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Noisy gates for simulating quantum computers
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We present a novel method for simulating the noisy behavior of quantum computers, which allows to
efficiently incorporate environmental effects in the driven evolution implementing the gates acting on the qubits.
We show how to modify the noiseless gate executed by the computer to include any Markovian noise, hence
resulting in what we will call a noisy gate. We compare our method with the IBM QISKIT simulator, and show
that it follows more closely both the analytical solution of the Lindblad equation as well as the behavior of a
real quantum computer, where we ran algorithms involving up to 18 qubits; as such, our protocol offers a more
accurate simulator for NISQ devices. The method is flexible enough to potentially describe any noise, including
non-Markovian ones. The noise simulator based on this work is available as a PYTHON package at the link,
https://pypi.org/project/quantum-gates.
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I. INTRODUCTION

Quantum computers are on the way; currently they manage
between dozens and hundreds of qubits [1–5], which does not
sound as an impressive number, yet it is already good enough
to perform interesting tasks [6,7]. As powerful as they promise
to be, quantum computers are far from being ideal: since, as
for any quantum system, they can hardly be isolated from the
surrounding environment, they are prone to errors, which limit
their capabilities. Like in the classical case, error correcting
schemes have been developed [8–10] and first tests have been
performed [11,12], but to be implemented they require to the
least thousands qubits, which are not available; for the time
being, we have to cope with errors.

This stage of development is referred to as noisy
intermediate-scale quantum (NISQ) [6,13] era; the major aim
of the research during this near-term period is to maximize
the computational power of current devices in view of the
long-term goal of fault-tolerant quantum computation [1].

It is clear that NISQ computers require a good understand-
ing of how noises affect quantum circuits and, in order to do
so, a proper modeling of the noises is needed. This requires
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essentially two major tasks: understanding the major sources
of noise affecting the qubits, and writing better algorithms for
simulating a given noise model on a classical computer. The
present work deals with this second task.

To date, the simulations of noisy digital gate-based
quantum computers is implemented by adding appropriate
quantum operations before and after each ideal gate [14–16]:
schematically, and working with the density matrix formal-
ism, if an ideal (unitary) gate G is supposed to be executed,
the noises affecting it are modeled by adding appropriate
operations E1 (E2) mimicking the noise, before (after) the gate:

(1)

Such a modeling completely decouples the action of the
controlled operation generating the gate G from that of the
environment. This approximation works well if G acts al-
most instantaneously with respect to the noise, i.e., if the
gate time tg required to implement the gate is much smaller
than the characteristic timescales of the system-environment
interaction. For instance, in IBM’s superconducting devices
[17] tg ∼ 10−8 s, while typical environmental effects such as
relaxation and phase damping have characteristic times of or-
der T1, T2 ∼ 10−4 s. This justifies why this approach has been
implemented by the majority of available noise simulators of
NISQ computers (see Table I in Appendix H).

Yet this approach has some limitations. By separating the
action of the gate from that of the noise, it does not represent
a faithful description of what happens inside a computer,
where the controlled action on the qubit(s) generating the gate
and the environment act simultaneously and potentially affect
each other. Therefore it is expected not to be fully accurate
in describing a NISQ computer, especially when the number
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of gates and qubits is relatively large, which is actually the
regime where simulations are more interesting.

In this paper, we propose an alternative approach, where
the noise is integrated into the logical gates, in the sense
that the resulting noisy gate is computed by solving for
the dynamics generating it, with additional terms describing
the noise added to it:

(2)

where in general G �= E2 ◦ G ◦ E1, and under standard as-
sumptions (e.g., Markovianity) it gives an analytic expression
for the solution of the Lindblad equation obtained with pertur-
bative methods. Now G captures, within the limits of validity
of Lindblad’s equation, the entire physics occurring during
the execution of each gate; not only it offers a more accurate
description of the system and therefore a better protocol for
circuit simulations, but also it helps to understand the different
noises acting on the computer, especially in view of possible
mitigation strategies. This new approach does not have any
computational disadvantage with respect to (1).

As a note, Markovianity, which is the main physical as-
sumption behind the Lindblad equation, and it is a very
convenient working hypothesis, can be released in favour of
more general noises [14,18–22]; we will not touch on this
possibility here, although the generalization of the approach
here introduced is rather straightforward.

Both approaches (1) and (2) have a drawback if they are
implemented at the density matrix level: the simulation will
be slowed down quadratically as a function of the number of
qubits. This drawback can be resolved for (1) by replacing the
superoperations E1,2 acting on the density matrix with suitable
stochastic operations acting on the state vector [23,24]; in this
way, the noisy algorithm becomes random and each single run
of the simulation can be seen as a single run of the algorithm
on the noisy quantum computer. The same strategy can be
adopted for (2); one writes

(3)

where Gξ is a stochastic gate, solution of a stochastic
Schrödinger equation, incorporating both the controlled ac-
tion generating the (otherwise ideal) gate G and the noise.
Here ξ denotes a set of stochastic Gaussian variables, and
stresses the fact that Gξ , and hence |ψ ′

ξ〉, are random; we will
omit to indicate ξ in the rest of the paper. Physical quantities
are obtained by averaging over the noise.

The general procedure therefore is the following. Given a
noiseless algorithm, the corresponding noisy one is obtained
by replacing each ideal gate with a noisy gate. The resulting
noisy algorithm, which is stochastic, is repeated for different
realizations of the random variables, as if they were differ-
ent runs on a physical quantum computer. This produces a
statistics of outcomes, to be compared with those of a real
computer, or to be used to predict the behavior of a future
NISQ device.

As such, as already mentioned, a first application of our
approach is to predict the behavior of NISQ devices, their
potentialities and limitations. However, its use goes beyond
the NISQ-era horizon: by offering a more accurate modeling

of the noise, it allows to better understand the physics under-
lying the functioning of a quantum computer and to enforce
appropriate error mitigation schemes [25–27].

The rest of the paper details this program. We present the
noisy gates method by designing it on the IBM superconduct-
ing computers [17] although the approach is general and can
be used to describe any NISQ quantum platform, once the
native gate set and the proper noise model are defined.

The paper is organized as follows. In Sec. II, we review the
main noises affecting superconducting qubits, and how they
are described within the Lindblad’s formalism; in Sec. III–V,
we present the general derivation of the noisy gates, special-
izing it to the native single and two-qubits noisy gates of IBM
devices. In Sec. VI, we compare the structure of our algorithm
with that of IBM QISKIT.

In Sec. VII, we present the results of the simulations, which
test our algorithm against that of QISKIT in reproducing the so-
lution of the Lindlbad equation, as well as the outcomes from
current IBM quantum computers: the simulations show that
the proposed method is more accurate and precise compared
to that of QISKIT in reproducing the Lindblad equation, with
an average improvement between 50% and 90% and more.

The improvement in simulating the real device fluctuates
between 10% and 30%, because the underlying noise mode
is not accurate enough, and also because the devices are not
really stable; for a large number of qubits it becomes even
lower because the number of runs of the device, which are
necessary to recover a good statistic, is too high. In both cases,
this is not a limitation of our algorithm, but of the physical
model describing the computer.

We conclude our paper with some general remarks and an
outlook.

II. REVIEW OF THE NOISE MODEL

The noises which are more relevant in the functioning of
superconducting devices have already been characterized in
literature [15,16,28]; in this section, we briefly present them.
With good approximation they are described by a Lindblad
dynamics [29,30]:

dρs

ds
= − i

h̄
[Hs, ρs] + D(ρs); (4)

here, Hs is the Hamiltonian of the system which implements
the ideal gate, and D(ρ) is a Lindblad term describing the
effect of the environment. For convenience, we will describe
the evolution with a time schedule s ∈ [0, 1], defined as s =
t/tg, where tg is the duration of a gate.

Apart from state preparation and measurement (SPAM) er-
rors, which happen at the very beginning and very end, during
the execution of an algorithm there are two main sources of
noise, namely, depolarization and relaxation [28,31]. The first,
which can be ascribed to the imperfections of the device, tends
to bring the state towards the totally mixed one, 1/

√
N , where

N = 2n and n is the number of qubits; for the single qubit, this
can be modeled by the following Lindblad term [15,16],

Dd (ρ) = γd

3∑
k=1

[σ kρσ k − ρ], (5)

043210-2



NOISY GATES FOR SIMULATING QUANTUM COMPUTERS PHYSICAL REVIEW RESEARCH 5, 043210 (2023)

where σ 1 = X , σ 2 = Y, σ 3 = Z are the standard Pauli matri-
ces and γd � 0 is the rate at which depolarization occurs.

The second type of noise is due to the interaction of the
physical qubits with the surrounding environment; in par-
ticular, due the thermalization towards an equilibrium with
the environment, energy exchanges occur. In the scenario of
interest, this induces the decay of a qubit towards the ground
state |0〉, an effect which is also known as amplitude damping
[15,16]. This damping is characterized by a relaxation time
T1, which identifies the scales at which the initial state decays
towards |0〉; it causes also a damping of the off-diagonal
elements of the density matrix in terms of dephasing, which
(if only amplitude damping is acting) has a characteristic time
2T1. However, at the same time also a contribution of pure
dephasing must be taken in account, resulting in an effective
dephasing rate 1/T2 � 1/2T1. When also T1 � T2 holds (and
this is the case of interest to us), the combined action of these
two effects, that from now on we will refer to as relaxation
or amplitude and phase damping, can be described by the
following Lindblad term:

Dr (ρ) = γ1
[
σ+ρσ− − 1

2 {P(1), ρ}] + γz[ZρZ − ρ], (6)

where we use the convention σ± = (X ± iY )/2 and P(1) =
|1〉 〈1| is the projector onto |1〉; the coefficients are related
to the characteristic times as γ1 = tgT −1

1 and γz = tg(2T1 −
T2)/4T1T2.

