
Hide and Mine in Strings: Hardness, Algorithms,
and Experiments

Giulia Bernardini , Alessio Conte, Garance Gourdel, Roberto Grossi, Grigorios Loukides ,Member, IEEE,

Nadia Pisanti, Solon P. Pissis , Giulia Punzi, Leen Stougie, and Michelle Sweering

Abstract—Data sanitization and frequent patternmining are twowell-studied topics in datamining. Data sanitization is the process of disguising

(hiding) confidential information in a given dataset. Typically, this process incurs someutility loss that should beminimized. Frequent pattern

mining is the process of obtaining all patterns occurring frequently enough in a given dataset. Ourwork initiates a study on the fundamental

relation between data sanitization and frequent patternmining in the context of sequential (string) data. Currentmethods for string sanitization

hide confidential patterns. This, however,may lead to spurious patterns that harm the utility of frequent patternmining. Themain computational

problem is tominimize this harm.Our contribution here is as follows. First, we present several hardness results, for different variants of this

problem, essentially showing that thesevariants cannot be solvedor even beapproximated in polynomial time.Second,wepropose integer linear

programming formulations for thesevariants andalgorithms to solve them,whichwork in polynomial timeunder realistic assumptions on the input

parameters.Wealso complement the integer linear programming algorithmswith a greedy heuristic. Third, we present an extensive experimental

study, using both synthetic and real-world datasets, that demonstrates the effectiveness and efficiencyof our methods. Beyond sanitization, the

process ofmissing value replacementmayalso lead to spurious patterns. Interestingly, our results apply in this context aswell.We show that,

unlike popular approaches, our methods can fillmissing values in genomic sequences, while preserving the accuracy of frequent patternmining.

1 INTRODUCTION

ASTRING is a sequence of letters over some alphabet S.
Strings are commonly used to represent individuals’

data in domains ranging from transportation to web
analytics and bioinformatics. For example, a string can
represent a user’s location profile, with each letter corre-
sponding to a visited location [1], a user’s purchasing
history, with each letter corresponding to a purchased
product [2], or a patient’s genome sequence, with each
letter corresponding to a DNA base [3]. Mining patterns
from such strings is thus useful in a gamut of applica-
tions: mining patterns from location history data helps
route planning [4]; mining patterns of co-purchased
products from market-basket data improves business
decision making [2]; mining patterns from genome
sequences can improve clinical diagnostics [3]. To sup-
port these applications while preserving privacy, strings
representing individuals’ data are often being dissemi-
nated after sanitization [5], [6] or anonymization [7].

In this paper, we study the fundamental relation between
data sanitization [5], [6], [8] (also known as knowledge hiding)
and frequent pattern mining [9], [10], [11], [12]. The objective of
frequent pattern mining in strings is to obtain all patterns
occurring frequently enough (according to a given frequency
threshold t) in a string, or in a collection of strings. There may
also be constraints for the mined strings (e.g., to be of fixed
length k [13], [14]). In string sanitization, an adversary seeks
to determine whether one or more sensitive patternsmodeling
confidential knowledge occur in (the sanitized version of) a
string. For example, an adversary may want to determine
whether a series of purchased products (resp. search queries)
indicating pregnancy occur in a user’s purchasing history
(resp. search history) [15]. The adversary knows only the

� Giulia Bernardini is with University of Trieste, 34127 Trieste, Italy, and
also with CWI, 1098 XG Amsterdam, The Netherlands.
E-mail: giulia.bernardini@units.it.

� Alessio Conte and Giulia Punzi are with Universit�a di Pisa, 56126 Pisa,
Italy. E-mail: conte@di.unipi.it, giulia.punzi@phd.unipi.it.

� Garance Gourdel is with Inria Rennes, �Ecole normale sup�erieure, ENS
Paris-Saclay, 91190 Gif-sur-Yvette, France, and also with Universit�a di
Pisa, 56126 Pisa, Italy. E-mail: garance.gourdel@irisa.fr.

� Roberto Grossi and Nadia Pisanti are with Universit�a di Pisa, 56126 Pisa,
Italy, and also with ERABLE Team, 38330 Montbonnot-SaintMartin,
France. E-mail: {grossi, pisanti}@di.unipi.it.

� Grigorios Loukides is with King’s College London, WC2R 2LS London,
U.K. E-mail: grigorios.loukides@kcl.ac.uk.

� Solon P. Pissis and Leen Stougie are with CWI, 1098 XG Amsterdam, The
Netherlands, with Vrije Universiteit, 1081 HV Amsterdam, The Nether-
lands, and also with the ERABLE Team, 38330 Montbonnot-SaintMartin,
France. E-mail: {solon.pissis, leen.stougie}@cwi.nl.

� Michelle Sweering is with CWI, 1098 XG Amsterdam, The Netherlands.
E-mail: michelle.sweering@cwi.nl.

The work of Giulia Bernardini and Leen Stougie was supported by the Nether-
lands Organisation for Scientific Research (NWO) under Project OCENW.
GROOT.2019.015 Optimization for and with Machine Learning (OPTIMAL). The
work of Alessio Conte, Roberto Grossi, and Nadia Pisanti was supported in part by the
University of Pisa under the "PRA - Progetti di Ricerca di Ateneo" (Institutional
Research Grants) - Project No. PRA 20202021 26 "Metodi Informatici Integrati per la
Biomedica". The work of Garance Gourdel was supported by the French National
Research Agency (ANR) under Grant ANR-20-CE48-000. The work of Grigorios Lou-
kides was supported by the Leverhulme Trust under Project RPG-2019-399. The work
of Nadia Pisanti, Solon P. Pissis, and Leen Stougie was supported in part by the Euro-
pean Union’s Horizon 2020 Research and Innovation programme through ALPACA
Project under the Marie Skłodowska-Curie Grant Agreement 956229. The work of
Solon P. Pissis and Leen Stougie was supported in part by the European Union’s Hori-
zon 2020 research and innovation programme through PANGAIA Project under the
Marie Skłodowska-Curie Grant Agreement 872539. The work of Michelle Sweering
and Leen Stougie was supported by the Netherlands Organisation for Scientific
Research (NWO) through Gravitation-Grant NETWORKS-024.002.003.
(Corresponding author: Grigorios Loukides.)

1

https://orcid.org/0000-0001-6647-088X
https://orcid.org/0000-0001-6647-088X
https://orcid.org/0000-0001-6647-088X
https://orcid.org/0000-0001-6647-088X
https://orcid.org/0000-0001-6647-088X
https://orcid.org/0000-0003-0888-5061
https://orcid.org/0000-0003-0888-5061
https://orcid.org/0000-0003-0888-5061
https://orcid.org/0000-0003-0888-5061
https://orcid.org/0000-0003-0888-5061
https://orcid.org/0000-0002-1445-1932
https://orcid.org/0000-0002-1445-1932
https://orcid.org/0000-0002-1445-1932
https://orcid.org/0000-0002-1445-1932
https://orcid.org/0000-0002-1445-1932
https://orcid.org/0000-0003-1200-6015
https://orcid.org/0000-0003-1200-6015
https://orcid.org/0000-0003-1200-6015
https://orcid.org/0000-0003-1200-6015
https://orcid.org/0000-0003-1200-6015
mailto:giulia.bernardini@units.it
mailto:conte@di.unipi.it
mailto:giulia.punzi@phd.unipi.it
mailto:garance.gourdel@irisa.fr
mailto:grossi@di.unipi.it
mailto:pisanti@di.unipi.it
mailto:grigorios.loukides@kcl.ac.uk
mailto:solon.pissis@cwi.nl
mailto:leen.stougie@cwi.nl
mailto:michelle.sweering@cwi.nl

sanitized version of a string, the alphabet S over which the
string is derived, and a set of sensitive patterns. The adversary
succeeds if, based on their knowledge, they can determine
whether one or more sensitive patterns occur in the string. In
our example, the adversary’s success would allow them to
infer that a user is pregnant and potentially use this informa-
tion in unsolicited advertisement [15]. The privacy objective
of string sanitization is to negate the adversary’s success crite-
rion [8], [16], [17]. Of note, the adversary model and privacy
objective of string sanitization is similar to that of itemset [5],
[18] or sequence [19], [20] sanitization.

Let W be the input string over S, k be a positive integer,
and S be the set of sensitive length-k substrings. Recently
proposed methods [8], [16], [17] construct a string X satisfy-
ing the following properties: (I) X contains no element of S
as a substring; (II) the total order and thus the frequency of
all non-sensitive length-k substrings of W is preserved in X,
or a partial order of these substrings and their frequency is
preserved inX; and (III) the length ofX is minimized [8], or
the edit distance between W and X is minimized [16], [17].
These methods work by copying carefully selected sub-
strings of W into X and separating them by a special letter
=2 S. Clearly, the privacy objective (i.e., property I) may be
achieved by removing some letters from the sensitive pat-
terns occurring in W , or by concatenating the non-sensitive
substrings in W and separating them by #. Yet, the first
strategy is ineffective at preserving the utility of the string
as it incurs large changes to the set of length-k frequent sub-
strings [8], [16], while the second one leads to an unneces-
sarily long string that has a negative impact on the
efficiency of any subsequent analysis tasks [8], [16]. On the
other hand, the methods in [8], [16], [17] satisfy property I;
ensure no accuracy loss in sequentiality-based or fre-
quency-based tasks (e.g., that the same length-k frequent
substrings can be mined from W and from X) due to prop-
erty II; and help the subsequent analysis on X in terms of
efficiency [8], [16] or utility [17] due to property III. Further-
more, they are efficient (i.e., they match or are close to the
time-complexity lower bounds).

Example 1. Let W ¼ GACAAAAACCCAT, k ¼ 3, and the set of
sensitive patterns S ¼ fACA; CAA; AAA; AAC; CCAg. Further,
let XTR ¼ GAC#ACC#CCC#CAT, XMIN ¼ GACCC#CAT and
XED ¼ GAC#AA#ACCC#CAT be three sanitized strings. All
three strings contain no sensitive pattern and preserve the
total order and thus the frequency of all non-sensitive
length-3 substrings of W : XTR is the trivial solution of
interleaving the non-sensitive length-3 substrings of W
with #; XMIN is the shortest possible such string [8]; and
XED is a string closest toW in terms of edit distance [17].

Unfortunately, as noted in [8], the occurrences of #
reveal the locations of sensitive patterns. Thus, an adversary
who knows how#’s are added toX, in addition to knowing
X, S, and S, can infer the sensitive patterns inX. To prevent
this, the occurrences of #’s must be ultimately replaced by
letters of the original alphabet S. This replacement gives
rise to another string over S, which we denote by Z. The
replacement must ensure that sensitive patterns, as well as
any implausible patterns (i.e., known or likely artefacts of
sanitization that could be exploited to locate the positions of
replaced #’s), do not occur in Z (see [16] for details).

However, Z may contain spurious patterns that could not
be mined from X at a minimum frequency threshold t but
would be mined from Z at the same frequency threshold.
These patterns are referred to as t-ghosts.

Motivated by the importance of string sanitization and
the useful properties of the methods of [8], [16], [17], we
investigate the crucial interplay between # replacements
and t-ghosts. We pose here the following question that, to
the best of our knowledge, has not been addressed: Given a
string X containing #’s, a positive integer k, and a positive inte-
ger t, how should we replace the #’s in X with letters from S, so
that the number of length-k t-ghosts in the resulting string Z is
minimized? Answering this question helps preserving the
accuracy of frequent pattern mining and tasks based on it
(e.g., pattern-based clustering [21] and classification [22], as
well as sequential rule mining [23]) that we may not know a
priori. For example, in the context of data sanitization,
answering this question would enable the mining of fre-
quent patterns that model useful information about individ-
uals (trips in location sequences, co-purchased products in
market-basket sequences, or motifs in genomic sequences),
as well as the protection of individuals’ confidential infor-
mation (certain location sequences, co-purchased products
or parts of genome) [6], [8]. In addition, it would allow an
organization to share sales data (e.g., a string in which a let-
ter denotes the sale of a product) with a third party for col-
laboration purposes, without enabling the mining of
information that could provide competitive advantage to
the third party (e.g., a sequence of products that are sold
unexpectedly frequently) [20].

