an association of rs1169286 with insulin response
in healthy normal-weight individuals, suggesting that this variant is an independent deter-
minant of beta cell function and that may play a role in the pathogenesis of diabetes [25].

Mutations in the HNF1A gene are responsible for MODY3, characterized by severe
pancreatic beta cell insulin secretory defects [26], although the clinical expression may vary
considerably, and MODY3 subjects may present with a defect in insulin secretion, as well as
the full spectrum of complications typical of diabetes, such as microvascular complications
or those involving the kidneys [26–28].

The function of HNF1A is well known and supports its involvement in beta cell
function. HNF1A is expressed in several human tissues, including liver and pancreas
tissues, which controls the transcriptional expression of many genes playing varied and
important roles [29]. For example, in the liver, HNF1A regulates genes contributing to the
metabolism of substances such as glucose and fat [30,31]. In the pancreas, HNF1A controls
genes involved in beta cell maturation and growth, as well as insulin secretion [32]. HNF1A
mutations may result, for example, in reducing insulin secretion by binding directly to the
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promoter region of the insulin gene and positively regulating its activation [33,34]. HNF1A
variations may also change the expression of enzymes involved in mitochondrial glucose
metabolism [35], representing, in conclusion, a very important transcription factor for the
maintenance of beta cell function. Based on this evidence, we can speculate that similar
mechanisms may be responsible for altered beta cell function and glycaemic control in T1D.

In the present study, we also observed that the TT genotype for rs1169286 was less
frequent in T1D individuals with IDAA1c ≤ 9, supporting a potential effect of this SNP
on beta cell function. Therefore, we can hypothesize that better IDAA1c values, a marker
of beta cell residual function [16–18], in CC carriers for HNF1A SNPs may be linked to a
possible higher residual beta cell activity.

Moreover, IDAA1c ≤ 9 has been associated in T1D individuals with a lower frequency
of microvascular complications [36], justifying our finding on the low frequency of TT
genotype for rs1169286 also in the HbA1c < 7% participants.

Our results on the association between rs1169286 SNP and HbA1c suggest a possible
effect of an HNF1A gene on glycaemic control, which is one of the most important deter-
minants in the development of microvascular complications. In this light, studies on the
development of cardiovascular diseases over time in the different HNF1A genotype carriers
would be of interest.

In contrast to previous studies reporting an association of MODY genes and T1D
susceptibility [13–15], in the present work, we did not find significant differences by
comparing HNF1A SNPs frequencies between HC and T1D individuals.

The findings of this study are subject to some limitations. For example, CGM (Contin-
uous Glucose Monitoring) data or C-peptide values (as a measure of beta cell function) are
not available for this study; however, we analyzed IDAA1c, which was reported as an easy
and fast alternative to evaluate pancreatic beta cell function [16–18]. The limited number
of variants in the HNF1A locus included in our chip array may be another limit and did
not allow us to analyze rare variants that, for example, were previously implicated in T2D
susceptibility [37]. The presence of sex and standardized BMI differences between T1D and
HC may represent an additional limitation.

Finally, our results should be carefully interpreted in light of the small sample size
that may underlie the lack of association between T1D and HNF1A SNPs. Despite these
limitations, our results suggest, for the first time, that HNF1A variants may be a risk factor
for beta cell function and glycaemic control and may be useful in the early identification
of individuals with T1D who could benefit from early and more focused attention on
prevention of T1D-associated complications.

Additional investigations are needed to confirm our findings and to better understand
the exact mechanism by which the HNF1A gene may affect T1D clinical outcomes.
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