We will consider both sources of noise together, meaning
that the Lindblad term is D(ρ) = Dd (ρ) + DR(ρ), which can
be diagonalized in the canonical Lindblad form by standard
procedures. Eventually one obtains the Lindblad term

D(ρ) = ε2
3∑

k=1

[
LkρL†

k − 1

2
{L†

k Lk, ρ}
]
, (7)

where the non-normalized Lindblad operators are

L1 =
√

λ1

λ
σ−, L2 =

√
λ2

λ
σ+, L3 =

√
λ3

λ
Z; (8)

here, we set λ1 = 2γd , λ2 = 2γd + γ1, λ3 = γd + γz and λ =
λ1 + λ2 + λ3, and we defined the parameter ε = √

λ. As
mentioned in the Introduction, in the case of IBM’s super-
conducting devices the typical order of magnitude of the
decoherence times is ∼10−4 s; by contrast, the typical order of
magnitude of the time to execute a gate is tg ∼ 10−8 s, which is
small compared to T1,2; in particular, one has γd , γ1, γz � 1,
which leads to ε = √

λ � 1. This justifies the perturbative
expansion we will implement later.

While terms of the form (7) describe the dissipation
occurring at the single-qubit level, one straightforward gen-
eralization to the multiqubit case (the one we will consider in
this work) is obtained via the direct sum

D(ρ) =
n⊕

k=1

D(k)(ρ), (9)

where the upper index (k) indicates that the Lindblad term (7)
acts on the kth qubit. Such a generalization is based on the
assumption that single-qubit noises are dominating, therefore
neglecting cross talks and correlated noises [32]; they can
straightforwardly be implemented in our noisy framework,

and they will be the subject of future research. We stress that
through Eq. (9) we already account for the fact that (for in-
stance, on IBM’s devices) multiple-qubit operations are more
faulty than single-qubit manipulations: when entangling gates
are performed, single-qubit noises act together, and errors
therefore amplify.

Before proceeding, one further comment is in order. Cast-
ing the behavior of a real quantum device in a theoretical
model is a hard task, and the more accurate the model, the
less general it is. As remarked in the Introduction, the purpose
of this work is not that of finding the best noise model for
a given quantum computer; rather, given a noise model, we
are interested in the best way to simulate the device. The
noise model we are considering here is therefore ultimately
motivated by the fact that it is accurate enough to already
give appreciable results in the simulations, but on the other
hand it is also simple enough to efficiently enlighten our main
points, and general enough to be readily extended to different
platforms. It is understood that better results can be achieved
only by specializing more the analysis on physical device to
be considered.

III. GENERAL DERIVATION OF NOISY GATES

Let us consider the situation in which the computer exe-
cutes a gate Ug on a set of n qubits. This is achieved by driving
the system with an Hamiltonian Hs for s ∈ [0, 1], which will
induce some unitary evolution Us, defined by ih̄dUs/ds =
HsUs, and such that Us=1 = Ug. However, if noises and im-
perfections are taken in account, this coherent evolution is
replaced by a partially noncoherent one, which under the
assumptions of Markovianity (and complete positivity) is de-
scribed by a master equation of the form (4) discussed in
the previous section, with the Lindblad term given, in our
case, by (9) and (7), which needs to be solved in place of the
Schrödinger equation. We recall here that the coefficient ε is
small, ε � 1.

In order to switch from the density matrix formalism to
the state vector formalism, we perform a linear stochastic un-
raveling of the Lindbald equation [19,33–36]; specifically we
consider the following Itô stochastic differential equation for
the state vector [37]:

d |ψs〉 =
[
− i

h̄
Hsds +

N2−1∑
k=1

[
iεdWk,sLk − ε2

2
dsL†

k Lk

]]
|ψs〉 ,

(10)

where dWk,s are differentials of standard independent Wiener
processes, i.e., stochastic infinitesimal increments such that
E[dWk,s] = 0 and E[dWk,sdWk′,s′ ] = δk,k′ds. Eq. (10) is an un-
raveling of the Lindblad equation in the sense that the density
matrix obtained by averaging the pure states |ψs〉 〈ψs| over the
noise:

ρs = E[|ψs〉 〈ψs|], (11)

is a solution of Eq. (4). In this sense, Eqs. (10) and (4) have
the same physical content; the advantage of the stochastic
unraveling is that it allows to work with Schrödinger-like
equations for the state vector.
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One key property of Eq. (10) is that it is linear, and there-
fore it allows to write the solution as |ψs=1〉 = Ng |ψ0〉, where
Ng can be interpreted as a noisy random gate acting on the sys-
tem. Since Eq. (10) in general does not preserve the norm of
the state vector, the associated gate Ng is not unitary; this is a
consequence of the chosen unraveling: one could have chosen
norm-preserving unravelings [38,39], which however are not
linear and therefore do not allow for a gatelike formulation.
The lack of norm preservation is not a problem since at the
statistical level, i.e., when the average over the noise is taken
as in (11), one recovers the Lindblad equation, which is trace
preserving.

In general, Eq. (10) cannot be solved in a closed form
[37,40] except for few specific cases, for example when all
operators commute. In Appendix A, we show how an approx-
imate solution to order O(ε2) can be derived, which results in
the following expression for the noisy version of a noiseless
gate Ug:

Ng = Uge	e
, (12)

where we defined the deterministic operator

	 := −ε2

2

∫ 1

0
ds

N2−1∑
k=1

[
L†

k,sLk,s − L2
k,s

]
(13)

and the stochastic one


 := iε
N2−1∑
k=1

∫ 1

0
dWk,sLk,s. (14)

Note that in Eqs. (13) and (14), Lk,s = U †
s LkUs are the

Lindblad operators in the interaction picture, therefore the
noiseless part of the dynamics Us and the nosy one given by
the Lindblad operators Lk do not factorize, as it might look
from a naive understanding of Eq. (12).

As explained in Appendix A, we omitted the additional
term −(ε2/2)

∑N2−1
k,l=1

∫ 1
0 dWk,s

∫ s
0 dWl,s′ [Lk,s, Ll,s′ ] in Eq. (14),

which in principle should contribute to order ε2; this is le-
gitimate because it is a nested Itô integral of nonanticipating
functions [37], and hence its stochastic average is 0. For this
reason, it drops from all final averaged quantities, and there-
fore we can neglect it from the start.

Let us also point out that, in the cases of interest to us, the
term (13) can always be exponentiated, so that we will always
be able to directly calculate e	.

The only stochastic term entering the noisy gate Ng is

 in Eq. (14), which is a function of several random vari-
ables ξ arising from the stochastic processes Wk,s. Let us call
Lki j,s = L+

ki j,s + iL−
ki j,s the i jth matrix element of the jump

operator Lk,s in the computational basis, divided in real (+)
and imaginary (−) part, respectively. Then, each entry of the
stochastic matrix is of the form 
i j = iε

∑N2−1
k=1 [ξ+

ki j + iξ−
ki j],

where we defined the random variables

ξ+
ki j =

∫ 1

0
dWk,sL

+
ki j,s, ξ−

ki j =
∫ 1

0
dWk,sL

−
ki j,s, (15)

which, being Itô integrals of deterministic functions, are
all normally distributed with zero mean, E[ξ±

ki j] = 0, and

variances E[(ξ±
ki j )

2] = ∫ 1
0 ds[L±

ki j]
2. Moreover, one can easily

check that they are correlated with each other as

E[ξ±
ki jξ

±
k′i′ j′ ] = δk,k′

∫ 1

0
dsL±

ki j,sL
±
ki′ j′,s. (16)

The random variables giving 
 its stochastic character may
be defined in several other ways, and the best choice depends
on the specific case of interest. In this section, we presented
one general strategy for defining them, but in practice this
lead to an over estimation of the actual number of random
variables needed. By straightforwardly counting, one has at
most 2N2(N2 − 1) real Gaussian random variables for a noisy
gate acting on n = log2 N qubits, each random variable being
correlated with at most other 2N2 − 1 ones. In practice, how-
ever, we immediately point out that one shall expect neither
the number of random variables, nor the number of correla-
tions between them to really follow this scaling. This is mainly
due to the fact that real quantum computers usually perform
single and two-qubit native gates, and single-qubit noises are
dominating. For instance, given (9), one can upper bound the
number of random variables by ∼6N2 log2 N . In the following
sections, as we go through the construction of the native set
of noisy gates for IBM’s quantum computers, we shall make
this claim more clear. Note that our derivation works for any
choice of the starting Lindblad master equation, meaning that
any Markovian noise model can be treated. In particular, while
in this paper, we specialize on the noise model described in the
previous section, one can add device-motivated modifications
(such as correlated noises and leakages to upper levels in the
case of IBM’s platform); modifications of this kind are left to
future research—as also the generalization of our derivation
to non-Markovian situations.

More details on the difference between our perturbative
approximation and the one used in the standard approach (1)
can be found in Appendix B.

IV. SINGLE-QUBIT NOISY GATES

IBM’s superconducting devices implement single-qubit
operations with unitaries of the form U (θ, φ) = e−iθRxy (φ)/2,
where we set Rxy(φ) = cos(φ)X + sin(φ)Y ; such gates are
achieved by driving the system with the Hamiltonian [28,41]

H (θ, φ) = θ h̄

2
Rxy(φ) (17)

applied for a time s = 1.1 The Hamiltonian is driven by time-
dependent pulses [28], so that in Eq. (17) one should actually
consider θ → ωs, and set

∫ 1
0 dsωs = θ . In this work, we con-

sider constant pulses for simplicity, being the generalization
to general functions rather straightforward. It should be noted
that the functional form of ωs affects the action of the noises
on the system, meaning that different pulse shapes might lead
to smaller noise effects, i.e., error mitigation; this is a question
left for future research.

1The native single-qubit gates chosen by IBM are X and SX , which
are rotations around the x axis obtained by fixing φ = 0 in Eq. (17).
Rotations around the z axis are implemented as virtual gates, since
they are mimicked by the software and are not associated to a physi-
cal action on the device [41].
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The task now is to derive the noisy gates N (θ, φ) cor-
responding to the unitaries above, when depolarization and
relaxation errors are both taken in account during the evolu-
tion.