The above question is also of quite general interest, as it
applies to sequential datasets that may have occurrences of
a special letter for a variety of reasons beyond data sanitiza-
tion. This special letter, denoted here by # for consistency,
represents some information that is missing (i.e., a missing
value) from these datasets. For instance, in genome sequenc-
ing data, # corresponds to an unknown DNA base [24]; in
databases, # represents a value that has not been
recorded [25], [26]; and in masked data outputted by other
privacy-preserving methods [27], # is introduced deliber-
ately to achieve their privacy goal.

Like in data outputted by sanitization methods, the
occurrences of # in other string datasets often have to be
replaced. For example, since the DNA alphabet consists of
four letters (A, C, G, and T), off-the-shelf algorithms for proc-
essing DNA data use a two-bits-per-base encoding to com-
pactly represent the DNA alphabet. In order to use these
algorithms with input strings containing unknown bases,
we would have to amend them to work on the extended
alphabet fA; C; G; T; #g. This solution may have a negative
impact on the time efficiency of the algorithms or the space
efficiency of the data structures they use. Thus, instead, in
several state-of-the-art DNA data processing tools (e.g.,
[28], [29]), the occurrences of # are replaced by an arbi-
trarily chosen letter from the DNA alphabet, so that off-the-
shelf algorithms can be directly employed. This, however,
may introduce many spurious patterns, including patterns
that are unlikely to occur in a genomic sequence [30], [31],
negatively affecting the accuracy of frequent pattern min-
ing. This is in contrast to our approach, which aims to
replace unknown bases (occurrences of #) in a way that

2

avoids these patterns to preserve data utility (see Section 9
for further details).

Replacing the occurrences of # in a database is also often
needed to be able to perform frequent pattern mining with
off-the-shelf algorithms [26]. To this end, the occurrences of
are commonly replaced by some statistical estimate, such
as the most frequent value [26], [32]. However, such a
replacement does not generally maintain the accuracy of
frequent pattern mining, since it may introduce many spuri-
ous patterns [26]. The goal of our approach is to preserve as
much as possible the accuracy of frequent pattern mining,
by minimizing the creation of spurious frequent patterns.

Example 2. Let again W¼GACAAAAACCCAT, k¼3, and S ¼
fACA; CAA; AAA; AAC; CCAg. Further, let the frequency
threshold be t ¼ 2. Note that the frequency of all non-sen-
sitive patterns (length-3 substrings) in W is preserved in
all three sanitized strings XTR ¼ GAC#ACC#CCC#CAT,
XMIN ¼ GACCC#CAT, andXED ¼ GAC#AA#ACCC#CAT. Replac-
ing, however, all#’s with Gwould create t-ghost GAC both
inXTR and inXED.

Contributions. To our knowledge, there does not exist a
general solution to the question we pose here that simulta-
neously guarantees effectiveness and efficiency. In this
work, we provide compelling evidence as to why this is the
case. We also provide algorithms for answering this ques-
tion. Specifically:

1) We embark on a theoretical study to understand the
relation between replacing#’s and creating t-ghosts. In par-
ticular, we define the following problems, which all require
that any two #’s in X are at least k positions apart, and
examine their hardness:

� HMD (Hide and Mine decision): This is the core deci-
sion version of the problem, asking whether or not
we can replace all #’s in X, so that no sensitive pat-
tern and no t-ghost occurs in Z. Deciding this may
allow for sanitizing X with no utility loss in frequent
pattern mining. We show that HMD is strongly NP-
complete via a reduction from a variant of the well-
known Bin Packing problem [33] (see Section 4). This
is the most technically involved part of the paper, as
the provided reduction is highly non-trivial.

� HM (Hide and Mine): This is the optimization ver-
sion of HMD asking how we can replace all #’s,
while ensuring that no sensitive patterns and a mini-
mal number of t-ghosts occur in Z. This would mini-
mize the utility loss in frequent pattern mining. HM
is clearly NP-hard as a consequence of HMD being
NP-complete, but we also show that it is hard to
approximate.

� HMMT (Hide and Mine minimum threshold): Given
a parameter t, this problem asks for the minimum
frequency threshold t1 � t for which no sensitive
pattern and no t1-ghost occurs in Z. Solving HMMT

would imply no utility loss in frequent pattern min-
ing at a higher frequency threshold t1 that is as close
as possible to t. We show that HMMT is (NP-hard
and) hard to approximate.

The hardness (see Section 4) and inapproximabilty (see Sec-
tion 5) results for our problems provide solid evidence for

the lack of exact or approximation polynomial-time algo-
rithms for these problems (also for the generalized problem,
in which there are no restrictions on the distance between
#’s), and motivate our next contributions. These results are
general and independent of the application for which #’s
are replaced. In particular, they rigorously answer how dif-
ficult is to apply frequent pattern mining and missing value
replacement from the lower bound point of view.
2) We develop exact algorithms for HMD and HM that
require polynomial time, under certain realistic assump-
tions on the problem parameters. We also develop an effi-
cient and effective heuristic for HM. In particular, we
develop the following:

� Exact algorithms based on an Integer Linear Pro-
gramming (ILP) formulation of HMD. The main idea
is to identify all length-k strings over S in X that
may potentially become t-ghosts in Z, and then
decide whether each of the #’s can be replaced by a
letter in S without creating any t-ghost pattern or
any sensitive pattern in Z. We prove that HMD is
fixed-parameter tractable1 in most cases encountered in
practice (e.g., when the number of distinct letters in
the string and the length k of sensitive patterns are
upper bounded by a constant).

� Exact algorithms based on an ILP formulation of
HM. This ILP formulation differs from the HMD for-
mulation in that it takes into account the number of
t-ghosts created by replacing #’s, so as to minimize
their number. We prove that HM is fixed-parameter
tractable in many cases encountered in practice (e.g.,
when the length k of sensitive patterns and the num-
ber of distinct patterns that may become t-ghosts are
upper bounded by a constant).

� A greedy heuristic that replaces the #’s from left to
right, while avoiding the creation of non-sensitive
patterns that may become t-ghosts. The heuristic has
three variants which aim to minimize different meas-
ures based on: the number of newly created patterns
with frequency f < t, the sum of ðt � fÞ�1, or the
max of ðt � fÞ�1, where frequency f is taken over
the newly created patterns.

The ILP-based algorithms are presented in Section 6, and
the greedy heuristic in Section 7.
3) We conduct an extensive experimental study (see Sec-
tion 8). We show that our methods: (I) allow for frequent
length-k pattern mining with no or insignificant utility loss
(i.e., they create zero or few t-ghosts); (II) incur very low
distortion; and (III) are practical.
4) We consider the generalization of the HM problem,
which removes the requirement that any two#’s inX are at
least k positions apart. This problem has a direct application
on missing value replacement, where the input set of sensi-
tive patterns corresponds to patterns that are less likely
than expected to occur. We adapt the algorithms of Sec-
tions 6 and 7 to address this problem. In particular, we
show that our methods substantially outperform missing

1. A problem with parameters p and q is fixed-parameter tractable
(FPT) in p if there exists a function f and a polynomial P such that the
problem has time complexity OðfðpÞ � P ðqÞÞ [34].

3

value strategies employed by state-of-the-art DNA data
processing tools. These results answer how difficult is to
apply frequent pattern mining and missing value replace-
ment from the upper bound point of view. See Section 9.

A preliminary version of this paper appeared in [35].

2 RELATED WORK

Our work is related to three areas: (I) data sanitization (a.k.
a. knowledge hiding) [36], [37], which aims to prevent the
mining of confidential knowledge from a disseminated
dataset, (II) anonymization [38], which aims to prevent the
inference of information about individuals represented in a
disseminated dataset, and (III) missing value treatment [39].
We next briefly review related works in these areas.

2.1 Data Sanitization

Data sanitization approaches are typically applied to a col-
lection of transactions [5], [18], [40], a collection of sequen-
ces [6], [19], [20], or a single sequence [41]. These approaches
employ integer programming [18], [40], dynamic program-
ming [41], or heuristics [5], [6], [19], [20]. The objective of
these approaches is twofold: to reduce the frequency (sup-
port) of sensitive patterns, so that they cannot be mined at a
given frequency threshold t; and to preserve data utility,
often by preserving the set of frequent patterns that can be
mined at threshold t [5], [18], [19], [20], [40]. The patterns
considered in these approaches are: itemsets in [5], [18], [40],
subsequences in [6], [19], [20], and single letters in [41].

We discuss approaches for sanitizing a collection of
sequences in more detail. The works of [6], [19], [20] consid-
ered the general problem of hiding a given set of sensitive
patterns from an input collection of sequences, so that no
sensitive pattern occurs as a subsequence (and not as a sub-
string) in at least t sequences in the collection. To deal with
the problem, they proposed deletion-based [6], [19] or per-
mutation-based [20] heuristics. The work of [41] considered
the problem of hiding a given set of sensitive events (i.e.,
single letters) from an event sequence, in which each event
is a multi-set of letters that is associated with a timestamp.
To deal with the problem, it proposed a dynamic program-
ming algorithm.

Unlike our work, all the approaches that were discussed
so far do not aim at hiding sensitive strings, nor at minimiz-
ing changes to the set of frequent substrings.

As discussed in Introduction, in the recently proposed
approaches for string sanitization [8], [16], [17], #’s must be
ultimately replaced so that the locations of sensitive pat-
terns are not exposed. To this end, [8] considered the prob-
lem of replacing #’s so as to minimize the total cost of
t-ghost occurrences and showed that this problem is NP-
hard. Note that HM, the problem of minimizing the total
number of t-ghosts we consider here, is fundamentally dif-
ferent from the problem of minimizing the total cost of
t-ghost occurrences and, in particular, it cannot be reduced
from Multiple-Choice Knapsack because no arbitrary
weights or costs are involved. On the hardness side, this
makes our hardness proof considerably more challenging.
On the algorithmic side, [8] proposed a heuristic inspired
by algorithms for Multiple-Choice Knapsack. This heuristic
assumes that each # replacement forces all length-k strings

that could become t-ghosts with this replacement, to actually
do become t-ghosts. Based on this assumption, it assigns a
cost to every replacement of every #, and then chooses
the replacements that minimize the total cost of t-ghost
occurrences. Due to this pessimistic assumption, this
heuristic may not be effective at minimizing the number
of t-ghosts.

2.2 Data Anonymization

Data anonymization approaches for string data are applied
to a collection of strings [7], [42], [43], [44], [45], [46], or to a
single string [47], [48], [49].

We first discuss approaches applied to a collection of
strings. Some works [7], [42], [43] propose heuristics, based
on k-anonymity [50]. The goal of [7], [42] is to create a syn-
thetic string that represents a cluster of strings in the input
dataset, while that of [43] is to upper-bound the probability
of inferring any letter in any string of the published collec-
tion of strings. Other works [44], [45], [46] propose heuris-
tics based on differential privacy [51]. The goal of [45] is to
release a differentially private string collection. On the other
hand, [44] and [46] focus on frequent substrings: [44] aims
to release differentially private top-k frequent substrings,
where k denotes the number of frequent substrings
required, while [46] aims to release differentially private fre-
quent substrings with gap constraints [52].

We nowdiscuss approaches applied to a single string [47],
[48], [49]. The goal of [47] is to prevent inferences about a
given set of sensitive sequences, by limiting themutual infor-
mation between the frequency distribution of sensitive
sequences in the string before and after anonymization. To
achieve this, it proposed heuristics which replace letters
with other letters that represent more abstract (coarse) infor-
mation. The goal of [48] is to prevent sensitive sequences
from occurring within a time window of a temporally-anno-
tated string. To achieve this, it proposed algorithms that
delete letters from a string, while preserving occurrences of
non-sensitive sequences. The goal of [49] is to prevent the
inference of the exact frequency (multiplicity) of any length-
k substring in a string based on differential privacy. To
achieve this, it proposed exact polynomial-time algorithms
based on dynamic programming and linear programming,
as well as several linear-time heuristics.

We stress that the above data anonymization approaches
are not alternatives to our approach. This is because they
cannot be applied to hide a collection of sensitive patterns
while preserving utility for frequent pattern mining.

