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ABSTRACT
Prophages can have major clinical implications through their ability to change pathogenic bacter
ial traits. There is limited understanding of the prophage role in ecological, evolutionary, adaptive 
processes and pathogenicity of Helicobacter pylori, a widespread bacterium causally associated 
with gastric cancer. Inferring the exact prophage genomic location and completeness requires 
complete genomes. The international Helicobacter pylori Genome Project (HpGP) dataset comprises 
1011 H. pylori complete clinical genomes enriched with epigenetic data. We thoroughly evaluated 
the H. pylori prophage genomic content in the HpGP dataset. We investigated population evolu
tionary dynamics through phylogenetic and pangenome analyses. Additionally, we identified 
genome rearrangements and assessed the impact of prophage presence on bacterial gene 
disruption and methylome. We found that 29.5% (298) of the HpGP genomes contain prophages, 
of which only 32.2% (96) were complete, minimizing the burden of prophage carriage. The 
prevalence of H. pylori prophage sequences was variable by geography and ancestry, but not by 
disease status of the human host. Prophage insertion occasionally results in gene disruption that 
can change the global bacterial epigenome. Gene function prediction allowed the development of 
the first model for lysogenic-lytic cycle regulation in H. pylori. We have disclosed new prophage 
inactivation mechanisms that appear to occur by genome rearrangement, merger with other 
mobile elements, and pseudogene accumulation. Our analysis provides a comprehensive frame
work for H. pylori prophage biological and genomics, offering insights into lysogeny regulation and 
bacterial adaptation to prophages.
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Introduction

Helicobacter pylori is a common bacterial pathogen 
infecting ~50% of the human population world
wide, which is etiologically associated with gastritis, 
peptic ulcer disease, gastric adenocarcinoma, and 
mucosa-associated lymphoid tissue lymphoma.1,2 

H. pylori is characterized by wide genomic diver
sity, which contributes to its pathogenicity and to 
host adaptation.3 The genome diversity is brought 
about by high mutation rates and fine mutual 
homologous recombination. H. pylori’s discrete 
population structure, resulting from within- 

household transmission and persistent infection, 
has been used to trace human migration.1,4,5

The genomic diversity of H. pylori is extensible 
to its prophages.6–8 Bacteriophages (phages) are 
viruses classified into two main categories: lytic 
and temperate. Lytic phages enter in a productive 
lytic cycle upon infection, resulting in phage gen
ome replication and packaging, leading to progeny 
phage release through bacterial lysis. Conversely, 
temperate phages occasionally initiate replication 
upon host entry, while often follow the lysogenic 
cycle integrating into the bacterial genome to
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become a prophage. The prophages are vertically 
inherited during cell division, where the lysogenic 
state is maintained by the repression of phage lytic 
genes.9 Prophages can alter bacterial phenotypes, 
namely by encoding virulence factors, auxiliary 
metabolic genes, antibiotic resistance, immune eva
sion genes, and more.10 Additionally, prophage inte
gration near or into critical bacterial genes may 
regulate gene expression, functioning as an on/off 
switch known as active lysogeny.9 Most genome 
sequences available consist of multiple contigs and 
lack methylome data, hindering prophage analysis 
for completeness, module order, and insertion site.

Previous research found prophage genes in  
~20% of H. pylori genomes, belonging to the 
Schmidvirus genus.6,11 These prophages show 
genome synteny, a structured population,7,12 

and high recombination rate.8 Yet, a compre
hensive analysis of global H. pylori prophages 
and a model for the lytic–lysogenic transition 
are lacking. Annotating bacteriophage genomes 
is challenging due to high gene diversity, espe
cially for genes involved in prophage lysogeny 
regulation and subversion of host metabolism, 
which are prone to rapid evolution.13 

Accordingly, the H. pylori prophage pangenome 
includes ~60% unknown function proteins,8 

hindering our understanding of phage cycle reg
ulation, and the phage-bacteria arms race.14

Prophages often undergo a complex decay, lead
ing to incomplete or cryptic remnants in bacterial 
genomes, preventing the lytic cycle.15 This decay 
process involves modular exchanges, point muta
tions, phage genome rearrangements, inactivation 
by other mobile DNA elements, and DNA 
deletion.16 The integration of prophages into the 
bacterial chromosome releases phage DNA from 
the selective pressures affecting replicating phages, 
allowing for gradual decay and diversification. 
Within the chromosome, prophages can recom
bine with other genetic elements, resulting in the 
formation of new chimeric phage types. Even heav
ily deleted and unable to follow the lytic cycle, 
prophage remnants can still serve as phage gene 
reservoirs in the bacterial chromosome.17 Thus, 
cryptic prophages may benefit the host by provid
ing host adaptation features.18 While H. pylori may 
contain cryptic prophages, their prevalence and 
decay processes remain poorly understood.