We begin by computing the evolution of the jump operators
in the interaction picture, obtaining the expressions:

σ±
s (θ, φ) = e±iφ

2
[Rxy(φ) ± iR(2s̄θ, φ̄)] (18)

and

Zs = R(2sθ, φ̄), (19)

where we defined R(θ, φ) = cos(θ/2)Z + sin(θ/2)Rxy(φ)
and for a generic angle α we set ᾱ = α + π/2. Then, based
on Eq. (12), we compute the deterministic, nonunitary term
	(θ, φ). Since in the interaction picture the evolution is
unitary, one sees that the term corresponding to k = 3 is al-
ways vanishing, and one has 	(θ, φ) = − 1

2

∫ 1
0 ds[ε2

1σ
+
s σ−

s +
ε2

2σ
−
s σ+

s ], where we set ε2
k ≡ ε2λk/λ. Hence, we first calcu-

late σ±
s σ∓

s = U †
s σ±σ∓Us, and after integration we get∫ 1

0
dsσ±

s σ∓
s = 1

2

[
1 ± sin(θ/2)

θ/2
R(θ, φ̄)

]
, (20)

where R(θ, φ) = cos(θ/2)Z + sin(θ/2)Rxy(φ) and φ̄ = φ +
π/2, so that one has

	(θ, φ) = −ε2
1 + ε2

2

4
1 − ε2

1 − ε2
2

4

sin(θ/2)

θ/2
R(θ, φ̄); (21)

such an expression can be readily exponentiated, leading to

e	(θ,φ) = e− ε2
1 +ε2

2
4 [cosh F (θ ) − R(θ, φ̄) sinh F (θ )], (22)

where we defined F (θ ) = ε2
1 −ε2

2
4

sin(θ/2)
θ/2 .

Next, we turn to investigating the stochastic term, 
(θ, φ).
Here, it is convenient to define the following real stochastic
variables:

ξk,+ =
∫ 1

0
dWk,scos(sθ ), ξk,− =

∫ 1

0
dWk,ssin(sθ ), (23)

whose variances are

E
[
ξ 2

k,±
] = 1

2

[
1 ± sin(2θ )

2θ

]
, (24)

while the correlations are

E[ξk,+ξ j,−] = 1 − cos(2θ )

4θ
δk j ; (25)

moreover, we define

ξk,w =
∫ 1

0
dWk,s, (26)

such that E[ξ 2
k,w] = 1, E[ξk,+ξk,w] = sin(θ )/θ and

E[ξk,−ξk,w] = [1 − cos(θ )]/θ .
Summing all terms and rearranging them conveniently, we

arrive at the following expression


(θ, φ) = i f0Z + i f1Rxy(φ) + i f2Rxy(φ̄), (27)

where we defined the following set of complex stochastic
coefficients:

f0 = ε3ξ3,+ − i
eiφε2ξ2,− − e−iφε1ξ1,−

2
, (28)

f1 = eiφε2ξ2,w + e−iφε1ξ1,w

2
, (29)

f2 = ε3ξ3,− + i
eiφε2ξ2,+ − e−iφε1ξ1,+

2
. (30)

Since these quantities are all combinations of Gaussian ran-
dom variables with the correlations previously discussed, they
can be efficiently sampled with known algorithms; then, the
stochastic matrix (27) can be assembled and numerically
exponentiated. Multiplication by the deterministic term (22)
and then by the noiseless gate U (θ, φ) eventually lead to the
noisy gate N (θ, φ) for the single qubit, which, as shown only
depends on eight correlated Gaussian variables.

V. TWO-QUBIT NOISY GATES

On IBM’s quantum chips, two-qubit gates are implemented
by a driven cross resonance [28,41,42]; labeling with an upper
index the qubit each operator acts on, this consists in the
execution of the unitary U (1,2)(θ, φ) = e−iθZ (1)⊗R(2)

xy (φ)/2, which
can be realised by driving the composite system with the
Hamiltonian

H (1,2)(θ, φ) = h̄θ

2
Z (1) ⊗ R(2)

xy (31)

for a duration s = 1, where, from now on, the tensor product
symbol will be dropped, unless otherwise specified. In the
proposed approach we take in consideration only noises acting
on single qubits, so that the Lindblad term reads

D(1,2)(ρ) = ε2
∑

i∈{1,2}

3∑
k=1

[
L(i)

k ρL(i)†
k − 1

2

{
L(i)†

k L(i)
k , ρ

}]
, (32)

where now ρ is the two-qubit statistical operator. The pro-
cedure for calculating the noisy gates is the same as in the
single-qubit case. For simplicity, we assume that the noise
parameters are the same for both qubits.

First, we compute the Lindblad operators on the first qubit
(i = 1) in the interaction picture:

σ±(1)
s = e±isθR(2)

xy (φ)σ±(1), (33)

while Z (1)
s = Z (1) remains constant as it commutes with the

Hamiltonian. For the second qubit (i = 2), one has

σ±(2)
s = e±iφ

2

[
R(2)

xy (φ) ± iZ (1)R(2sθ̄ , φ̄)
]
, (34)

and Z (2)
s = R(2sθ, φ̄), where we defined for convenience

R(θ, φ) = cos(θ/2)Z (2) + sin(θ/2)Z (1)R(2)
xy (φ). (35)

The deterministic term 	(θ, φ), see Eq. (13), can be calcu-
lated straightforwardly, leading to

	(θ, φ) = −ε2
1 + ε2

2

2
1

−ε2
1 − ε2

2

4

[
Z (1) + sin(θ/2)

θ/2
R(θ, φ̄)

]
; (36)

043210-5



GIOVANNI DI BARTOLOMEO et al. PHYSICAL REVIEW RESEARCH 5, 043210 (2023)

notice that again this term can be exponentiated analytically
as all the terms involved commute; in particular, one has

e	(θ,φ) = e−
ε2
1 +ε2

2
2

[
cosh

(
ε2

1 − ε2
2

4

)
1−Z (1)sinh

(
ε2

1 − ε2
2

4

)]

× [cosh F (θ ) − R(θ, φ̄) sinh F (θ )], (37)

where F (θ ) is the same function defined in the single-qubit
case.

In order to efficiently write the stochastic term 
(θ, φ), it
is convenient to define, in analogy with the single-qubit case,
the Gaussian random variables

ξ
(i)
k,+ =

∫ 1

0
dW (i)

k,s cos(sθ ), ξ
(i)
k,− =

∫ 1

0
dW (i)

k,s sin(sθ ) (38)

and

ξ
(i)
k,w

=
∫ 1

0
dW (i)

k,s , (39)

whose correlations are straightforward to calculate and mimic
those already seen in Sec. IV. Then, we can separate 
(θ, φ)
in two parts as 
(1)(θ, φ) + 
(2)(θ, φ); the first is equal to


(1)(θ, φ) = ε3ξ
(1)
3,wZ (1) + ε1

[
ξ

(1)
1,+ + iξ (1)

1,−R(2)
xy (φ)

]
σ−(1)

+ ε2
[
ξ

(1)
2,+ + iξ (1)

2,−R(2)
xy (φ)

]
σ+(1), (40)

while the second part reads


(2)(θ, φ) = i fwR(2)
xy (φ) − f−Z (1)Z (2) + f+Rxy(φ̄)

+ iε3ξ
(2)
3,+Z (2) + iε (2)

3,+Z (1)Rxy(φ̄), (41)

where we defined

fw = 1
2

[
ε1e−iφξ

(2)
1,w + ε2eiφξ

(2)
2,w

]
(42)

and

f± = 1
2

[
ε1e−iφξ

(2)
1,± − ε2eiφξ

(2)
2,±

]
. (43)

Again, as in the single-qubit case, the stochastic matrix

(θ, φ) can be assembled by combining Gaussian ran-
dom variables, and hence it can be efficiently sampled and
numerically exponentiated; this, combined with the term
U (θ, φ)e	(θ,φ), gives the noisy gate for two qubits.

VI. COMPARISON OF THE ALGORITHMS

It is instructive to compare the structure of our approach
to noise simulation with that of noise simulators based on
the standard approach in Eq. (1). As shown in Appendix H
all relevant quantum computing frameworks implement such
standard approach, and we chose IBM’s QISKIT as term of
comparison since it is the most developed one; in the next
section, we will compare also their performances in simulat-
ing the Lindblad equation as well as a real quantum computer.

Both methods rely on the state vector formulation, with
important differences though. According to the QISKIT docu-
mentation [24,43] the noises are implemented by Kraus maps,
which in the density matrix formalism read

E (ρ) =
∑

i

KiρK†
i , (44)

Algorithm 1. QISKIT SIMULATION.

Input: Initial state |ψ0〉, a noiseless circuit C = {U (1), . . . ,U (ng)}
composed by ng gates U (i) and number of samples Ns

for 0 � k � Ns do
while 1 � i � ng do

compute |ψk〉(i) = U (i) |ψk〉(i−1)

compute pj = | 〈ψk |(i) K†
j Kj |ψk〉(i) |2

sample Kj operator from {pj}
update the state to |ψk〉(i) = 1√p j

Kj |ψk〉(i)

end
compute ρk = |ψk〉(ng) 〈ψk |(ng)

end
Output: ρ f = 1

Ns

∑Ns
k=1 ρk

where
∑

i K†
i Ki = 1. The map can be unraveled as a stochastic

map on the state vector by imposing that, at a given time, |ψ〉
changes randomly as follows:

|ψ ′〉 = 1√
p j

Kj |ψ〉 , (45)

with probability

p j = |〈ψ |K†
j Kj |ψ〉|2. (46)

The associate pseudocode is reported in Algorithm 1.
The time complexity of Algorithm 1 is primarily deter-

mined by the matrix vector multiplication step, exhibiting a
complexity of O(22n), where n is the number of qubits. The
space complexity is dominated by the storage of the state
vector and it scales as O(2n). It has to be noted that when the
Kraus operators are not unitary, as for relaxation, one needs to
store the intermediate state vectors, which are necessary in or-
der to compute the probabilites in Eq. (46). This operation has
the same time and space complexity as those of the previous
step. (This can be avoided for mixed unitary error channels:
probabilities are known and independent of the current state.)

Our noisy gates simulation instead is based on the Algo-
rithm summarized in Algorithm 2.