2.3 Missing Value Treatment

Missing values occur in string datasets for a number of rea-
sons [39], and they need to be treated to improve the quality
of obtained statistics [53], query answers [25], and data min-
ing models (e.g., association rules [54], [55], sequential pat-
terns [26], clustering [56], and classification [57]). Therefore,
existing works remove [53] or replace missing values [25],
[56], [57], or alternatively utilize interestingness measures
that are suited to mining patterns with missing values [26],
[54]. Hence these works are tailored to specific settings and
cannot deal with our problem. This is because they do not

4

aim at minimizing the impact that replacing missing values
in a string has on frequent pattern mining.

3 PRELIMINARIES AND PROBLEM STATEMENT

An alphabet S is a finite nonempty set whose elements are
called letters. We also consider an alphabet S# ¼ S [f#g,
where # is a special letter not in S. We fix a string X ¼
X½0� � � �X½n� 1� of length jXj ¼ n over S#. The set of
length-k strings over S is denoted by Sk. For two indices 0 �
i � j < n, X½i : : j� ¼ X½i� � � �X½j� is the substring of X that
starts at position i and ends at position j of X. FreqXðUÞ
denotes the number of occurrences (starting positions) of
string U as a substring of X. A prefix of X is a substring ofX
of the form X½0 : : j�, and a suffix of X is a substring of X of
the form X½i : : n� 1�. A dictionary over S is a set of strings
over S. We will consider a dictionary of length-k strings
that do not occur in X, referred to as sensitive patterns. Any
element of Sk that is not in this dictionary is referred to as a
non-sensitive pattern. In combinatorics on words, such a dic-
tionary is known as antidictionary and the sensitive patterns
are known as forbidden patterns (e.g., [58]).

Problem 1 (HIDE & MINE (HM)). Given an integer k > 0, a
string X ¼ X0#X1# � � �#Xd of length n over an alphabet
S#, with jXij � k� 1, for all i 2 ½0; d�, a dictionary S � S

k

such that no S 2 S occurs in X, and an integer t > 0, com-
pute a function g : ½d� ! S such that the following hold for
string Z ¼ X0gð1ÞX1gð2Þ � � � gðdÞXd:

I The number of strings U 2 S
k, with FreqXðUÞ < t

and FreqZðUÞ � t in Z, is minimized. These strings
are called t-ghosts.

II No sensitive pattern S 2 S occurs in Z.

Note that function g replaces each # by exactly one letter
from S. Condition jXij � k� 1, for all i 2 ½0; d�, means that
any two #’s in X are at least k positions apart. Thus, any
length-k substring X½i : : iþ k� 1� of X is affected by at
most one # replacement. The sanitization method of [8,
Lemma 1] produces an X satisfying this condition, for any
given set S, to guarantee that the frequency of every non-
sensitive pattern is preserved in X. Thus, HM is directly
applicable to the output of [8]. We also consider the general-
ized version of the HM problem, in which we drop the con-
dition jXij � k� 1, for all i 2 ½0; d�, specifying that #
occurrences must not be close to each other. This problem is
referred to as GENERALIZED HIDE & MINE (GHM).

To prove NP-completeness, we consider the decision var-
iant HMD of HM, which asks to decide if there exists any
function g : ½d� ! S such that the following hold:

I No t-ghost pattern occurs in Z.
II No sensitive pattern S 2 S occurs in Z.

4 HMD IS NP-COMPLETE

Problem HMD is clearly in NP, as the presence of t-ghosts or
sensitive patterns can be verified in polynomial time. In this
section, we show that HMD is strongly NP-complete via
exhibiting a reduction from a variant of the Bin Packing
problem [33]. As a consequence, HM is NP-hard. In

what follows, we will denote an instance of a problem P
with IP.

4.1 The UNIQUE-WEIGHTS BIN PACKING Problem

The BIN PACKING (BP) problem is defined as follows. Given
three positive integers, M (number of bins), B (capacity of
every bin), and N (number of items), as well as a vector
½w1; . . . ; wN � of positive integers representing the weights of
the items, the BP problem asks whether we can partition the
items into M subsets (bins) without exceeding the capacity
of any bin. Formally, we need to decide whether there exists
a function f : ½N� ! ½M�, assigning items to bins, such that

8i 2 ½M�;
X

j2½N�;fðjÞ¼i
wj � B:

Crucially, BP is strongly NP-complete [33], i.e., it is NP-
complete even when weights and bin capacities are
bounded by a polynomial function of N and M. In the fol-
lowing, we will consider this case, and use gadgets whose
size is proportional to the numerical values in IBP, as if we
were representing those numbers in unary notation.

We will assume that no two items have the same weight.
We refer to this variant of BP as the UNIQUE-WEIGHTS BIN

PACKING (UWBP) problem; see Supplemental Material for an
example, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2022.3158063. To justify the unique weights assump-
tion, we show that UWBP is still strongly NP-complete by a
polynomial-time reduction from standard BP.

Lemma 1. UWBP is strongly NP-complete.

Proof. Consider an instance IBP ¼M;B;N;w1; . . . ; wN of
BP with possibly duplicated weights, where all values are
polynomial in the size of IBP: we construct in polynomial
time an instance I0BP ¼M 0; B0; N 0; w01; . . . ; w

0
N 0 of UWBP

(where no two weights are the same) that has polynomial
values, and has a positive answer if and only if IBP does.

To obtain I0BP we proceed as follows. First, set M 0 ¼
M, N 0 ¼ N and B0 ¼ B �N2 þ ðN2 � 1Þ. To obtain the
weights w0i multiply each wi by N2, then add “flavoring”
by taking groups of items with the same weight one by
one and, for each group, adding 0 to its first item, 1 to the
second, 2 to the third, and so on. Essentially, we increase
the scale of the numbers (a 1-weight item becomes
N2-weight) so much that we can make all weights differ-
ent without affecting the way groups of items fit in bins:
the extra ðN2 � 1Þ capacity in B0 does not allow to fit an
extra unit of item-weight (that is N2 weight), but it is
enough to account for the flavoring of any set of items.
Indeed, in the worst case (when all items have the same
weight), the cumulative amount of flavoring added to all
N items is 0þ 1þ 2þ . . .þN � 1 < N2=2. Hence, an
assignment of items to bins is valid for IBP if and only if
it is valid for I0BP. tu

4.2 Overview of the Reduction From UWBP to HMD

We now show that, for any UWBP instance, we can produce
in polynomial time an instance of HMD that has positive
answer if and only if theUWBP instance has positive answer.

5

http://doi.ieeecomputersociety.org/10.1109/TKDE.2022.3158063
http://doi.ieeecomputersociety.org/10.1109/TKDE.2022.3158063

To this end, we will introduce several gadgets which will
serve to model the different constraints of UWBP. Each gad-
get consists of a string of length 2k� 1 over a specific alpha-
bet, with a # in the middle. We will explain how all UWBP
constraints are linked to the gadgets. It will then suffice to
concatenate the gadgets into one long string, to obtain an
instance of HMD that implies a solution of UWBP.

First, we will consider gadgets tij, which model whether
item j is placed in bin i. The structure of these gadgets ensures
that themaximum capacityB of the bins is not exceeded.

Then, gadgets uij will be introduced. The structure of this
second kind of gadgets, together with tij, ensures that each
item is placed in some bin.

The set of sensitive patterns S and the threshold t will be
carefully chosen to build and link the gadgets. Sensitive pat-
terns will be used to force a specific subset of letters to
replace a # (by forbidding the length-k strings obtained
from unwanted replacements).

In essence, to replace a # inside a tij gadget we will only
have two choices: one corresponding to the positive choice
“place the jth item into the ith bin”, and one to the negative
choice of not doing so. The first choice will create wj copies of
some length-k substring specific to bin i; the capacity of bin i is
modeled by the number of such substrings we can create with-
out exceeding the threshold. On the other hand, the gadgets uij

are there to ensure that, for each item |̂, at least one # among
the ti|̂ is replaced with the positive choice, that is, each item is
placed in at least one bin.2 The threshold t is essential in linking
the gadgets andmodeling the capacity of the bins: since no pat-
tern that occurs less than t times is allowed to reach that same
threshold after the replacements, we will repeat the pattern in
the string so as to bound the number of its additional occur-
rences that can be created by replacing a#.

4.3 Construction of an Instance of HMD

The alphabet of the string X of the instance of HMD will be
made of letters#, x, y, $, and a letter bi for each i 2 ½M�.

For i 2 ½M�, j 2 ½N �, and k ¼ maxjwj þ 3, we define the
gadgets tij and uij as the following strings of length 2k� 1:

tij ¼ bi x . . .x|fflffl{zfflffl}
k�1�wj

bi . . . bi|fflfflffl{zfflfflffl}
wj�1

bi . . . bi|fflfflffl{zfflfflffl}
k�1

uij ¼ bi x . . .x|fflffl{zfflffl}
k�1�wj

bi . . . bi|fflfflffl{zfflfflffl}
wj�1

y . . . y|fflffl{zfflffl}
wj

x . . .x|fflffl{zfflffl}
k�wj�2

y:

Example 3. Consider an instance IBP with M ¼ 2, B ¼ 5,
N ¼ 3, w1 ¼ 2; w2 ¼ 5; w3 ¼ 3, which will be the running
example for how to build a corresponding instance of HMD

along this section. We will have S ¼ fb1; b2;#; x; y; $g and
k ¼ maxjwj þ 3 ¼ 8. The gadgets t1j are

t11 ¼ b1xxxxxb1#b1b1b1b1b1b1b1

t12 ¼ b1xxb1b1b1b1#b1b1b1b1b1b1b1

t13 ¼ b1xxxxb1b1#b1b1b1b1b1b1b1:

Gadgets t2j only differ from gadgets t1j in that in the for-
mer b1 is substituted with b2. For the same IBP, gadgets
u1j are

u11 ¼ b1xxxxxb1#yyxxxxy

u12 ¼ b1xxb1b1b1b1#yyyyyxy

u13 ¼ b1xxxxb1b1#yyyxxxy:

Again, u2j can be obtained from u1j by replacing b1 with
b2.

For the sake of readability, from now on we will write U‘

to denote U . . .U|fflfflffl{zfflfflffl}
‘

(i.e., ‘ concatenations of a string U starting

with the empty string). We then define S, the set of sensitive
patterns, as the union of the following sets:

1) fbi0bk�1i j i; i0 2 ½M�; i0 6¼ ig which forbids putting a bi0
to replace the# in any tij if i

0 6¼ i.
2) fbiybk�2i j i 2 ½M�g, which forbids putting a y to

replace the# in a tij.
3) fbi$bk�2i j i 2 ½M�g, which forbids putting a $ to

replace the# in a tij.
4) fbiywjxk�wj�2y j i 2 ½M�; j 2 ½N�g, which forbids put-

ting any bi to replace the# in a uij.
5) fbi$ywjxk�wj�2 j i 2 ½M�; j 2 ½N�g, which forbids put-

ting a $ to replace the# in a uij.

Example 4. Continuing the running example, the sensitive
patterns set for the corresponding instance of HMDwill be

S ¼ fb1b72; b2b71; b1yb61; b2yb62; b1$b61; b2$b62; b1y2x4y;

b1y
5xy; b1y

3x3y; b2y
2x4y; b2y

5xy; b2y
3x3y; b1$y

2x4;

b1$y
5x; b1$y

3x3; b2$y
2x4; b2$y

5x; b2$y
3x3g:

As explained below, we will use tij and uij to construct
an instance of string X. By this definition of S, the # in a tij
can only be replaced with bi or x, and the # in a uij only
with x or y, so thatX does not contain sensitive patterns.

We model the size B of the bins using the threshold t:
specifically, we link the filling of the ith bin with the num-
ber of occurrences of a specific non-sensitive pattern
(namely, bki). However, this is not the only pattern we need
to constrain: we have many different length-k substrings
that come into play, all of which need specific thresholds.
Thus, a common threshold t for all non-sensitive patterns is
too restrictive. We implement this by choosing t high
enough, and artificially lowering the allowed occurrences of
each specific non-sensitive pattern by adding an appropri-
ate amount of extra copies of the non-sensitive pattern itself
at the end of the string. This way we can choose a different
threshold for each non-sensitive pattern.

In accordance with this reasoning, we choose t ¼
maxfM;Bg þ 1. We finally construct the string X as a con-
catenation of the following components, separated by $$ as
follows:

1) tij, 8i; j
2) uij, 8i; j
3) t �B� 1 occurrences of bki , 8i
4) t � 2 occurrences of bix

k�wj�1b
wj�1
i x, 8i; j

5) t �M occurrences of ywjþ1xk�wj�2y, 8j.

2. Note that our reduction technically allows placing an item in sev-
eral bins, however such a solution can trivially be turned into a proper
one by selecting one of the bins arbitrarily and removing the item from
all others.

6

Component (3) ensures that a valid solution of this
instance cannot add more than B occurrences of any bki .
Each time we replace the # in a tij with bi (corresponding to
assigning item j to bin i), we introduce wj additional occur-
rences of bki : this models the consumption of space in each
bin, and the limit B ensures that no bin overflows.

By Component (4), for each i; j, only one additional
occurrence of bix

k�wj�1b
wj�1
i x can be created, either by

replacing the#with x in a tij or in a uij. This ensures that, if
we substitute x for# in one of the two gadgets, then we can-
not do the same in the other one. Let us consider a specific
item j; if we do not place it in bin i, then we are forced to
substitute y for # in uij, creating an occurrence of length-k
substring ywjþ1xk�wj�2y. Since, by Component (5), we can
only add M�1 occurrences of this latter pattern over all M
bins, there must be an i such that the # in uij is replaced
with x. The corresponding # in tij is then forced to be
replaced with a bi, ensuring that item j is assigned to
some bin.

Example 5. To conclude the running example, the instance
of HMD equivalent to the original IBP is given by the
string

X ¼ t11$$t12$$t13$$t21$$t22$$t23$$u11$$u12$$u13$$u21$$

u22$$u23ð$$b1x5b1x$$b1x
2b41x$$b1x

4b21x$$b2x
5b2x$$

b2x
2b42x$$b2x

4b22xÞ
4ð$$y3x4y$$y6xy$$y4x3yÞ4;

of length n ¼ 562 over alphabet S# ¼ fb1; b2; x; y; $;#g,
with k ¼ 8, t ¼ maxfM;Bg þ 1 ¼ 6, and the sensitive pat-
terns set S given before.

4.4 Correctness

We have shown how to construct in polynomial time an
instance IHMd from any given instance IUWBP. We now
prove that IHMd has a positive answer if and only if IUWBP

does. For the sake of readability, let us refer to the # in tij
and uij as #t

ij and #u
ij, respectively. The solution to IHMd

can then be expressed via a function g : f#t
ij;#

u
ij; 8i; jg !

S. Let f : ½N� ! ½M� be a solution for a given IUWBP. We cre-
ate the corresponding solution to IHMd in the following
manner, for each item j 2 ½N � and bin i 2 ½M�

fðjÞ ¼ i) gð#t
ijÞ ¼ bi and gð#u

ijÞ ¼ x;

fðjÞ 6¼ i) gð#t
ijÞ ¼ x and gð#u

ijÞ ¼ y:

For a given item j such that fðjÞ ¼ i, we get wj occurrences
of bki , one occurrence of bix

k�wj�1b
wj�1
i x, and for all h 6¼ i one

occurrence of bhx
k�wj�1b

wj�1
h x and ywjþ1xk�wj�2y. Since the

bin capacity in the solution of UWBP is not overflown, we
added at most B copies of bki for each i. Finally, since each
element is taken once in UWBP, we created exactly ðM � 1Þ
occurrences of ywjþ1xk�wj�2y and one occurrence of
bix

k�wj�1b
wj�1
i x. We thus do not create t-ghosts, and we

have a valid solution for HMD.
Vice versa, given a solution g to our HMD instance, to

obtain the solution to the original UWBP, it suffices to prove
that the following two claims are satisfied:

1) We do not overload any bin; formally

8i 2 ½M�
X

j2½N� s.t. gð#t
ij
Þ¼bi

wj � B:

2) Each item is assigned to some bin; formally

8j 2 ½N� jfi 2 ½M� s.t. gð#t
ijÞ ¼ bigj � 1:

If these claims are satisfied, we can extract an assignment
for UWBP: for every item j we choose an arbitrary bin i
such that gð#t

ijÞ ¼ bi, and set fðjÞ ¼ i. By construction of the
instance of HMD, these claims are satisfied. By Lemma 1, we
obtain the following result.

Theorem 1. HMD is strongly NP-complete.

5 HM IS HARD TO APPROXIMATE

Given the hardness of HMD, in this section, we shift our
focus on checking whether an approximately optimal solu-
tion of HM can be obtained instead. Unfortunately, in Theo-
rem 2, we show that there is no approximation algorithm
for HM with additive or multiplicative guarantees unless
P=NP. This provides necessary justification for developing
alternative approaches, which we describe next.

Theorem 2. There are no a � 1;b � 0 such that there is an
approximation algorithm A in P which answers HM by g with
g � a �OPTþ b, unless P=NP.

Proof. Assume there are a � 1;b � 0 such that there exists
such an approximation algorithm A. We could use A to
solve HMD: If g > b, then we know OPT � 1 and the
instance cannot be solved without any t-ghosts. Other-
wise we create a new instance with bþ 1 copies ofX, sep-
arated by k special letters $, and each copy with a
different alphabet Si ¼ fai : a 2 Sg. Let g 0 be the solution
of A on this new instance. Either g 0 > b and OPT0 ¼
ðbþ 1Þ �OPT � 1 so OPT > 1, else g 0 � b, so there is one
of the bþ 1 copies that can be solved without any t-ghost,
which gives us a solution with no t-ghost for the original
instance. tu

The reader may now wonder whether the problem
becomes easier should one relax the requirement for a fixed
threshold t. Thus, the following problem arises naturally.

Problem 2 (HMMT). Given an integer k > 0, a string X ¼
X0#X1# � � �#Xd of length n over alphabet S#, with jXij �
k� 1, for all i 2 ½0; d�, a dictionary S � S

k such that no S 2 S
occurs in X, and an integer t0 > 0, compute the smallest inte-
ger t1 � t0 so that there exists a function g : ½d� ! S, such that
the following hold for string Z ¼ X0gð1ÞX1gð2Þ � � � gðdÞXd:

I No t1-ghost occurs in Z.
II No sensitive pattern S 2 S occurs in Z.

The practical rationale for considering HMMT is that it
could be useful if, for instance, t1 is only slightly larger than
t in a given HM instance. Unfortunately, we show that
HMMT is NP-hard, and it is even hard to approximate. Due
to these provably negative results, we conclude that there is
no theoretical gain in studying HMMT instead of HM.

7

Corollary 3. HMMT is NP-hard.

Proof. We reduce HMD to HMMT. Let IHMd be the instance
of HMD we would like to solve for some threshold t. We
construct an instance of HMMT consisting of the X, k, and
S from IHMd, and we also set t0 ¼ t. We denote this
instance by IHMmt. The reduction takes linear time in the
size of HMD. We seek to find the minimum threshold t1 �
t0 such that no length-k substring of Z is a t1-ghost. Then
IHMd has a positive answer if and only if the answer t1 of
IHMmt is equal to t0 ¼ t. The statement thus follows. tu

Observe that a pattern U is a t-ghost if and only if t 2
ðFreqXðUÞ;FreqZðUÞ�. Therefore, the minimal number of
t-ghosts is not monotonous in t. On the contrary, the mini-
mal number of t-ghosts is zero when t ¼ 0 and all patterns
are already frequent (i.e., they appear at least t times), or
when t > n and the threshold is so high that no pattern can
ever become a t-ghost. In between, the minimal number of
t-ghosts increases whenever t equals the frequency of some
patterns in X, and then slowly decreases again. We will use
this behavior, and the fact that HMD is NP-hard, to con-
struct a string for which we cannot determine in polynomial
time whether t1 ¼ t0 or t1 > aðat0 þ bÞ þ b (and for which
we can prove that t1 62 ½t0 þ 1;aðat0 þ bÞ þ b�), implying
both additive and multiplicative inapproximability.

Theorem 4. There are no a � 1;b � 0 such that there is an
approximation algorithm A in P which answers HMMT by g

with a�1ðOPT� bÞ � g � a �OPTþ b, unless P=NP.

Proof. Let X be an arbitrary string and S be the set of sensi-
tive patterns as defined in HMD. Further, let T be the
length-ðk� 2Þ suffix of X and Z be a string obtained by
replacing the #’s of X. From this instance of HMD, we
will construct an instance of HMMT consisting of a string
Y and a set S0 of sensitive patterns, so that if an
ða;bÞ-approximation algorithm existed for HMMT, we
could decide HMD in polynomial time. We define Y over
S [f#;&g to be

Y ¼ Xð&&T Þt0&ð#T&Þdða
2�1Þt0þabþbe:

Let R be the set of all strings &sT , with s 2 S. We define
the dictionary of sensitive patterns be S0 ¼ S [R. Note
that we need to replace all #’s in ð#T&Þdða

2�1Þt0þabþbe by
&’s in order not to introduce any sensitive patterns. How-
ever, doing so increases the number of&T& patterns (and
all other newly created patterns) from t0 to daðat0 þ bÞ þ
be. Therefore, if t ¼ t0, then the number of t-ghosts in Z

equals that in Zð&&T Þt0&ð&T&Þdða
2�1Þt0þabþbe, because

the additional new patterns were already occurring at

least t times in Y . However if t0 < t � daðat0 þ bÞ þ be,
then there will always be at least one t-ghost, namely

&T&. Recall that deciding HMD is NP-complete. There-
fore it is NP-complete to decide whether or not t1 ¼ t0 or

t1 > daðat0 þ bÞ þ be. We conclude that there exists no

ða;bÞ-approximation algorithm forHMMT, unless P=NP.tu

6 EXACT ALGORITHMS FOR HM

We resort to ILP to design exact algorithms for HMD and
HM. In particular, we show that both problems are fixed-

parameter tractable (FPT) for several combinations of parame-
ters. We recall that a problem with parameters p and q is
fixed-parameter tractable in p if there exists a function f and
a polynomial P such that the problem has time complexity
OðfðpÞ � P ðqÞÞ [34].

6.1 ILPs for HMD and HM

We say that the length-ðk�1Þ substring U preceding an
occurrence of # in X, and the length-ðk�1Þ substring V fol-
lowing it, form its context UV . Recall that there are d occur-
rences of # in X, and that any two occurrences are at least k
letters apart, so UV is in S

2k�2. We assign to every context
UV a unique identifier (id). We write#i for# inX if its con-
text UV has id i. A stringN 2 S

k is critical if it may become a
t-ghost, i.e., if an additional occurrence of N can be created
by replacing some # by a letter in S and FreqXðNÞ 2
½t � kd; t � 1�. This is because the frequency of N cannot
increase by more than kd, and the frequency of N in X must
be less than t for N to become t-ghost. We assign to each
critical stringN a unique id ‘, and denote it byN‘. We intro-
duce the following parameters:

gg number of distinct contexts present inX;
didi number of occurrences of#i inX, for i 2 ½g�;
�� number of distinct critical length-k strings;
ai
‘;jai
‘;j additional number of occurrences of N‘ introduced by

replacing a#i with j 2 S, for ‘ 2 ½��;
e‘e‘ difference ðt � 1Þ � FreqXðN‘Þ, for ‘ 2 ½��.

Intuitively, e‘e‘ is the budget we have for N‘: the number of
its additional occurrences we can afford. Since replacing an
occurrence of#i by j 2 S adds k new strings inSk, ai

‘;jai
‘;j counts

how many of them are equal to N‘. Let xi;jxi;j be the number of
times we replace #i by j 2 S, and F � ½g� 	 S be the set of
forbidden replacements: ði; jÞ 2 F if and only if replacing #i

by j introduces a sensitive pattern. To determine whether
there exists a way of replacing all #’s with letters without
introducing any sensitive patterns nor t-ghosts, we need to
find a solution x 2 Zg	jSj to the following problem:

xi;j � 0 8ði; jÞ 2 ½g� 	 S
xi;j ¼ 0 8ði; jÞ 2 FP

i2½g�;j2S ai
‘;jxi;j � e‘ 8‘ 2 ½��P

j2S xi;j ¼ di 8i 2 ½g�

8>><
>>:

: (1)

The first and fourth constraints ensure that each # is
replaced by exactly one letter, the second constraint that we
do not reinstate any sensitive patterns, and the third con-
straint that we do not introduce any t-ghosts.