The time complexity of Algorithm 2 is again O(22n), deter-
mined by the matrix vector multiplication step. Analogously,
the space complexity is O(2n). We notice that in Algorithm
2 there is no need to perform the scalar product in Eq. (46).
Moreover, all optimization to reduce the time complexity that
are possible for the first step of Algorithm 1 are also possible

Algorithm 2. NOISY GATE SIMULATION.

Input: Initial state |ψ0〉, a noiseless circuit C = {U (1), . . . ,U (ng)}
composed by ng gates U (i) and number of samples Ns

for 0 � k � Ns do
map a noisy circuit C̃ = {N (1), . . . , N (ng)} on C
sample stochastic processes ξ inside noisy gates N (i)

compute |ψk〉 = N (ng) . . . N (1) |ψ0〉
compute ρk = |ψk〉 〈ψk |

end
Output: ρ f = 1

Ns

∑Ns
k=1 ρk
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Repetition of X gates. (a)–(c) show the time evolution of the ρ00 = 〈0|ρ|0〉 entry of the density matrix. The numerical solution of
the Lindblad equation is displayed in orange (a), that of the noisy gates simulation in blue (b), and that of the QISKIT simulation in red (c).
The noisy gates and QISKIT simulations are obtained with 1000 samples, and qualitatively they reproduce the time evolution of the Lindblad
equation. Vertical dashed lines in the three top panels represent the timescales of relaxation T1 (green), T2 (yellow), and depolarization Td

(grey). (d) shows the Hellinger distances Hng
σ (blue) and Hibm

σ (red) as a function of time. Different curves are obtained from 100 independent
runs of the two methods (for better readability only five are shown), where each simulation is obtained by averaging over 1000 samples. (e)
shows the mean of the Hellinger distances H̄ng

σ , and H̄ibm
σ , obtained from the 100 independent runs, and vertical error bars show their standard

deviations �Hng
σ , �Hibm

σ . The inset displays �Hng
σ and �Hibm

σ as functions of time. (f) shows the relative improvement of the distance H̄ng
σ

with respect to H̄ibm
σ , calculated as |H̄ibm

σ − H̄ng
σ |/H̄ibm

σ . The fact that noises drive the system towards the maximally mixed state is the reason
why the improvement decreases in time. The noisy gates and the standard approaches lead to the same predictions when one is close to
decoherence times, as the noise is dominant over the unitary evolution. In the interesting regime [0, 2000 · tg] before deoherence dominates,
our improvement is always above 60%.

for Algorithm 2. Finally, both algorithms perform samples of
random numbers, but this operation has a constant scaling.

VII. SIMULATIONS

We now study the performances of our noisy gates method,
and compare them with those of QISKIT’s simulator [43]. First,
in Sec. VII A, we test the two approaches against the solution
of Lindblad equation (4), by studying a repeated application
of IBM’s native gate set. Then, in Sec. VII B, we compare the
predictions of both methods with the behavior of an actual
quantum computer, by running the inverse QFT algorithm on
the IBM’s quantum processors ibmq_kolkata and ibmq_oslo.
In Appendix G, we perform the same analysis by running the
GHZ algorithm on ibm_oslo. All simulations are performed
by using the noise model described in Sec. II (see also Ap-
pendices C and D). The implementation of the work proposed
in this paper is open source and available as a PYTHON package
in Ref. [44]. It allows the user to run noisy simulations.

A. Comparison with the numerical solution
of Lindblad equations

First, let us compare our method with the one implemented
in the QISKIT simulator for the task of simulating the Lindblad

equation. To this purpose, we simulate the same Lindblad
equation with both methods, obtaining the density matrix
ρng, from the noisy gates simulation, and the density matrix
ρ ibm from the QISKIT simulation. We then benchmark the
results with the density matrix σ obtained by directly solving
numerically the Lindblad equation with MATHEMATICA [45].
We compare these density matrices by computing the
Hellinger distances Hng

σ = H(ρng, σ ), Hibm
σ = H(ρ ibm, σ )

where the Hellinger distance is defined by

H(ρ, σ ) = 1√
2

√√√√ N∑
k=1

(
√

ρkk − √
σkk )2, (47)

with ρkk (σkk) the diagonal elements of ρ (σ ). Note that
the Hellinger distance is a classical measure of the distance
between the readout probability distributions: while it can-
not be interpreted as a distance between quantum states (it
does not take in account the coherences), it directly com-
pares the concrete outputs of the real device, which are
classical (the oucomes of Z measurements). In Appendix F,
we also compute the fidelities Fng

σ = F (ρng, σ ) and F ibm
σ =

F (ρ ibm, σ ). We run the simulations on both single and two-
qubit gates. Considering the native gate set of IBM’s quantum
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Repetition of CR gates. (a)–(c) show the time evolution of the ρ22 entry of the density matrix for the CR gate with θ = π and
φ = 0. Colors have the same meaning as for Fig. 1. Vertical dashed lines represent the timescales of relaxation, T1 (in green) and T2 (in yellow)
of the target qubit, and depolarization Td (grey). The noisy gates simulations reproduce qualitatively better the time evolution obtained from
the direct numerical solution of the Lindblad equation. (d) and (e) display the Hellinger distances Hng

σ (blue) and Hibm
σ (red) as a function of

time, for a repetition of CR gates. The plots have the same meaning as for Fig. 1. (f) shows the relative improvement of the distance H̄ng
σ with

respect to H̄ibm
σ , calculated as |H̄ibm

σ − H̄ng
σ |/H̄ibm

σ . The fact that noises drive the system towards the maximally mixed state is the reason why
the improvement decreases in time. The noisy gates and the standard approaches lead to the same predictions when one is close to decoherence
times, as the noise is dominant over the unitary evolution. In the interesting regime [0, 100 · tg], our improvement is always above 88%.

computers, {Rz(φ), X, SX , CNOT}, we remind that Rz(φ) are
implemented as virtual gates [28,41], i.e., they are noiseless,
and the CNOT gates are implemented by combining single-
qubit gates in Eq. (17) and CR gates in Eq. (31) [28,41,46].
Moreover, X and SX gates are both rotations around the x axis
for different values of θ , see Eq. (17). Thus for our purposes,
it is sufficient to simulate the X, CR, and CNOT gates affected
by noises.

Single-qubit simulations. We first simulate a repetition of
X gates, each of which can be obtained by setting θ = π and
φ = 0 in Eq. (17); we initialize the qubit in |0〉 and we use the
qubit noise parameters of ibmq_manila (more details on the
device can be found in Appendix E). We evolve the state of
the qubit for a time T = N tg, with N = 15 000. In the upper
panels of Fig. 1, we plot the time evolution of the population
of the ground state, ρ00 = 〈0|ρ|0〉, as obtained with the three
methods. In the noiseless case, ρ00 should oscillate between
0 and 1 with period 2tg, as at each step of tg a complete X
rotation is performed; in the presence of noises, the oscil-
lations are damped due to the relaxation of the qubit, while
the depolarization drives probabilities towards the asymptotic
value ρ00 → 0.5.

Both our simulation and that obtained using QISKIT’s sim-
lulator qualitatively reproduce this behavior. In Fig. 1, we have
also highlighted with dashed vertical lines the characteristic
times of relaxation and depolarization (see the caption); for
times approaching these values the state is not a reliable quan-
tum state anymore, as the density matrix becomes completely

mixed. Given this consideration, in the lower plots we stop at
N = 2000.

In order to inspect which of the two models reproduces
more accurately and precisely the Lindblad evolution, we have
run 100 independent simulations with both the noisy gates
simulator and the QISKIT simulator, computing for each run
the Hellinger distances Hng

σ , Hibm
σ . We computed the means

over the 100 independent simulations, H̄ng
σ , H̄ibm

σ and the
standard deviations �Hng

σ , �Hibm
σ . These quantities are shown

in the lower panels of Fig. 1. During the relevant time interval
[0, T ] the Hellinger distance of the noisy gates simulator is
closer to zero, than that obtained with the QISKIT simulator.
Both results are compatible within the error bars, however the
standard deviations associated to the noisy gates simulations
are significantly smaller than those associated to the QISKIT

simulations, as also highlighted in the inset of Fig. 1(e). We
notice that the difference between H̄ng

σ and H̄ibm
σ is of the order

∼10−3–10−2, and this corresponds to a relative improvement,
calculated as |H̄ibm

σ − H̄ng
σ |/H̄ibm

σ , in the range from 90% to
60% as time increases. The relative improvement is shown in
Fig. 1(f). The fact that noises drive the system towards the
maximally mixed state is the reason why the improvement
decreases over time. The noisy gates and the standard ap-
proaches lead to the same predictions when one is close to
decoherence times. Indeed after such times the strength of the
noise is dominant over the unitary evolution, or the Hamil-
tonian contribution is negligible with respect to the Lindblad
term [see Eq. (4)], which is the same in the two approaches.
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Repetition of CNOT gates. (a)–(c) show the time evolution of the ρ22 entry of the density matrix for the CNOT gate. Colors have the
same meaning as for Fig. 1. The noisy gates simulations reproduce qualitatively better the time evolution obtained from the direct numerical
solution of the Lindblad equation. (d) displays mean of the Hellinger distances H̄ng

σ (blue) and H̄ibm
σ (red) and their standard deviations as

functions of time. (e) shows the relative improvement. The fact that noises drive the system towards the maximally mixed state is again the
reason why the improvement decreases in time: the noisy gates and the standard approaches lead to the same predictions when one is close
to decoherence times, as the noise is dominant over the unitary evolution. In the interesting regime [0, 100 · tg], our improvement is always
above 55%. The upper subplots of (f) show the time evolution of the ρ11 entry of the density matrix for the same sequence of CR gates in
Fig. 2 and the lower subplots show the time evolution of the ρ11 entry of the density matrix for the sequence of CNOT gates. Colors have the
same meaning as for Fig. 1. For the CR gates, the QISKIT simulation of ρ11 is visibly different from the Lindblad evolution, thus explaining the
higher improvement of the noisy gates simulation in the Hellinger distance in Fig. 2.

In the interesting regime [0, T ], our improvement is always
above 60%. In Appendix F we repeat a similar analysis for
the fidelities.