Let us now focus on solving HM. As opposed to HMD,
we can decide in polynomial time if HM has a solution: we
check all jSj letter replacements at each of the d positions
where a # occurs. If at each position there exists at least one
letter replacement that does not create a sensitive pattern
then HM has a solution. Thus without loss of generality, for
the rest of this paper, we assume that HM always has a solu-
tion. To minimize t-ghosts in Z ¼ X0gð1ÞX1gð2Þ � � � gðdÞXd,
that is, the number of strings U 2 S

k with FreqXðUÞ < t

and FreqZðUÞ � t, we define a binary variable z‘, ‘ 2 ½��,
which is equal to 1 when N‘ has become t-ghost, and is
equal to 0 otherwise. The ILP formulation for HM is to find
x 2 Zg	jSj so as to:

8

Minimize
P�

‘¼1 z‘ subject to

xi;j � 0 8ði; jÞ 2 ½g� 	 S
xi;j ¼ 0 8ði; jÞ 2 F
z‘ � 0 8‘ 2 ½��P

i2½g�;j2S ai
‘;jxi;j � kdz‘ � e‘ 8‘ 2 ½��P

j2S xi;j ¼ di 8i 2 ½g�

8>>>><
>>>>:

: (2)

Note that, in the ILP of Eq. (2), if N‘ is a t-ghost thenP
i2½g�;j2S a

i
‘;jxi;j � kdz‘ � e‘ if and only if z‘ ¼ 1.

6.2 HMD and HM are FPT

Eq. (1) is clearly an ILP with m ¼ gjSj variables and at most
2mþ�þg constraints. The algorithm by Frank and Tar-
dos [59] solves the ILP problem in linear time in the number
constraints (resp. variables) when the number of variables
(resp. constraints) is upper bounded by a constant. Hence,
although HMD is NP-complete in general, if appropriate
subsets of parameters are bounded by a constant, we can
count on polynomial-time solutions.

To show that HMD takes polynomial time in certain cases,
let us start with a general preprocessing step. We construct a
static dictionary withOð1Þ access time of the letters inX and
the letters in strings of S. The value (id) of each key (letter) is
chosen from f1; . . . ; kjSj þ ng. This construction can be done
in OðkjSj þ nÞ time using perfect hashing [60]. We can then
lexicographically sort all length-k substrings of X and all
length-k strings in S (viewed as strings over letter id’s) using
radix sort in OðkjSj þ knÞ time, and construct two dictionar-
ies, one for X and one for S, as follows. The dictionary forX
is a trie of all its non-sensitive length-k substrings, in which
each such substring is associated to its frequency in X. The
dictionary for S is simply a trie of all its strings. In both tries,
for every node, we store the first letter on each of its outgoing
edges in a static dictionary with Oð1Þ access time [60]. Thus
both trie dictionaries support OðkÞ access time: if a length-k
string Q is given as a query, we first convert it to a string
IðQÞ of id’s inOðkÞ time using the letter dictionary, and then
search for IðQÞ from the root of the tries in OðkÞ time. The
total construction time isOðkjSj þ knÞ.

Observe that d ¼ Oðn=kÞ. When d ¼ Oð1Þ, the brute-force
algorithm checking all possible ways to replace the#’s with
letters of S runs in polynomial time. There are indeed jSjd
ways to replace the #’s; each way generates dk new length-
k strings for which we must check if they are sensitive or
create a t-ghost. We can check if they are sensitive using the
trie of S in OðkÞ time per each such string. We can count the
additional number of occurrences of each length-k substring
of X using the trie of X in OðkÞ time. Finally, we can count
the number of occurrences of each length-k string not occur-
ring in X by constructing a trie of all (at most dk) such
strings, similar to the preprocessing step. This gives Oðknþ
kjSj þ k2djSjdÞ time in total.

The following theorems explain when an FPT algorithm
exists for HMD and for HM.

Theorem 5. HMD is fixed-parameter tractable if

Proof.We first perform the above-mentioned preprocessing.
ðaÞWe will solve this case by constructing and solving

the ILP in Eq. (1). We can count the number of occur-
rences of each length-k substring of X using the trie of X
(and thus determine e‘ for these strings) in OðknÞ time.
The id i of the context of each # and its number di of
occurrences can be determined within the same complex-
ity using a similar preprocessing: this is possible because
the length of every context is 2k� 2 ¼ OðkÞ. Finally, all
values ai

‘;j and set F can be computed in OðgjSjk2Þ total
time as follows. When we replace #i with a letter j we
create k new length-k strings, each of which is either sen-
sitive (in which event we add ði; jÞ to F) or non-sensitive
(we increase ai

‘;j by 1). We check if they are sensitive
using the trie of S in OðkÞ time per string; we count the
additional number of occurrences of a critical length-k
substring of X using the trie of X in OðkÞ time; we finally
count the number of occurrences of a critical length-k
string that does not occur in X (note that e‘ ¼ t � 1 for
these strings) by constructing a trie of all such strings,
similar to the preprocessing step. The ILP is thus con-
structed in Oðknþ kjSj þ gjSjk2Þ total time. Since the
number of variables in the ILP is m ¼ gjSj ¼ Oð1Þ and
solving ILP’s is fixed-parameter linear in the number of
variables [59], HMD is FPT if g and jSj are fixed.
ðbÞ Since every context has length 2k� 2 and both jSj

and k are Oð1Þ, we have that g � jSj2k�2 ¼ Oð1Þ. Thus, if
k and jSj are fixed, we are in case ðaÞ, and HMD is FPT.
ðcÞ If k ¼ Oð1Þ and � ¼ Oð1Þ, the numbers of con-

straints and variables in the ILP are not necessarily upper
bounded by a constant, and therefore we cannot directly
solve the ILP in polynomial time. However, note that the
only letters we need to discern are the ones contained in
the � critical length-k strings, which are at most �k in total.
Sincewe do not need to distinguish between the rest of the
letters, we can represent all of them using the same special
letter. Let s � S denote the set of letters contained in criti-
cal length-k strings, which can be determined as described
in ðaÞ: s can be specified and indexed using perfect hash-
ing [60] within the same time complexity. We introduce a
new letter $ representing all the letters in S n s, and we
denote by Fj$ the set of forbidden replacements where all
pairs ði; jÞ 2 F with j 2 S n s are collapsed in a single pair
ði; $Þ. We thus need to find a solution x 2 Zg	ðjsjþ1Þ for

xi;j � 0 8i 2 ½g�; j 2 s [f$g
xi;j ¼ 0 8ði; jÞ 2 Fj$P

i2½g�;j2s ai
‘;jxi;j � e‘ 8‘ 2 ½��P

j2s[f$g xi;j ¼ di 8i 2 ½g�

8>><
>>:

: (3)

This new ILP can be constructed in Oðknþ kjSj þ gjSjk2Þ
time, like Eq. (1). Since the ILP has only gðjsj þ 1Þ ¼ Oð1Þ
variables, HMD is FPT for fixed k and � [59].We can obtain
a solution to the original problem by replacing $ by any
letter inS n s that does not create a sensitive pattern. tu

Theorem 6. HM is fixed-parameter tractable if
(a) jSj ¼ O ð1Þ and g ¼ O ð1Þ; o r
(b) jSj ¼ O ð1Þ and k ¼ O ð1Þ; o r (a) jSj ¼ O ð1Þ, g ¼ O ð1Þ, and � ¼ O ð1Þ; o r
(c) ðcÞ k ¼ O ð 1Þ and � ¼ O ð 1Þ. (b) k ¼ O ð 1Þ and � ¼ O ð 1Þ.
.

9

Proof. ðaÞWe can obtain the ILP of Eq. (2) inOð�Þ time from
the ILP of Eq. (1), which can be constructed in Oðknþ
kjSj þ gjSjk2Þ time; see the proof of Theorem 5(a). The
ILP of Eq. (2) has at most 2mþ 2�þ g constraints and
mþ � ¼ jSjg þ � variables. Therefore HM is FPT if jSj, g
and � are fixed [59].
ðbÞ Similar to the ILP of Eq. (3) (see Theorem 5(c)), we

can reduce the alphabet S to the letters of the critical
length-k strings and a special letter $. This new minimi-
zation ILP has gðjsj þ 1Þ þ � � ðk�þ 1Þ2k�1 þ � ¼ Oð1Þ
variables. Therefore HM is FPT if k and � are fixed [59]. tu

Theorems 5 and 6 show that we are able to design poly-
nomial-time algorithms for HMD and HM when some
input parameters to these problems are fixed, despite the
hardness of the problems. This is particularly encouraging
because these parameters are small in most real cases.

7 GREEDY HEURISTIC FOR HM

We present a heuristic that aims at minimizing t-ghosts by con-
trolling the number and frequency of length-k strings that may
become t-ghosts.Our heuristic performs two left-to-right passes
over the input stringX to incrementally constructZ from left to
right. In the first pass, it computes statistics by creating a dictio-
nary T S that stores all sensitive patterns in S as strings of length
k. This dictionary can be implemented using a hash table or a
trie, and supports membership queries for S. Moreover, our
heuristic creates a (hash or trie) map T X[Z that stores pairs
ðY;FreqðY ÞÞ, where the key Y is a length-k substring that either
appears inX or is created when an occurrence of# is replaced
by a letter in Z. The associated value FreqðY Þ is given by the
number of occurrences of Y in X (possibly zero) plus any new
occurrences in the current Z created by # replacements. The
reason for using T X[Z rather than just the occurrences of Y in
Z, is to get better statistics by knowing “some future” (i.e., the
remaining part of X in which # are yet to be expanded but
some occurrences of Y may be found). The query supported for
a length-k string Y is the following: if any pair ðY;FreqðY ÞÞ
exists, it is unique and the value of FreqðY Þ is returned; other-
wise, the value zero is returned. Initially T X[Z stores the statis-
tics forX alone, asZ has yet to be generated. As discussed next,
the construction of Z is incrementally performed from left to
right in the second pass, where our heuristic greedily replaces
the occurrences of #, based on the statistics maintained using
T X[Z and in away that aims atminimizing t-ghosts.

The pseudocode of our heuristic is provided in Algo-
rithm 1. In the first pass (Lines 1 to 3), the heuristic constructs
T S and T X[Z to efficiently maintain pattern frequencies, and
also initializes Z, which maintains the sanitized string. Then,
the heuristic performs the second pass overX in Lines 4 to 23,
scanning some letters ofX from left to right. If the current let-
ter X½i� 6¼ #, then it is simply appended to Z in Line 23.
Therefore,we focus on themain case,whenX½i� ¼ #: the heu-
ristic considers the contextUV and iterates over each letter j in
the alphabet S [f�g to find a replacement j
 (if any3) forX½i�
as follows (Lines 7 to 21). It constructs the set Sj of all length-k
substrings of string U � j � V (Line 11). If Sj contains no sensi-
tive patterns (i.e., Sj \ T S ¼ ;), the heuristic considers the

subset S< t
j � Sj containing those length-k substrings with

frequency less than t, and computes
P

Y 2S< t
j
ðt � FreqðY ÞÞ�1

through queries to the map T X[Z (Lines 12 to 16). Thus, it
computes a gap measure indicating how far from t are the
frequencies of the potential patterns that may become
t-ghosts in S< t

j . If j
 is empty then the heuristic fails, as all
replacements of # with a letter j 2 S [f�g would reinstate
a sensitive pattern (Line 18). Otherwise, the heuristic repla-
ces # with j
 as the latter optimizes the gap measure, it
appends both j
 and V to Z, and increases the frequencies
in the map T X[Z with the frequencies of the strings in Sj
 as
substrings of U � j
 � V (Lines 19 to 21). After completing the
second pass over X, the heuristic returns Z and terminates
(Line 24).

Algorithm 1. GREEDY-HEURISTIC(k;X;S;S; t)

Require:wlogX has no# in its first and last k� 1 positions
1: T S dictionary storing all sensitive patterns in S
2: Z X½0 : : k� 2�
3: T X[Z map storing pairs ðY;FreqðY ÞÞ for all non-sensitive

length-k substrings ofX plus those added in Z
4: i k� 1
5: while i < jXj do
6: ifX½i� ¼ # then
7: U Z½ jZj � kþ 1 : : jZj � 1 �
8: V X½ iþ 1 : : iþ k� 1 �
9: best þ1
10: for each letter j 2 S [f�g do
11: Sj set of length-k substrings of U � j � V
12: if Sj \ T S ¼ ; then
13: sum 0
14: S< t

j fY 2 Sj jFreqðY Þ < tg
15: for each string Y 2 S< t

j , using T X[Z do
16: sum sumþ ðt � FreqðY ÞÞ�1
17: if sum < best then j
 j; best sum
18: if best ¼ þ1 then return FAIL
19: Z Z � j
 � V
20: Update T X[Z for the strings in Sj

21: i iþ 1þ jV j
22: else
23: Z Z �X½i�; i iþ 1 // no update of T X[Z
24: return Z

An example of our heuristic is in Supplemental Material,
available online.

Our heuristic takes OðkjSj þ knþ djSjk2Þ ¼ OðkjSj þ
knjSjÞ time as d ¼ Oðn=kÞ. The first two terms in OðkjSj þ
knþ djSjk2Þ correspond to the cost of constructing T S and
T X[Z . The third term is the cost of the second left-to-right
pass. As can be seen in Lines 5 to 21, this is dominated by the
cost of processing each of the d occurrences of # in X, which
requiresOðjSjk2Þ time, as processing Sj takesOðk2Þ time for a
letter j 2 S [f�g, plus the OðnÞ-time scan of X, which is in
turn dominated by the termOðjSjk2Þ ¼ OðknjSjÞ.

There are three benefits of the heuristic compared to the
exact algorithm: (I) It has polynomial time complexity, even
when none of the input parameters of HM is fixed. (II) It can
be trivially adapted to address the GHM problem within the
same time complexity (see Section 9). (III) By design, it pre-
vents large increases in the frequency of patterns that do not
become t-ghosts but have increased frequency as a result of

3. Following [8], we added the empty letter � to S to model the dele-
tion of#’s as this can lower the number of t-ghosts.

10

replacement, since the sum computed in Lines 14–16
increases with FreqðY Þ. This helps reducing distortion, a sec-
ondary consideration in sanitization [5], [8], [16], [18], [19],
[20]. We have also considered two variants of the heuristic
(at no extra time cost), which replace the sum

P
Y 2S< t

j
ðt �

FreqðY ÞÞ�1 computed in Lines 14–16 with jS< t
j j; or with

maxY 2S< t
j
ðt � FreqðY ÞÞ�1. Clearly, the former aims at mini-

mizing the number of patterns that could become t-ghosts
by subsequent letter replacements without considering their
frequency, while the latter aims at reducing the frequency of
the substring that is closer to become t-ghost by subsequent
letter replacements.

8 EXPERIMENTS

Experimental Setup and Datasets. The string sanitization
method of [8] takes as input a stringW overS, a positive inte-
ger k, and a set S of sensitive patterns, and then it performs
the following three steps: (I) It constructs the shortest stringX
over S# such that X contains no sensitive pattern and the
order (and thus frequency) of all non-sensitive patterns in X
and W is the same (see Section 1). (II) It further tries to mini-
mize the length of X by preserving the exact frequency of
non-sensitive patterns but relaxing the order property, so that
instead of a total order a partial order is preserved. The output
of this step is a string Y overS#. (III) It replaces#’s inY by the
Multiple-Choice Knapsack based heuristic (see Section 2). The
output of this step is a stringZ overS.

In our evaluation, we performed Steps (I) and (II) to
obtain Y , which we process by different methods: the ILP
formulation in Eq. (2) (denoted by ILP), our greedy heuris-
tic (denoted by HEU), or the heuristic of [8] described in
Step (III) (denoted by TPM). Following [8], we added the
empty letter � to the set of letters that may be used to
replace #. This effectively models the deletion of #’s and
can lower the number of t-ghosts. We omit the results for
the other variants of our heuristic because HEU outper-
formed them.

The utility of any sanitized string Z is measured by two
well-established utility measures for sanitized data:

1) The number of t-ghosts in Z; i.e., the size of the set
fU 2 S

k : FreqXðUÞ < t and FreqZðUÞ � tg. All
tested methods are guaranteed to create no t-lost,
i.e., the set fU 2 S

k : FreqXðUÞ � t and FreqZðUÞ <
tg is empty. Clearly, zero t-lost and t-ghost patterns
imply no utility loss for frequent length-k substring
mining.

2) The Distortion measure [8], which is defined asP
UðFreqW ðUÞ � FreqZðUÞÞ2, where U 2 Sk is a non-

sensitive pattern. This measure penalizes changes in
the frequency of non-sensitive patterns; low values
imply high utility for frequency-based tasks [61].

Minimizing the number of t-ghosts is crucial, as it is the
primary goal of data sanitization [5], [18], [19], [20]. Distor-
tion considers the frequency of all patterns and can thus be
seen as a secondary criterion aiming to capture utility when
the sanitized dataset is released for frequency-based tasks
other than frequent pattern mining.

We used publicly available datasets that were also used in
the evaluation of [8]: Oldenburg (OLD) [62], Trucks (TRU) [63],

MSNBC (MSN) [64], and the complete genome of Escherichia
coli (DNA) [65]. OLD contains movement data, TRU contains
transportation data, MSN contains clickstream data, and DNA
contains genomic data. We also used uniformly random string
datasets, referred to as SYN1 and SYN2. See Table 1 a for the
characteristics of these datasets. In this table, an interval for a
parameter contains the values we used for that parameter. Let
us remark that jSj denotes the number of sensitive patterns
whereas jP j denotes the total number of positions where a sen-
sitive pattern occurs in the input string.

The configuration of parameters was performed as in [8]
(see Table 1 b for default values). That is, the sensitive patterns
were selected randomly among the frequent length-k sub-
strings of minimum support t, following [8], [16]. This is
because there are no patterns that are known to be sensitive in
these datasets. We averaged the results over 10 runs, follow-
ing [6]. The weight, costs, and u parameters in TPMwere con-
figured as in [8]. Our code waswritten in C++ and is available
at https://github.com/fnareoh/hide_and_mine. The code of
TPMwas also written in C++ and is available at [66].We used
the Gurobi solver v. 9.0.1 (single-thread configuration) to
solve ILP instances. All experiments ran on an Intel Core i7-
10810U CPU @ 1.10 GHz with 32 GB RAM, which indicates
the low computational requirements of themethods.

Data Utility. We show that our methods: (I) allow for fre-
quent length-k pattern mining with no or negligible utility
loss (i.e., they create zero or few t-ghosts), unlike TPM, and
(II) incur substantially lower distortion than TPM.

Number of t-Ghosts. We examined the impact of t, k, and
jSj on t-ghosts, in Figs. 1, 2, and 3, respectively. As can be
seen, ILP and HEU created a significantly smaller number
of t-ghosts than TPM in all cases. This is because ILP finds
the best possible solution by design, while HEU specifically
tries to avoid the creation of t-ghosts by limiting the fre-
quency of critical patterns. TPM did not perform well
because it does not explicitly consider the number of
t-ghosts; it only tries to minimize the total cost of t-ghost
occurrences, as discussed in Section 2. Note that DNA was
challenging to sanitize with few t-ghosts, because its small
alphabet size makes it difficult to find letters that replace
#’s without creating t-ghosts. Again, on DNA, ILP and
HEU outperformed TPM by 1548% and 795% on average,
while HEU was worse than ILP by 137% on average, which
is expected as ILP guarantees minimizing t-ghosts. Our

TABLE 1
(a) Dataset Characteristics (b) Default Values Used

11

https://github.com/fnareoh/hide_and_mine

results show that both our methods allow for substantially
more accurate frequent pattern mining than TPM and indi-
cate that the heuristic which replaces #’s in TPM is ineffec-
tive to minimize the number of t-ghosts.

Distortion.We examined the impact of t, k and jSj on Dis-
tortion, in Fig. 4. Our methods outperformed TPM because
its objective function favors the replacements of #’s with
letters that increase the frequency of already frequent pat-
terns. Increasing the frequency of such patterns does not
incur t-ghosts, but significantly increases Distortion (see the
Distortion computation formula). HEU outperformed ILP,
incurring 37% lower Distortion on average on the OLD
dataset for the reason mentioned in Section 7. Further dis-
cussion of this reason and additional results are in Supple-
mental Material, available online.

Runtime. We examined the impact of input string length
n, k, t, and jSj on runtime. We considered two different set-
tings using SYN1 and SYN2, respectively.

Setting I. As can be seen in Fig. 5a, our methods required
less than one second to process the 20-million letter string.
They also remained efficient when sanitizing patterns of dif-
ferent length (Fig. 5b), as well as when sanitizing a large

number of sensitive patterns (Fig. 5c). An interesting obser-
vation from Fig. 5c is that ILP scaled much better than TPM
and HEU with respect to jSj. This is because it groups #’s
by context when formulating the last two constraints in
Eq. (2) in terms of g (i.e., in terms of the number of distinct
contexts). Thus, its runtime may improve when a larger
number of #’s have the same context due to the grouping.
This is different from TPM and HEU which replace #’s one
by one and thus spend time for computing the alternative

Fig. 1. Number of t-ghosts for each dataset and varying t (on the top of each bar, we show the number of t-ghosts). The values of jP j are averaged
over 10 runs.

Fig. 2. Number of t-ghosts for each dataset and varying pattern length k (on the top of each bar, we show the number of t-ghosts). The values of jP j
are averaged over 10 runs.

Fig. 3. Number of t-ghosts for each dataset and varying number of sensitive patterns jSj (on the top of each bar, we show the number of t-ghosts).
The values of jP j are averaged over 10 runs.

Fig. 4. Distortion for varying: (a) t, (b) k, and (c) number of sensitive pat-
terns jSj. The values of jP j are averaged over 10 runs.

12

ways in which each # can be substituted. For example, the
time spent by HEU for this process is OðjSjk2Þ per #, as can
be seen from Lines 7 to 21. Overall, ILP was the fastest and
HEU was substantially faster than TPM. We omit the run-
time experiments for varying t because they were quantita-
tively similar to those reported here.

Setting II. As can be seen in Figs. 5d, 5e, and 5f, HEU
again outperformed TPM substantially in all cases. How-
ever, ILP was not consistently faster than HEU and TPM as
in Setting I. In some cases, it took less than 1 second to pro-
duce an optimal solution, while in others it did not produce
an optimal solution within 1 hour. In the latter cases, we
stopped the solver after 1 hour to obtain a feasible (subopti-
mal) solution. As expected, these cases correspond to
instances in which a very large number of t-ghosts could be
incurred. This can be seen in Supplementary Material, avail-
able online, along with experiments for varying n. Overall,
the experiments in this setting establish the main benefit of
HEU over ILP: predictable running time due to its guaran-
teed polynomial-time complexity.

Similar observations can be made in the case of real data-
sets. For example, ILP was faster than HEU in the case of
DNA, whereas HEU was faster in the case of OLD (e.g.,
HEU was 2.5 times faster, taking 0.4 seconds on average
over the results of Fig. 1a). Furthermore, there were cases
when ILP took too much time. For example, in the experi-
ment of Fig. 3c, ILP took 36 minutes to run on MSN when
the number of sensitive patterns was 600, while HEU took
only seconds. Also, in the experiment of Fig. 1b, ILP took 20
seconds to run on TRU when t was 3, while HEU took less
than 0.12 seconds.