Two-qubit simulations. Next, we simulate a repetition of
Cross-resonance gates as defined in Eq. (31), where we choose
φ = 0 and θ = π . We initialize the system in the state |10〉
and we use the qubit noise parameters of ibmq_manila. In
the three upper panels of Fig. 2 we show the time evolution
of the entry ρ22 = 〈10|ρ|10〉; the x axis is normalized in
terms of the two-qubit gate time tg. The two-qubit state goes
asymptotically towards the completely mixed state as ρ22

reaches the asymptotic value 0.25. The probability ρ22, which
in the ideal case should flip between one and zero, is again
damped over time by relaxation effects. Again, we have high-
lighted with vertical dashed lines the characteristic timescales
of the noises, showing only the T1 and T2 values of the
target qubit as representative values. The depolarizing error
is the dominant one, spoiling the quantum state already after
∼100 CR gates; for this reason, the lower panels we consider
a total duration N ∼ 100. As before, we report the Hellinger
distances, showing the different results of 100 independent
simulations together with their mean and standard deviation
in the three lower panels of Fig. 2.

As in the single-qubit case, within the relevant time interval
[0, T ] the Hellinger distances obtained with the noisy gates

simulations are closer to zero than those obtained with the
QISKIT simulator. However now, differently from the single-
qubit case, the two results are not compatible within error
bars. Moreover the difference between H̄ng

σ and H̄ibm
σ is now of

the order ∼10−1. This corresponds to a relative improvement
in the range from 90% to 88% as time increases, shown in
Fig. 2(f). In the interesting regime [0, T ] our improvement is
always above 88%. We notice that in Fig. 2(e) the value of
H̄ibm

σ approaches that of H̄ng
σ for times close to 100 CR gate

times. The reason why this happens is the same explained
above for the single-qubit case. In Appendix F we repeat a
similar analysis for the fidelities.

We then perform the analysis for a repetition of CNOT
gates, for an initial state given by |10〉 and qubit noise param-
eters of ibmq_quito (see Appendix E). We notice that in this
simulation we implement each CNOT gate directly without
expressing it as a combination of single-qubit gates and CR
gates, as it is done in IBM devices. We make this choice
because in this way it is easier to solve numerically the target
Lindblad equation. At each time step of the evolution we
simulate a circuit with an increasing number of CNOT gates
and measurements at the end. Thus we add SPAM channels
(see Appendices C and D) to model measurements errors. This
allows to extend the analysis to runs on real hardware, that
involve measurements, as we will show later in Sec. VII B. In
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(a) (b)

(c) (d)

FIG. 4. Repetition of CNOT gates. (a) shows the Hellinger dis-
tance Hχ

σ between the Lindblad evolution and ibmq_quito for the
repetition of CNOT gates. (b) shows the mean Hellinger distance
H̄ng

χ and the standard deviations between the noisy gates sim-
ulation and ibmq_quito. (c) shows the mean Hellinger distance
H̄ibm

χ and the standard deviations between the QISKIT simulation
and ibmq_quito. (d) shows the relative improvement calculated as
|H̄ibm

χ − H̄ng
χ |/H̄ibm

χ . The relative improvement is around 10%. The
smaller relative improvement with respect to those shown in the
previous figures, is mainly due to additional noises present in ibmq
devices, i.e., crosstalks, correlated noises, and coherent errors.

the three upper panels of Fig. 3, we show the time evolution of
the ρ22 = 〈10|ρ|10〉 entry of the density matrix. The relevant
time interval is again given by a total duration of N ∼ 100
gates. Indeed the depolarizing error in this case spoils the
quantum state after ∼120 CNOT gates. Figure 3(d) shows
the mean of the Hellinger distances H̄ng

σ (in blue) and H̄ibm
σ

(in red) and their standard deviations �Hng
σ and �Hibm

σ , also
shown in the inset. Once more, within the relevant time in-
terval [0, T ] the Hellinger distances obtained with the noisy
gates simulations are closer to zero than those obtained with
the QISKIT simulator and the difference between H̄ng

σ and
H̄ibm

σ is of the order ∼10−2. This corresponds to a relative
improvement in the range from 80% to 55% as time increases.
This is shown in Fig. 3(e). In the interesting regime [0, T ]
the relative improvement is always above 55%. By looking
at Figs. 2(e) and 3(d), we notice that the improvement in the
Hellinger distance gained by using the noisy gates approach
is much higher for CR gates with respect to CNOT gates. The
reason why this happens is clarified in Fig. 3(f). The panel
consists of two upper subplots showing the time evolution of
the ρ11 entry of the density matrix for the CR gates and two
lower subplots showing the time evolution of the ρ11 entry
of the density matrix for the CNOT gates. Similarly to the
convention used above, orange curves are obtained with the
numerical solution of the Lindblad equation, blue curves are
obtained with the noisy gates simulations and red curves are
obtained with QISKIT simulations. The noisy gates simulations
make good predictions for both gate sequences, as the blue
curves follow closely the orange curves. On the other hand,
the QISKIT simulation for the CR gates is visibly different from
the numerical solution of the Lindblad equation. This might

be due to the fact that the CR gate is a block diagonal matrix
with X (θ ) in the upper block and X (−θ ) in the lower block
while the CNOT gate is block diagonal with an identity in
the upper block and X (θ ) in the lower block. The identity
in the CNOT might lead to a lower influence of noises on
the ρ00 and ρ11 entries of the density matrix. These observa-
tions explain why the Hellinger distances obtained with the
noisy gates in different simulations are very good and simi-
lar to each other, while the Hellinger distance obtained with
QISKIT is better for the CNOT with respect to the CR. Nev-
ertheless, the noisy gates approach always outperforms the
standard one by a significant amount, as shown by the relative
improvements.

B. Comparison with the behavior of a real quantum computer

Now, we inspect the performances of the noisy gates
approach when trying to reproduce the behavior of a real
quantum computation. To this purpose, we first extend the
analysis of the CNOT gates sequence in Sec. VII A, and then
we focus on the inverse quantum Fourier transform (QFT†).
When dealing with a real hardware, we must take into ac-
count that the noise model we implement in this analysis
(see Sec. II) might not be accurate enough in describing the
device, and that different quantum devices might behave very
differently from one another. As we will show, despite the
choice of a simple noise model and the instability of ibmq
devices, our approach is still able to outperform the standard
one also when compared with the real hardware.

CNOT simulations. We run the sequence of CNOT gates
of Sec. VII A on ibmq_quito, available on the cloud and
comprising seven superconducting transmon qubits [47] (see
Appendix E) and we reconstruct the density matrix χ obtained
from the physical device, to be compared with the density
matrices ρng, ρ ibm and σ obtained for the CNOT simulations
discussed in Sec. VII A. We remark again that for the CNOT
simulations of Sec. VII A, we implemented each CNOT gate
directly without expressing it as a combination of single-qubit
gates and CR gates, as it is done in IBM devices, because in
this way it is easier to solve numerically the target Lindblad
equation. We create a list of circuits, each consisting of an
increasing number of CNOT gates, and measure each circuit
1000 times to obtain the output probability distributions, thus
deriving the evolution of the outcome probabilities as the
number of gates increases. As noted above, since each circuit
involves measurements we added a SPAM error to model
measurement errors.

The Hellinger distance Hχ
σ = H(χ, σ ) between the Lind-

blad evolution and the evolution obtained with ibmq_quito is
shown in Fig. 4(a). This distance is three to tens time larger
with respect to H̄ng

σ and H̄ibm
σ that are shown in Fig. 3(d).

While the standard approach and the noisy gates approach
have a certain level of agreement with the Lindblad equa-
tion, the latter is deviating from the quantum hardware by
a significantly higher level. This is also the reason why
it is not possible to appreciate the difference between the
mean Hellinger distance H̄ng

χ = H̄(ρng, χ ) of the noisy gates
with ibmq_quito and the mean Hellinger distance H̄ibm

χ =
H̄(ρ ibm, χ ) of QISKIT with ibmq_quito, as shown in Figs. 4(b)
and 4(c). Figure 4(d) shows the relative improvement with
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(a) (b) (c)

FIG. 5. Quantum Fourier transform. (a) shows the Hellinger distances between the noisy gate approach and ibmq_oslo, and between the
QISKIT simulator and ibmq_oslo, when executing the QFT† algorithm for n = 2, . . . , 5 qubits. Each value is the mean of 100 independent
simulations for the noisy gates (blue) and for the QISKIT simulations, in red. The left inset shows the relative improvement, calculated as
|H̄ibm

χ − H̄ng
χ |/H̄ibm

χ , while the right inset shows the standard deviations as functions of the number of qubits. (b) is the same as (a), with
ibmq_oslo replaced by ibmq_kolkata and the number of qubit going up to 8. In (c), the comparison presented in (b) has been repeated a second
time on ibmq_kolkata; in this case, only a single simulation of 1000 samples is considered. The inset shows the relative improvement.

respect to the device, which is calculated as |H̄ibm
χ −

H̄ng
χ |/H̄ibm

χ . The relative improvement is around 10%. The
smaller relative improvement with respect to those shown in
the previous Sec. is only to a small extend due to the fact
that we do not decompose CNOT gates. The main reason, as
we explain when discussing the simulations of the QFT (see
below), is that additional noises are present in ibmq devices,
i.e., crosstalks, correlated noises, and coherent errors [48,49].
The simple noise model that we consider in this work does not
take such noises into account.

QFT simulations. The (QFT†) is a subroutine of many
important quantum algorithms, as for example the Shor’s
algorithm [50,51]. An important feature of QFT† is that the
circuit for n qubits is readily extendable to n + 1 qubits;
thus we can efficiently test the robustness of the method
as the circuit’s width and depth increase. We run QFT†

for n = 2, . . . , 5 on ibmq_oslo and for n = 2, . . . , 18 on
ibmq_kolkata. These devices are available on the cloud,
comprising respectively 7 and 27 superconducting transmon
qubits [47], see Appendix E for further details. We set as
input of QFT† the state |+〉⊗n, obtained by applying a layer
of Hadamard gates on each qubit initialized in |0〉. In this
way, the ideal output of QFT† should be |0〉⊗n. Runs on real
quantum computers are performed by taking 1000 shots, i.e.,
measurements. We also run the corresponding noisy gates and
QISKIT simulations. (In Appendix G, we perform a similar
analysis for the GHZ algorithm [52].)

Implementing QFT† circuit on ibmq devices requires to
transpile the circuit into their native gate set. We have defined
a custom noise model in QISKIT, by adding after each gate of
the transpiled circuit the depolarizing and relaxation channels,
and the SPAM channel before measurements, see Appendix C.
Similarly, in the noisy gates simulation each gate is replaced
with its noisy version according to the noise model in Sec. II.
During idle-times of qubits we put the relaxation noise gates
(see Appendix D) in order to take into account the stand-by
times of the physical qubits; before measurements, we apply
SPAM noise gates (see Appendix D) which accounts for read-
out errors. In these simulations, the CNOT gates inside the
circuits are decomposed in terms of single-qubit and CR gates,
as in ibmq devices.

In order to measure the performance of different ap-
proaches in simulating the behavior of the quantum computer,
we look at their distance with the outcomes of the real device;
this is achieved by computing the Hellinger distance between
the probability distributions, and it can be done without per-
forming full tomography on the quantum states, which scales
exponentially with the number of qubits and becomes unfea-
sible for the current simulations.

In Fig. 5(a) , we plot the average values of Hng
χ =

H(ρng, χ ), Hibm
χ = H(ρ ibm, χ ) as the number of qubits n

increases from 2 to 5, where now the diagonal elements of χ

are the outcome probabilities of ibmq_oslo. Figure 5(b) dis-
plays again the average values of Hng

χ = H(ρng, χ ), Hibm
χ =

H(ρ ibm, χ ) up to eight qubits, where now the diagonal
elements of χ come from ibmq_kolkata. As shown in
Fig. 5(c), we compute again Hng

χ , Hibm
χ to test the stability

of ibmq_kolkata in different runs.
As in the previous section, we have run 100 independent

simulations, each including 1000 samples, for both methods
and for each n, in order to compute the standard deviations
�Hng

χ , �Hibm
χ shown in the insets of Fig. 5. Only for Fig. 5(c),

we have run a single simulation of 1000 samples, thus stan-
dard deviations are not present. We notice that for every n
we get H̄ng

χ < H̄ibm
χ and �Hng

χ < �Hibm
χ . The relative im-

provement, shown in green in the insets of of Fig. 5, changes
significantly between different devices and also for the same
device but in different moments, namely, with different noise
parameters, meaning that the performances of such devices
are not very stable. For example, at n = 3, in the left panel,
the relative improvement is ∼25%, in the central panel it is
∼5% and in the right panel it is ∼25%. The highest relative
improvement obtained with the run on ibmq_oslo is ∼30%
and for runs on ibmq_kolkata is ∼35%.

The results show that our method is more accurate than
existing ones. Actually, it reproduces the Lindblad dynamics
better (Figs. 1 and 2) than the dynamics of the quantum de-
vices. The reason, mentioned before, is that quantum devices
are affected by additional and more complicated noises, which
are not taken into account by the noise model we are using; we
stress again that to find a better noise model is not the scope
of this work, and will be subject of future research.
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FIG. 6. Mean Hellinger distances H̄ng
χ and H̄ibm

χ and their stan-
dard deviations �Hng

χ and �Hibm
χ from n = 9 to n = 18 qubits for

the QFT† executed on ibmq_kolkata. Since for n � 9, the depth of
the circuit is such that noises make the resulting probability distri-
bution very flat, 1000 runs of the circuit on the quantum device,
which returns a single computational basis state in each run, are not
sufficient to reconstruct faithfully the probability distribution over the
2n basis states; by increasing the number of qubits, a 0 probability
is associated to an increasing number of basis states. The simulator
instead does does not suffer from this limitation: in each run, it
returns a nonzero value for each possible output. Then the respective
probability distributions differ more and more, and this is the reason
why the Hellinger distance rapidly increases. Despite the fact that
the number of runs of the device is not sufficient to derive clear
conclusions, we notice that the noisy gates approach still performs
better than the standard one.

The simulations on ibmq_kolkata have been extended to 18
qubits to test the computational scalability of the noisy gates
simulator. In Fig. 6, we show the mean Hellinger distances
H̄ng

χ and H̄ibm
χ and their standard deviations �Hng

χ and �Hibm
χ

from n = 9 to n = 18 qubits: simulations apparently become
rapidly bad, since the Hellinger distance approaches 1, its
maximum value. There is a clear reason behind that, which
does not represent a limitation of our simulator. First of all,
for such an high number of qubits, the depth of the transpiled
circuit is so large that noises dominate2 and the resulting prob-
ability distributions are very flat. Then, to recover a faithful
probability distribution over the 2n possible outcomes by the
quantum device, which returns a single outcome in each run,
the number of circuit runs must be significantly larger than 2n.
Therefore, for n � 9, a number of runs equal to 1000 is not
sufficient (and increasing this number becomes soon imprac-
tical): the output distribution from the device is increasingly
dominated by 0’s, while our simulator returns (in general)

2For example, for n = 9, around 50 CNOTs are performed on
almost every pair of connected qubits while for n = 18 more than
100 CNOTs. As one can see in Figs. 2 and 3, when more than 100 CR
or CNOT gates are applied, the total execution time is larger than the
decoherence times. Thus the state of the system approaches rapidly
the maximally mixed state.

a nonzero probability for each output state: this makes the
Hellinger distances of Fig. 6 approach 1. Nevertheless, also
in this case the noisy gates approach performs better than
the standard one, even if the number of runs of the quantum
device are not enough to properly recover the full probability
distribution.

As a final remark, we stress that we obtain better results
with respect to QISKIT, despite the fact that we have chosen
the simplest time dependent pulse shape in the Hamiltonians
[see Eqs. (17) and (31)].

VIII. CONCLUSIONS AND OUTLOOK

We have developed a novel approach, called noisy quantum
gates, to improve classical simulations of NISQ computers: it
is based on integrating the noise into the gates, rather than
keeping gates and noise as two separate dynamics. We have
shown that our approach is very successful in simulating
the Lindblad dynamics, with a relative improvement between
50% and 90% and more, compared with the standard gate-
noise separation method.

When compared against real quantum devices, the im-
provement fluctuates between 10% and 30%; this is largely
due to the fact that the underlying noise model is too simple to
accurately represent the dynamics of the device, as discussed
in connection to the simulation of the CNOT gate. This is not
a weakness of the noisy gate approach here presented, but of
the underlying noise model, which we used since it is rather
standard in the literature.

There is a number of potential improvements that can be
straightforwardly implemented; all of them require an update
of the noise model, not of the simulation strategy, which is
already very good. First of all, there are likely additional
single-qubit errors which should be taken into account, for
example those induced by the driving pulses. Secondly, in
the present work we considered only noncorrelated single-
qubit errors, but the method can easily accommodate also
correlated two-qubit errors [48,53] by introducing proper cor-
related noises into the stochastic equations. Another possible
extension of the approach is to add in the Hamiltonians small
interactions between adjacent qubits in order to mimic cross
talk errors [49,54]. Last, the current version of the noisy gates
approach relies on the Lindblad equation that works in the
Markovian limit; this is reflected in the fact that we used
stochastic equations based on white noises. The approach can
be generalized to non-Markovian dynamics by using colored
noises, as already discussed in the literature in different con-
texts [19–22].

Furthermore, our approach is also useful for other purposes
that go beyond plane error analysis. For example, the shape of
the pulse in the driving Hamiltonians [see Eqs. (17) and (31)],
can affect the noise. In our work we chose for simplicity a
rectangular shape, but usually in real devices different shapes
can be used, for example, Gaussian ones. Consequentially, a
natural application of our approach is error mitigation [55,56],
by optimizing the parameters of the pulse in order to min-
imize the effect of the noise [57–59]; the optimization can
be performed for example by exploiting machine learning
techniques, to find the best pulse parameters, which can be
tested on real quantum hardware.

043210-12



NOISY GATES FOR SIMULATING QUANTUM COMPUTERS PHYSICAL REVIEW RESEARCH 5, 043210 (2023)

In this work, we specified our approach to the native gate
set and noise model of IBM devices; clearly the approach is
general and can be used to describe in principle any NISQ
platform.
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APPENDIX A: DERIVATION OF THE
APPROXIMATE SOLUTION

In this Appendix, let us show how the approximate solution
in Eq. (12) to Eq. (10) can be rigorously derived to order
O(ε2). We propose two different methods.

1. Perturbative expansion in the interaction picture

As a first proof, let us perform the stochastic unraveling
in the interaction picture, hence defining the state quantum
trajectory at any time as |ψs〉 = Us |φs〉, where the state vector
|φs〉 is the solution, at time s, of the Itô equation

d |φs〉 =
⎡
⎣iε

N2−1∑
k=1

dWk,sLk,s − ε2

2

N2−1∑
k=1

dsL†
k,sLk,s

⎤
⎦ |φs〉 ;

(A1)

here, dWk,s are defined as in the main text, and we defined
the jump operators in the interaction picture, Lk,s := U †

s LkUs.
Then, by dividing the time interval s ∈ [0, 1] in infinitesimal
steps of width 1/M and taking the limit M → ∞, formally the
solution to Eq. (10) can be written as

N = Ug lim
M→∞

NM, (A2)

where we defined NM := ∏M−1
m=0 exp [εBm + ε2

2 Am], with

Am = − 1

M

N2−1∑
k=1

[
L†

k,m/MLk,m/M − L2
k,m/M

]
(A3)

and

Bm = i
N2−1∑
k=1

Lk,m/M

∫ (m+1)/M

m/M
dWk,s. (A4)

For general purposes (and, in particular, for ours) N can not
be calculated analytically; hence, we show how to obtain a
general form to the second order in ε (i.e., to first order in λtg).