9 THE GENERALIZED HIDE & MINE PROBLEM

The GENERALIZED HIDE & MINE (GHM) problem is the gener-
alized version of HM, in which we drop the condition

specifying that occurrences of # must not be close to each
other. In particular, any two occurrences of # are not neces-
sarily at least k positions apart. Since HM is NP-hard and
hard to approximate, it follows that the more general GHM
is also NP-hard and hard to approximate. However, GHM
cannot be addressed by our exact algorithm for HM. This is
because it does not consider how combinations of #’s can
give rise to sensitive and non-sensitive pattern occurrences.
To address this issue, we proceed as follows.

We consider all occurrences of #’s in X: for each such
occurrence s 2 ½d�, we consider all occurrences t 2 ½d� within
k positions to the right of occurrence s. Let P be the set of all
such pairs ðs; tÞ for all s. For each pair ðs; tÞ 2 P and each
array over S of possible replacements J ¼ ðJs; . . . ; JtÞ, we
check which patterns are created by the substitution of the
ith occurrence of # by Ji, for all i 2 ½s; t� (note, we omit pat-
terns which are created by substituting a proper prefix or
suffix of these #’s). If this substitution creates a sensitive
pattern occurrence, we set ðs; t; JÞ 2 F . Otherwise let as;t

‘;J be
the number of occurrences of N‘ it creates (recall from Sec-
tion 6 that N‘ is a critical string). Moreover, let yðs;tÞ;J 2
f0; 1g be such that (I) if each occurrence of # from s to t is
replaced by its corresponding letter from J , then yðs;tÞ;J ¼ 1,
and (II) if replacing each occurrence of # from s to t intro-
duces some sensitive pattern, then yðs;tÞ;J ¼ 0. In any other
case yðs;tÞ;J can have either value. Variable xi;j 2 f0; 1g sim-
ply indicates whether the ith occurrence of # is replaced by
letter j 2 S, in contrast with Section 6, where xi;j 2 Z�0

accounted for the number of times an occurrence of # with
context iwas replaced by j 2 S.

The other variables are defined as in Section 6. The ILP
formulation for GHM is to find x 2 f0; 1gd	jSj and yðs;tÞ;J 2
f0; 1g for all fðs; t; JÞ j ðs; tÞ 2 P; J 2 S

t�sþ1g so as to mini-
mize

P�
‘¼1 z‘ subject to

0 � xi;j � 1 8ði; jÞ 2 ½d� 	 S

0 � yðs;tÞ;J � 1 8ðs; tÞ 2 P; J 2 St�sþ1

yðs;tÞ;J ¼ 0 8ðs; t; JÞ 2 F
z‘ � 0 8‘ 2 ½��
t� sþ yðs;tÞ;J �

P
i2½s;t� xi;Ji 8ðs; tÞ 2 P; J 2 St�sþ1P

j2S xi;j ¼ 1 8i 2 ½d�P
ðs;tÞ2P;J2St�sþ1 a

s;t
‘;Jyðs;tÞ;J � kdz‘ � e‘ 8‘ 2 ½��

8>>>>>>>>><
>>>>>>>>>:

: (4)

Constraints 1 to 4, 6 and 7 of Eq. (4) are analogous to con-
straints 1 to 5 in Eq. (2) of Section 6. Constraint 5 of Eq. (4)
states that an array of #’s is replaced by an array of letters,
if each of those#’s is replaced by the corresponding letter.

Note that, since for any t� sþ 1 #’s occurring within k
positions we have variables for all J 2 St�sþ1, the size of
this ILP grows exponentially in the number of #’s that can
be in a pattern. Even if we remove variables yðs;tÞ;J and the
corresponding constraints 2 and 5 for all substitutions J
that do not create any critical or sensitive patterns, the num-
ber of constraints and variables of the ILP can grow expo-
nentially, as there can be exponentially many critical
patterns (and thus variables as;t

‘;J). This ILP can therefore be
of exponential size even when the set of sensitive patterns is
empty. To construct a feasible solution in polynomial time,
we can slightly modify the heuristic in Section 7: looking at
Algorithm 1, the only required modification is in Line 8,
where V is now assigned the substring X½iþ 1 : : iþ ‘� for

Fig. 5. Runtime for varying: (a) n, (b) k, and (c) jSj on SYN1. Runtime for
varying: (d) k, (e) jSj, and (f) t on SYN2. The values of jP j are averaged
over 10 runs. An with ratio x=10 corresponds to an instance in which
ILP was stopped after 1 hour to produce a feasible solution in x out of 10
runs.

13

the largest ‘ < k such that X½iþ 1 : : iþ ‘� does not contain
any#’s; V can be empty as any two#’s can be consecutive.

We demonstrate the impact of GHM in the context of
missing value replacement. A missing value corresponds
to a #, and the set of sensitive patterns to patterns that are
much less likely than expected to occur, based on deviation,
a well-established statistical significance measure for
strings [30], [31] (see Supplemental Material), available
online. These patterns would be an artefact of missing value
replacement, and thus we do not allow them to occur in the
output string. We evaluate the ILP formulation in Eq. (4)
and our modified heuristic, denoted by G-ILP and G-HEU,
respectively, against two alternative strategies: (I) FIXED
and (II) RANDOM. FIXED replaces every occurrence of #
with the same letter, which is selected from fA; C; T; Gg.
RANDOM replaces every occurrence of # with a letter
selected uniformly at random from fA; C; T; Gg. These strate-
gies are employed by state-of-the-art DNA data processing
tools (e.g., [28], [29]).

We applied G-HEU to READS, a real dataset comprised
of 75,446 mouse reads each of length 35 and containing at
least one missing value (unknown DNA base represented
by #) [67]. The dataset has total length n ¼ 2; 640; 610, it
contains 77,107 #’s, and the alphabet size is jSj ¼ 4, with
=2 S. The default values were k ¼ 9 and t ¼ 20; as sensi-
tive patterns we used the 100 patterns that were the least
likely than expected to occur, according to deviation. All
experiments ran on the PC mentioned in Section 8.

We measured the number of t-ghosts incurred by all
methods in Fig. 6. Specifically, Figs. 6a, 6b, and 6c show the
impact of t, n, and k on the number of t-ghosts, respec-
tively. Our methods outperformed FIXED and RANDOM,
which shows their effectiveness at minimizing t-ghosts. As
can be seen in Fig. 6a, a larger t leads all methods to create
fewer t-ghosts because there are fewer frequent patterns
and thus fewer of them may become t-ghosts. As in Sec-
tion 8, G-ILP did not produce an optimal solution within 1
hour when there was a large number of t-ghosts that could
be incurred (see also Supplemental Material), available
online, while the other methods finished within seconds. In
this case, we stopped G-ILP after 1 hour to obtain a feasible
(suboptimal) solution. As can be seen in Fig. 6b, a larger n
leads all methods to create more t-ghosts, because there are
more#’s to replace. Also, observe in Fig. 6c that the number
of t-ghosts for all methods increases from k ¼ 8 to k ¼ 9 and
then decreases as k gets larger. The increase for k ¼ 8 and
k ¼ 9 is because there are more frequent patterns compared
to when k is larger and hence more patterns may become

t-ghosts. The decrease for k ¼ 10 and k ¼ 11 is because
there are more total possible length-k patterns (their number
grows exponentially in k), so it is easier to create distinct
length-k patterns and avoid t-ghosts. Overall, ILP per-
formed much better than HEU, but in difficult instances it
did not finish within 1 hour, while both ILP and HEU vastly
outperformed FIXED and RANDOM .

10 OUTLOOK

In addition to strings, frequent pattern mining is also
applied on other data types, such as graphs, trees, itemsets
etc. [12]. Given the fact that string is one of the most basic
data types, our hardness results support the intuition that
replacing missing values with no utility loss for frequent
pattern mining in these more complex data types may not
be possible in polynomial time; based on our results, we fur-
ther anticipate that it might even be hard to approximate
such solutions in polynomial time. Given the successful
deployment of ILP in the string representations presented
in this paper, ILP might be a promising strategy to be
applied for replacing missing values in other data represen-
tations and settings. Also, it is interesting to design ILP for-
mulations that consider additional utility requirements,
such as preserving the segmental structure of the input
string [68] or the frequency of certain substrings.

REFERENCES

[1] J. J. Ying, W. Lee, T. Weng, and V. S. Tseng, “Semantic trajectory
mining for location prediction,” in Proc. 19th ACM SIGSPATIAL
Int. Conf. Adv. Geographic Inf. Syst., 2011, pp. 34–43.

[2] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc.
11th Int. Conf. Data Eng., 1995, pp. 3–14.

[3] D. C. Koboldt, K. M. Steinberg, D. E. Larson, R. K. Wilson, and
E. R. Mardis, “The next-generation sequencing revolution and its
impact on genomics,” Cell, vol. 155, no. 1, pp. 27–38, 2013.

[4] M. Chen, X. Yu, and Y. Liu, “Mining moving patterns for predict-
ing next location,” Inf. Syst., vol. 54, no. C, pp. 156–168, 2015.

[5] Y. Wu, C. Chiang, and A. L. P. Chen, “Hiding sensitive association
rules with limited side effects,” IEEE Trans. Knowl. Data Eng.,
vol. 19, no. 1, pp. 29–42, Jan. 2007.

[6] O. Abul, F. Bonchi, and F. Giannotti, “Hiding sequential and spa-
tiotemporal patterns,” IEEE Trans. Knowl. Data Eng., vol. 22,
no. 12, pp. 1709–1723, Dec. 2010.

[7] C. C. Aggarwal and P. S. Yu, “A framework for condensation-
based anonymization of string data,” Data Mining Knowl. Discov.,
vol. 16, no. 3, pp. 251–275, 2008.

[8] G. Bernardini et al., “String sanitization: A combinatorial appro-
ach,” in Proc. Eur. Conf. Mach. Learn. Knowl. Discov. Databases,
2019, pp. 627–644.

[9] H. M. Martinez, “An efficient method for finding repeats in molec-
ular sequences,” Nucleic Acids Res., vol. 11, no. 13, pp. 4629–4634,
1983.

Fig. 6. Number of t-ghosts for varying: (a) t, (b) input string length n, and (c) k. The symbol in (a) corresponds to an instance in which G-ILP was
stopped after 1 hour to produce a feasible solution. (d is the total number of#’s.)

14

[10] U. Keich and P. A. Pevzner, “Finding motifs in the twilight zone,”
Bioinformatics, vol. 18, no. 10, pp. 1374–1381, 2002.

[11] L. Marsan and M. Sagot, “Algorithms for extracting structured
motifs using a suffix tree with an application to promoter and reg-
ulatory site consensus identification,” J. Comput. Biol., vol. 7,
no. 3/4, pp. 345–362, 2000.

[12] W. Shen, J. Wang, and J. Han, “Sequential pattern mining,” in Fre-
quent PatternMining, Berlin, Germany: Springer, 2014, pp. 261–282.

[13] H. Arimura and T. Uno, “An efficient polynomial space and poly-
nomial delay algorithm for enumeration of maximal motifs
in a sequence,” J. Combinatorial Optim., vol. 13, no. 3, pp. 243–262,
2007.

[14] N. Cristianini and M. W. Hahn, Introduction to Computational Geno-
mics - A Case Studies Approach. Cambridge, U.K.: Cambridge Univ.
Press, 2007.

[15] I. Ajunwa, K. Crawford, and J. Ford, “Health and big data: An
ethical framework for health information collection by corporate
wellness programs,” J. Law Med. Ethics, vol. 44, pp. 474–480, 2016.

[16] G. Bernardini et al., “Combinatorial algorithms for string sani-
tization,”ACMTrans. Knowl. Discov. Data, vol. 15, no. 1, pp. 8:1–8:34,
2021.

[17] G. Bernardini et al., “String sanitization under edit distance,” in Proc.
31st Annu. Symp. Combinatorial PatternMatching, 2020, pp. 7:1–7:14.

[18] A. Gkoulalas-Divanis and V. S. Verykios, “Exact knowledge hid-
ing through database extension,” IEEE Trans. Knowl. Data Eng.,
vol. 21, no. 5, pp. 699–713, May 2009.

[19] A. Gkoulalas-Divanis and G. Loukides, “Revisiting sequential pat-
tern hiding to enhance utility,” in Proc. 17th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2011, pp. 1316–1324.