First, let us prove that the following approximation holds:

NM = e
ε2

2 AM eεBM+ ε2

2 CM + O(ε3), (A5)

where we defined BM = ∑M−1
k=0 Bk , AM = ∑M−1

k=0 Ak , and

CM =
M−1∑
k=0

k∑
j=0

[Bk, Bj] =
M−1∑
k=0

[Bk,Bk]. (A6)

The proof follows by induction. First, one can straight-
forwardly check that Eq. (A5) holds for M = 0; then,
suppose it holds for M̃ = M − 1. Since by definition NM =
eεBM+ ε2

2 AM NM−1, applying the inductive hypothesis one can
see that

NM = 1 + εBM + ε2

2

[
AM + B2

M + CM
] + O(ε3)

= e
ε2

2 AM eεBM+ ε2

2 CM + O(ε3), (A7)

which concludes the proof. Then, inserting (A5) in the formal
expression for N , one can perform the limit M → ∞, ending
up with N = Uge	e
, where we defined

	 = −ε2

2

∫ 1

0
ds

N2−1∑
k=1

[
L†

k,sLk,s − L2
k,s

]
(A8)

and


 = iε
N2−1∑
k=1

∫ 1

0
dWk,sLk,s − ε2

2
C; (A9)

here, C = ∑N2−1
k,l=1

∫ 1
0 dWk,s

∫ s
0 dWl,s′ [Lk,s, Ll,s′ ]. As explained

in the main text, this term can actually be dropped at second
order in ε, leading to the expressions given in (13) and (14).

2. Small noise expansion

A second approach makes use of a perturbative method
known as small noise expansion or asymptotic perturbative
expansion [37]. For simplicity, let us consider the SDE with
one single Lindblad operator,

d |ψs〉 =
[

− i

h̄
Hsds + iεLdWs − ε2

2
L†Lds

]
|ψs〉 , (A10)

the generalization to N2 − 1 Lindblad operators being
straightforward, and let us set the following ansatz:

|ψs〉 = ∣∣ψ0
s

〉 + ε
∣∣ψ1

s

〉 + ε2
∣∣ψ2

s

〉 + · · · (A11)

Substituting this ansatz into Eq. (A10) and equating terms
with the same power of ε, up to second order, we get a system
of SDEs:

d
∣∣ψ0

s

〉 = − i

h̄
Hs

∣∣ψ0
s

〉
ds,

d
∣∣ψ1

s

〉 = − i

h̄
Hs

∣∣ψ1
s

〉
ds + iL

∣∣ψ0
s

〉
dWs,

d
∣∣ψ2

s

〉 = − i

h̄
Hs

∣∣ψ2
s

〉
ds + iL

∣∣ψ1
s

〉
dWs − 1

2
L†L

∣∣ψ0
s

〉
ds,

(A12)

which must be solved with the initial conditions |ψ0
0 〉 = |ψ0〉.

The zeroth-order differential equation is the deterministic one
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given by the Hamiltonian evolution alone, hence its solution
is simply |ψ0

s 〉 = Us |ψ0〉. The first-order SDE is an example
of a time-dependent Ornstein-Uhlenbeck process [37]: the
solution is ∣∣ψ1

s

〉 = iUsSs |ψ0〉 , (A13)

where we defined Ss = ∫ s
0 dWτ Lτ . Finally, the solution to the

second-order SDE is∣∣ψ2
s

〉 = −Us

∫ s

0

[
1

2
L†

s Lsds + LsSsdWs

]
|ψ0〉 , (A14)

where Ls = U †
s LUs. Then, the solution at order ε2 is given by

|ψ1〉 = N |ψ0〉 + O(ε3), where the evolution operator is N =
UgN ′, with

N ′ =
[
1 + εS1 − ε2

∫ 1

0

[
1

2
L†

s Lsds + LsSsdWs

]]
. (A15)

In order to evaluate the solution in the form given in the main
text, we make use of the following equality:∫ τ

0
dWsLsSs = 1

2

[
S2

s +
∫ τ

0
dWs[Ls, Ss] −

∫ τ

0
dsL2

s

]
(A16)

obtained by using the Itô rule [37] for each entry of
the stochastic matrices. Substituting this expression into
Eq. (A15), we get to second order:

N ′ = 1 + iεS1 − ε2

2

[
S2

1 +
∫ 1

0
ds[L†

s − Ls]Ls + C
]

= e	e
 + O(ε3),

where 	, 
, and C = ∫ 1
0 dWs[Ls, Ss] are the same quantities

defined in the main text.

APPENDIX B: COMPARISON OF THE APPROXIMATIONS

We focus on the main differences between the standard ap-
proximation made in error analysis against the one considered
in the noisy gates approach.

Given the following Lindblad master equation:

d

dt
ρt = − i

h̄
[Ht , ρt ] + γL[ρt ], (B1)

where L[ρt ] = Lρt L† − 1
2 {L†L, ρt }, let’s move to the interac-

tion picture by defining χt = U †
t,t0ρtUt,t0 and χt0 = ρt0 . Then

d

dt
χt = γL(t )[χt ], (B2)

where L(t )[χt ] = U †
t,t0L[ρt ]Ut,t0 .

The formal solution of Eq. (B2) is

χt = T
[
eγ

∫ t
t0

dsL(s)]
χt0 , (B3)

where T[·] is the time ordering. Thus, in the Schrödinger
picture, we can write the formal solution of Eq. (B1) as

ρt = Ut,t0 T
[
eγ

∫ t
t0

dsL(s)]
ρt0U

†
t,t0 . (B4)

Standard approximation. The main approximation that can
be found in the literature is to separate the Hamiltonian dy-
namics from the noise one [15,16]. This choice is based on

the observation that in general in quantum devices ω � γ ,
where ω is the pulse frequency of the Hamiltonian. Thus the
noise dynamics can be seen as frozen with respect to the faster
Hamiltonian one. It means that in Eq. (B4) one assumes

L(t ) � L (B5)

getting

ρt � Ut,t0 eγL·(t−t0 )ρt0U
†
t,t0 . (B6)

We notice that indeed in Eq. (B6) the two dynamics are inde-
pendent.

Noisy gates approximation. Also in this case the approxi-
mation is based on ω � γ , but we assume that γ is not small
enough to completely separate the dynamics. An example
of this can be seen in the devices of IBM where the noise
evolution can be influenced in a non-negligible manner by
the pulse of the drive Hamiltonian [46,60]. Thus we make a
first-order approximation over γ in Eq. (B4)

T
[
eγ

∫ t
t0

dsL(s)] � 1 + γ

∫ t

t0

dsL(s), (B7)

and we get

ρt � Ut,t0

(
1 + γ

∫ t

t0

dsL(s)

)
ρt0U

†
t,t0 . (B8)

In Eq. (B8), the noise depends on the Hamiltonian dynamics
through L(s). We stress that the perturbative solution of the
SDE in the noisy gates model reproduce density matrices of
the form of Eq. (B8).

APPENDIX C: KRAUS MAPS USED IN
QISKIT SIMULATIONS

The error channels that we included in the custom QISKIT

noise model are a composition of depolarization and relax-
ation after the gates and bitflip before measurements. With
relaxation we mean the amplitude and phase damping chan-
nel. In this Appendix we show the corresponding Kraus maps
for these channels that are used in QISKIT simulations through
Algorithm 1 in Sec. VI.

1. State preparation and measurement (SPAM)

This kind of error is usually described as a bit flip channel
that acts on a single qubit [16]. Hence, its Kraus representation
reads

E (ρ) = (1 − p)ρ + pXρX, (C1)

where ρ is the density matrix of a single qubit, X is the x-Pauli
matrix and p is the probability of having a flip of the states
of the computational basis. The probability p that we used in
the simulations is the readout error provided as a calibration
parameter for IBM devices, see Appendix E.

2. Depolarization

Depolarization drives the qubit towards the maximally
mixed state [16] and models incoherent gate infidelities. Its
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Kraus representation reads

E (ρ) =
(

1 − 3

4
p

)
ρ + p

4
XρX + p

4
Y ρY + p

4
ZρZ, (C2)

where ρ is the density matrix of a single qubit, X,Y, Z are
the Pauli matrices and p/4 is the equal probability of having
a bit flip, a phase flip or a bit and phase flip of the states
of the computational basis. The probability p that we used
in the simulations is the gate error provided as a calibration
parameter for IBM devices, see Appendix E.

3. Amplitude and phase damping (relaxation)

The amplitude-damping channel describes the decay
|1〉 → |0〉 due to the interaction with the environment; on
the other hand, phase-damping represents the process in
which phase coherences decay over time. Here we briefly
call relaxation the combination of both effects. The Kraus
representation is given by [15,16]

E (ρ) = KρK + p1σ
+ρσ− + pzP1ρP1, (C3)

where we defined

K =
(

1 0
0

√
1 − p1 − pz

)
; (C4)

as usual, σ+ = |0〉 〈1|, σ− = |1〉 〈0| and P1 = |1〉 〈1|. More-
over, p1 = 1 − e−t/T1 is the probability of amplitude damping,
T1 being the relaxation time (the time it takes for the qubit
to decay in the ground state), and pz = (1 − p1)ppd , where
ppd = 1 − e−t/Tpd and Tpd = T1T2/(2T1 − T2), T2 being the
decoherence time. We mention that the timescales T1 and T2

are related as T2 � 2T1. The times T1 and T2 that we used in
the simulations are directly provided as calibration parameters
for IBM devices, see Appendix E.

APPENDIX D: NOISE GATES FOR SPAM AND
RELAXATION ON IDLE QUBITS

In this section, we address SPAM and relaxation noises
on idle qubits, where the corresponding noise gates can be
derived exactly [33,61,62]. We do not consider depolarization
error on idle qubits, because this channel is used to model
incoherent gate infidelities.

1. Noise gate for SPAM

The Kraus map of SPAM is in Eq. (C1) of Appendix C.
Assuming a behavior in time of the form p = (1 − e−2t/T )/2
for a characteristic time T = γ −1, one gets the corresponding
Lindblad master equation

d

dt
ρt = γ (Xρt X − ρt ). (D1)

The associated stochastic differential equation is

d |ψt 〉 =
[

i
√

γ XdWt − γ

2
dt

]
|ψt 〉 . (D2)

This equation is analytically solvable with standard methods
[37,62], and thus we can exactly evaluate the corresponding
noise gate as

NSPAM(t, t0) = ei
√

γ XW̄ (t,t0 ), (D3)

where W̄ (t, t0) := ∫ t
t0

dWs. In this case, the noise gate
happens to be unitary, thus we can interpret it as a
stochastic Schrödinger evolution due to the presence of the
Wiener process W̄ (t, t0). In the simulations, we can directly
sample W̄ (t, t0) from a Gaussian distribution with mean
E[W̄ (t, t0)] = 0 and variance E[W̄ 2(t, t0)] = t − t0.

2. Noise gate for amplitude and phase damping (relaxation)

The Kraus map of the amplitude and phase damping is in
Eqs. (C2) of Appendix C. Defining γ1 = 1/T1, γpd = 1/Tpd ,
the corresponding Lindblad equation is

d

dt
ρt = γ1σ

+ρtσ
− − γ1

2
{P1, ρt } + γpd

4
(Zρt Z − ρt ), (D4)

and the stochastic term of the relative Itô equation reads

dW = i
√

γ 1σ
+dWt,1 − γ1

2
P1dt + i

√
γpd

4
ZdWt,2 − γpd

8
dt .

(D5)

With this stochastic term the Itô equation is analytically solv-
able [40] and we get the following nonunitary noisy gate

Nrelax(t, t0) =
(

eiαW̄2(t,t0 ) iS(t, t0)eiαW̄2(t,t0 )

0 e− γ1
2 (t−t0 )e−iαW̄2 (t,t0 )

)
, (D6)

where we defined for simplicity α := √
γpd/4, and

S(t, t0) = √
γ1

∫ t

t0

e− γ1
2 (s−t0 )e−2iαW̄2 (s,t0 )dWs,1 (D7)

is a complex stochastic Itô process. In principle, such a term
is problematic in view of a simulation, since it is not easy to
sample. To understand this, look, for instance, at the real part,

SR(t, t0) = √
γ1

∫ t

t0

e− γ1
2 (s−t0 ) cos(2αW̄2(s, t0))dWs,1; (D8)

this is an Itô integral of a stochastic function, and it is not easy
to derive its probability distribution; thus, sampling S(t, t0)
may be problematic. We can avoid such a difficulty by ad-
equately substituting Nrelax(t, t0) with some modified noisy
gate, which is equivalent to the former once the average is
carried out, in the sense that Eq. (C3) still holds even if
the new noisy gate is not a solution of the unraveling (D5)
anymore. For instance, it is straightforward to verify that this
holds for the following choice:

Ñrelax(t, t0) =
(

eiαW̄2 (t,t0 ) iS̃(t, t0)e−iαW̄2 (t,t0 )

0 e− γ1
2 (t−t0 )e−iαW̄2 (t,t0 )

)
, (D9)

with the definition

S̃(t, t0) = √
γ1

∫ t

t0

e− γ1
2 (s−t0 )dWs,1; (D10)

i.e., one always has that

E[Nrelax |ψ〉 〈ψ | Nrelax†] = E[Ñrelax |ψ〉 〈ψ | Ñrelax†].

(D11)

The difference is that now the process S̃(t, t0) is just the Itô
integral of a deterministic function, hence we know that it
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(a) (b)

FIG. 7. Fidelities Fng
σ (blue) and F ibm

σ (red) as a function of time, for a repetition of X gates. In (a), the fidelities obtained from 100
independent runs of the two methods are pictured (for better readability only five are shown), where each simulation is obtained by averaging
over 1000 samples. In (b), the means F̄ ng

σ , F̄ ibm
σ of the same simulations and their standard deviations �Fng

σ , �F ibm
σ are displayed. The inset

shows the standard deviations �Fng
σ , �F ibm

σ as functions of time.

(a) (b)

FIG. 8. Fidelities Fng
σ (blue) and F ibm

σ (red) as a function of time, for a repetition of CR gates. (a) and (b) have the same meaning as for
Fig. 7.

(a) (b)

FIG. 9. In (a), probabilities histograms for four qubits of a single independent simulation of the GHZ algorithm. In orange the results for
ibmq_oslo, in blue for the noisy gates and in red for the QISKIT simulator. In (b), Hellinger distance for the GHZ algorithm for n = 2, . . . , 5
qubits. Each value is the mean of 100 independent simulations for the noisy gates (blue) and for the QISKIT simulations, in red. The left inset
shows the relative improvement, calculated as |H̄ibm

σ − H̄ng
σ |/H̄σ ibm, while the right inset shows the standard deviations as functions of the

number of qubits.
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must have a Gaussian statistics [37], which makes it more
convenient for a simulation.

APPENDIX E: DEVICE PARAMETERS

For the simulations in Sec. VII and in Appendix G, we used
the device parameters provided by IBM. Here we report the
average value of such parameters.

ibmq_manila contains five fixed-frequency transmons
qubits [47], with median fundamental transition frequency
of 4.962 GHz and median anharmonicity of −0.34358 GHz.
The median qubit lifetime T1 of the qubits is 149.11 µs,
the median coherence time T2 is 44.43 µs and the me-
dian readout error is 0.0217. The single-qubit gate error
varies between 1.975 × 10−4 and 6.138 × 10−4, while the
CNOT error varies between 7.072 × 10−3 and 1.125 ×
10−2, depending on the specific connection. In the simula-
tions that reproduce the Lindblad equations, parameters of
qubits zero and one were used. ibmq_kolkata contains 27
fixed-frequency transmons qubits, with median fundamental
transition frequency of 5.102 GHz and median anharmonic-
ity of −0.34345 GHz. The median qubit lifetime T1 of
the qubits is 127.39 µs, the median coherence time T2 is
86.41 µs and the median readout error is 0.0132. The single-
qubit gate error varies between 1.443 × 10−4 and 5.410 ×
10−3, while the CNOT error varies between 4.214 × 10−3

and 1 × 10−2, depending on the specific connection. The
qubits, which are used to run QFT† algorithm, belong to the
list [0,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11,8,5,3,2].
ibmq_quito contains 7 fixed-frequency transmons qubits, with
the median fundamental transition frequency of 5.164 GHz
and median anharmonicity of −0.3315 GHz. The median
qubit lifetime T1 of the qubits is 105.84 µs, the median coher-
ence time T2 is 84.05 µs and the median readout error is 0.044.
The single-qubit gate error varies between 3.054 × 10−4 and
6.929 × 10−4, while the CNOT error varies between 9.682 ×
10−3 and 1.463 × 10−2, depending on the specific connec-
tion. The qubits, which are used for CNOT gate sequence
are 0 and 1. ibmq_oslo contains 7 fixed-frequency transmons
qubits, with the median fundamental transition frequency of
5.046 GHz and median anharmonicity of −0.3429 GHz. The
median qubit lifetime T1 of the qubits is 128.12 µs, the me-
dian coherence time T2 is 58.57 µs and the median readout
error is 0.0216. The single-qubit gate error varies between
1.648 × 10−4 and 6.698 × 10−4, while the CNOT error varies
between 6.471 × 10−3 and 2.067 × 10−2, depending on the
specific connection. The qubits, which are used to run GHZ
algorithm, belong to the list [0,1,3,5,4].

APPENDIX F: PLOTS OF THE FIDELITIES OF THE X AND
CR GATES LINDBLAD SIMULATIONS

Here in Figs. 7 and 8, we show the plots of the fidelities
obtained from the simulations in Sec. VII. The fidelity is
defined as

F (ρ, σ ) = (Tr
√

σ 1/2ρσ 1/2)2. (F1)

We notice that when one considers only diagonal density ma-
trices, the fidelity is called Hellinger fidelity and it is related
to the Hellinger distance as F = (1 − H2)2. The Hellinger

fidelity is not a proper mathematical distance, thus in the main
text, we used the Hellinger distance. As one can see the results
are consistent with those in Sec. VII.

APPENDIX G: GHZ SIMULATIONS

In this Appendix, we report the results of the analysis of
the GHZ algorithm in order to inspect the performances of the
noisy gates approach when trying to reproduce the behavior
of a real quantum computer. We run GHZ for n = 2,..., 5
on ibmq_oslo and we set as input the state |0〉⊗n. Runs on
real quantum computer are performed by taking 1000 shots,
i.e., measurements. We also run the corresponding classical
simulations. We use the same custom noise model defined
in Sec. VII in the QFT† case. The resulting probability his-
tograms for four qubits of a single independent simulation
is reported in Fig. 9. We notice that, as for the QFT† case,
for every n we get H̄ng < H̄ibm and �Hng < �Hibm, see
Fig. 9.

APPENDIX H: COMPARISON BETWEEN RELEVANT
QUANTUM COMPUTING FRAMEWORKS ON NOISY

SIMULATIONS

In the following, we report in Table I a list of relevant
quantum computing frameworks where we verify whether
they support noise simulation (NS) and if so whether they
implement the approach described in Eq. (1) of Sec. I that
we call standard approach (SA).

TABLE I. List of relevant quantum computing frameworks. The
fourth column specifies whether the corresponding framework sup-
port noise simulation (NS) while in the fifth column we specify
whether the noise simulation is based on the approach described in
Eq. (1) of Sec. I that we call standard approach (SA).

Company Name Ref. NS SA

IBM QISKIT [63] Yes Yes
Rigetti pyQuil [23] Yes Yes
Quantinuum t |ket〉 [64] Yes Yes
Xanadu Pennylane [65] Yes Yes
Xanadu Strawberry Field [66] Yes Yes
Microsoft Azure Quantum [67] No −
Microsoft LIQUI |〉 [68] Yes Yes
Google Cirq [69] Yes Yes
Google TensorFlow Quantum [70] Yes Yes
Intel Intel QS [71] Yes Yes
Baidu Paddle Quantum [72] Yes Yes
Amazon Braket [73] Yes Yes
− ProjectQ [74] No −
− QiBO [75] Yes Yes
− QCL [76] No −
− Quipper [77] No −
− Quirk [78] No −
− SilQ [79] No −
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