[20] R. Gwadera, A. Gkoulalas-Divanis, and G. Loukides, “Permutation-
based sequential pattern hiding,” in Proc. IEEE 13th Int. Conf. Data
Mining, 2013, pp. 241–250.

[21] V. Guralnik and G. Karypis, “A scalable algorithm for clustering
sequential data,” in Proc. IEEE Int. Conf. Data Mining, 2001,
pp. 179–186.

[22] S. Rangavittal et al., “RecoverY: k-mer-based read classification for
Y-chromosome-specific sequencing and assembly,” Bioinformatics,
vol. 34, no. 7, pp. 1125–1131, 2017.

[23] M. Spiliopoulou, “Managing interesting rules in sequence min-
ing,” in Proc. 3rd Eur. Conf. Princ. Data Mining Knowl. Discov.,
1999, pp. 554–560.

[24] IUPAC-IUB Commission on Biochemical Nomenclature, “Abbre-
viations and symbols for nucleic acids, polynucleotides, and their
constituents,” Biochemical, vol. 9, no. 20, pp. 4022–4027, 1970.

[25] F. Biessmann, D. Salinas, S. Schelter, P. Schmidt, and D. Lange,
“Deep” learning for missing value imputation in tables with non-
numerical data,” in Proc. 27th ACM Int. Conf. Inf. Knowl. Manage.,
2018, pp. 2017–2025.

[26] C. Fiot, A. Laurent, and M. Teisseire, “Approximate sequential
patterns for incomplete sequence database mining,” in Proc. IEEE
Int. Fuzzy Syst. Conf., 2007, pp. 1–6.

[27] E. Bier, R. Chow, P. Golle, T. H. King, and J. Staddon, “The rules of
redaction: Identify, protect, review (and repeat),” IEEE Secur. Pri-
vacy, vol. 7, no. 6, pp. 46–53, Nov./Dec. 2009.

[28] R. Li et al., “SOAP2: An improved ultrafast tool for short read
alignment,” Bioinformatics, vol. 25, no. 15, pp. 1966–1967, 2009.

[29] H. Li and R. Durbin, “Fast and accurate long-read alignment
with burrows-wheeler transform,” Bioinformatics, vol. 26, no. 5, pp.
589–595, 2010.

[30] V. Brendel, J. S. Beckmann, and E. N. Trifonov, “Linguistics of
nucleotide sequences: Morphology and comparison of vocab-
ularies,” J. Biomol. Struct. Dyn., vol. 4, no. 1, pp. 11–21, 1986.

[31] M. R�egnier and M. Vandenbogaert, “Comparison of statistical sig-
nificance criteria,” J. Bioinf. Comput. Biol., vol. 4, no. 2, pp. 537–552,
2006.

[32] J. W. Grzymala-Busse and M. Hu, “A comparison of several
approaches to missing attribute values in data mining,” in Proc.
Int. Conf. Rough Sets Curr. Trends Comput., 2001, pp. 378–385.

[33] M. R. Garey and D. S. Johnson, “Strong” NP-completeness results:
Motivation, examples, and implications,” J. ACM, vol. 25, no. 3,
pp. 499–508, 1978.

[34] M. Cygan et al., Parameterized Algorithms. Berlin, Germany:
Springer Publishing Company, Incorporated, 2015.

[35] G. Bernardini et al., “Hide and mine in strings: Hardness and algo-
rithms,” in Proc. IEEE Int. Conf. Data Mining, 2020, pp. 924–929.

[36] C. C. Aggarwal and P. S. Yu, Privacy-Preserving Data Mining: Mod-
els and Algorithms. Berlin, Germany: Springer, 2008.

[37] F. Bonchi and E. Ferrari, Privacy-Aware Knowledge Discovery: Novel
Applications and New Techniques. Boca Raton, FL, USA: CRC Press,
2010.

[38] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserv-
ing data publishing: A survey of recent developments,” ACM
Comput. Surv., vol. 42, no. 4, Jun. 2010, Art. no. 14.

[39] C. C. Aggarwal and S. Parthasarathy, “Mining massively incom-
plete data sets by conceptual reconstruction,” in Proc. 7th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2001, pp. 227–232.

[40] E. C. Stavropoulos, V. S. Verykios, and V. Kagklis, “A transversal
hypergraph approach for the frequent itemset hiding problem,”
Knowl. Inf. Syst., vol. 47, no. 3, pp. 625–645, 2016.

[41] G. Loukides and R. Gwadera, “Optimal event sequence
sanitization,” in Proc. SIAM Int. Conf. Data Mining, 2015,
pp. 775–783.

[42] C. C. Aggarwal and P. S. Yu, “On anonymization of string data,”
in Proc. SIAM Int. Conf. Data Mining, 2007, pp. 419–424.

[43] M. Terrovitis, G. Poulis, N. Mamoulis, and S. Skiadopoulos,
“Local suppression and splitting techniques for privacy preserv-
ing publication of trajectories,” IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 7, pp. 1466–1479, Jul. 2017.

[44] L. Bonomi and L. Xiong, “A two-phase algorithm for mining
sequential patterns with differential privacy,” in Proc. 22nd ACM
Int. Conf. Inf. Knowl. Manage., 2013, pp. 269–278.

[45] R. Chen, G. Acs, and C. Castelluccia, “Differentially private
sequential data publication via variable-length n-grams,” in Proc.
ACM Conf. Comput. Commun. Secur., 2012, pp. 638–649.

[46] S. Xu, X. Cheng, S. Su, K. Xiao, and L. Xiong, “Differentially pri-
vate frequent sequence mining,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 11, pp. 2910–2926, Nov. 2016.

[47] L. Bonomi, L. Fan, and H. Jin, “An information-theoretic approach
to individual sequential data sanitization,” in Proc. 9th ACM Int.
Conf. Web Search Data Mining, 2016, pp. 337–346.

[48] D. Wang, Y. He, E. Rundensteiner, and J. F. Naughton, “Utility-
maximizing event stream suppression,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2013, pp. 589–600.

[49] H. Chen, C. Dong, L. Fan, G. Loukides, S. P. Pissis, and L. Stougie,
“Differentially private string sanitization for frequency-based
mining tasks,” in Proc. IEEE Int. Conf. Data Mining, 2021,
pp. 41–50.

[50] P. Samarati and L. Sweeney, “Generalizing data to provide
anonymity when disclosing information (abstract),” in Proc. 17th
ACM SIGACT-SIGMOD-SIGART Symp. Princ. Database Syst., 1998,
Art. no. 188.

[51] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in Proc. Theory Cryp-
togr. Conf., 2006, pp. 265–284.

[52] R. Srikant and R. Agrawal, “Mining sequential patterns: General-
izations and performance improvements,” in Proc. Int. Conf.
Extending Database Technol., 1996, pp. 1–17.

[53] R. J. Little and D. B. Rubin, Statistical Analysis With Missing Data,
3rd ed. Hoboken, NJ, USA: Wiley, 2019.

[54] T. Calders, B. Goethals, and M. Mampaey, “Mining itemsets in the
presence of missing values,” in Proc. ACM Symp. Appl. Comput.,
2007, pp. 404–408.

[55] A. A. Ragel and B. Cr�emilleux, “Treatment of missing values for
association rules,” in Proc. 2nd Pacific-Asia Conf. Res. Develop.
Knowl. Discov. Data Mining, 1998, pp. 258–270.

[56] J. Tuikkala, L. Elo, O. Nevalainen, and T. Aittokallio, “Missing value
imputation improves clustering and interpretation of gene expression
microarray data,” BMCBioinf., vol. 9, 2008, Art. no. 202.

[57] B. Dong, S. Xie, J. Gao, W. Fan, and P. S. Yu, “OnlineCM: Real-
time consensus classification with missing values,” in Proc. SIAM
Int. Conf. Data Mining, 2015, pp. 685–693.

[58] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi, “Text com-
pression using antidictionaries,” in Proc. Int. Conf. Automata Lang.
Program., 1999, pp. 261–270.

[59] A. Frank and E. Tardos, “An application of simultaneous diop-
hantine approximation in combinatorial optimization,” Combina-
torica, vol. 7, no. 1, pp. 49–65, 1987.

[60] M. L. Fredman, J. Koml�os, and E. Szemer�edi, “Storing a sparse
table with O(1) worst case access time,” J. ACM, vol. 31, no. 3,
pp. 538–544, 1984.

[61] S. P. Pissis, “MoTeX-II: Structured MoTif eXtraction from large-
scale datasets,” BMC Bioinf., vol. 15, 2014, Art. no. 235.

[62] 2005, Accessed: Mar. 29, 2022. [Online]. Available: https://www.
cs.utah.edu/~lifeifei/SpatialDataset.htm

15

https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

[63] 2019, Accessed: Mar. 29, 2022. [Online]. Available: https://bitbucket.
org/stringsanitization/stringsanitizationpkdd19/src/master/truck_
char.txt

[64] 2000, Accessed: Mar. 29, 2022. [Online]. Available: https://archive.
ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data

[65] 2021, Accessed: Mar. 29, 2022. [Online]. Available: https://
bacteria.ensembl.org/Escherichia_coli_str_k_12_substr_mg1655_
gca_000005845/Info/Index/

[66] 2019, Accessed: Mar. 29, 2022. [Online]. Available: https://bitbucket.
org/stringsanitization/stringsanitizationpkdd19

[67] A. Mortazavi, B. Williams, K. McCue, L. Schaeffer, and B. Wold,
“Mapping and quantifying mammalian transcriptomes by RNA-
seq,” Nature Methods, vol. 5, pp. 621–628, 2008.

[68] G. Shani, C. Meek, and A. Gunawardana, “Hierarchical probabi-
listic segmentation of discrete events,” in Proc. 9th IEEE Int. Conf.
Data Mining, 2009, pp. 974–979.

Giulia Bernardini is an assistant professor with the University of Trieste,
Italy. Her research interests lie in theory of algorithms and their applica-
tion in bioinformatics and data mining.

Alessio Conte is an assistant professor with the University of Pisa, Italy.
His research focuses on efficient subgraph enumeration and mining for
“real-world” networks, with applications such as community detection,
network design or bioinformatics.

Garance Gourdel is currently working towards the PhD degree with
Inria Rennes and ENS, France. Her topics of interest include algorithms
on strings, compact data structures and hashing techniques, as well as
their applications to bioinformatics.

Roberto Grossi is a professor of computer science with the University of
Pisa, Italy. He has authored or coauthored more than 160 articles in the
area of design and analysis of algorithms and data structures.

Grigorios Loukides (Member, IEEE) is an associate professor with
King’s College London, U.K. His research interests are in data privacy,
data mining, and biomedical informatics.

Nadia Pisanti is an associate professor with the University of Pisa, Italy.
Her research is on algorithms for the analysis of (genomic) data.

Solon P. Pissis is a senior researcher with CWI and an associate
professor with the Vrije Universiteit, both in Amsterdam, The Nether-
lands. His research focuses on theory of algorithms and their application
in data mining.

Giulia Punzi is currently working towards the PhD degree with the Uni-
versity of Pisa, Italy. Her research focuses on algorithm design and anal-
ysis, for problems concerning pattern discovery in strings and graphs.

Leen Stougie is a senior researcher with CWI and a professor of
operations research with the Vrije Universiteit, both in Amsterdam,
The Netherlands. He is also a member of the INRIA-Erable team. His
research focuses on the design and analysis of algorithms for optimization.

Michelle Sweering is currently working towards the PhD degree with
CWI. Her research focuses on combinatorial algorithms on strings and
graphs.

16

https://bitbucket.org/stringsanitization/stringsanitizationpkdd19/src/master/truck_char.txt
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19/src/master/truck_char.txt
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19/src/master/truck_char.txt
https://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data
https://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data
https://bacteria.ensembl.org/Escherichia_coli_str_k_12_substr_mg1655_gca_000005845/Info/Index/
https://bacteria.ensembl.org/Escherichia_coli_str_k_12_substr_mg1655_gca_000005845/Info/Index/
https://bacteria.ensembl.org/Escherichia_coli_str_k_12_substr_mg1655_gca_000005845/Info/Index/
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