The H. pylori Genome Project (HpGP) gathered 
1011 genomes of clinical isolates from 50 countries. 
Here, we analyzed this high-quality dataset to 
assess prophage occurrence for the first time in 
a large collection of complete, closed genomes, 
enriched with methylome data for comprehensive 
prophage genomics. Prophage sequences are often 
scattered across the genome and can impact the 
methylome. We suggest that the bacterial genome 
shuffling, merging of prophages with other mobile 
elements, and pseudogene accumulation constitute 
the H. pylori prophage decay process. This unpre
cedented collection of curated prophages provides 
a resource to study phage cycle regulation and 
prophage inactivation, opening the way for further 
insights through wet-lab experiments.

Results and discussion

Prophages are relatively common elements in 
H. pylori genomes

Of the 1011 HpGP genomes, 1004 are closed com
plete genomes and seven could not be circularized. 
All identified prophage sequences were manually 
inspected to accurately define and delimit each 
sequence. Most publicly available genomes corre
spond to contigs/scaffolds (e.g., 5393/6301; 83.6% 
fragmented genomes at NCBI). Using closed gen
omes is of extreme importance as it enables us to 
determine whether the prophage sequences are 
spread across the bacterial chromosome or lie adja
cent to each other and in what order.

Out of the HpGP set, 368 prophage sequences 
were identified in 298 genomes (29.5%, 298/1011). 
PhiSpy algorithm19 did not detect any additional 
novel prophage in addition to BLASTn and phage 
word search. Among the genomes with prophages, 
96 (32.2%, 96/298) carried presumably complete 
full-length prophages. Out of the total prophage 
sequences found (368), the majority (272) were 
incomplete and undergoing a decay process, 
which potentially reduces the prophage carriage 
burden. However, genes from remnant prophages 
might reintegrate into the bacteriophage gene pool 
through recombination with other infecting 
phages.20 Prophage regions that were uninter
rupted and spanned over 20 kb, featuring 
a composition of prophage genes that defined the
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boundaries of the sequence, were marked as com
plete prophages. In contrast, prophage regions that 
were shorter in length, lacked phage genes to define 
their boundaries, or instances where most genes 
were not phage genes, were categorized as incom
plete. Prophage frequency depends on the restric
tion and modification (RM) systems present.21 The 
extreme diversity in the H. pylori methylome22 

suggests that these RM systems protect the host 
from phage infection, justifying the moderate 
prophage frequency, and specific prophage popu
lations (discussed below) across different H. pylori 
populations.

In the HpGP dataset, complete prophages com
prised, on average, 1.7% of the bacterial genome 
size, while incomplete or remnant prophages con
stituted, on average, 0.9% of the genome size. 
Related to the gene content, complete prophages 
encode an average of 2.1% of the total H. pylori 
genes, while the remnant prophages encode, on 
average, 1.1% of the total genes. Accordingly, 
H. pylori genomes with prophages are significantly 
larger than the ones without them (bacteria with 
prophage genome size average was 1,652,199 ±  
35248 bp, and without was 1,626,977 ± 40819 bp, 
Mann-Whitney U-test p-value <.0001), with 
a tendency toward lower guanine and 
cytosine percent (GC%) (bacteria with prophage 
GC% average was 38.91 ± 0.14%, and without was 
38.93 ± 0.15%, t-student test p-value = .0153) 
(Supplementary Figure S1.a.). Prophage genomes 
have a GC% content lower than the bacterial one 
(36.4% vs. 38.9%), suggesting horizontal gene 
transfer.23 Complete prophages have, on average, 
28.5 Kb; standard deviation (SD), 6.9 Kb, while the 
incomplete ones have 10.6; SD, 7.2 Kb 
(Supplementary Figure S1.b.).

Prophages present an uneven prevalence by 
country of isolation and H. pylori ancestry

The prevalence of prophages varies geographically 
(Fisher's exact test p-value <.0001; Supplementary 
Figure S1.c., Table S1). The highest (70%; 7/10) 
prevalence was observed on Russian genomes, 
while the absence of prophages was noted in gen
omes from Canada (n = 20), Gambia (n = 5), 
Guatemala (n = 3), and Kazakhstan (n = 2). 
Nevertheless, the small sample size in some 

countries may limit the accuracy of these estimates. 
An interesting observation is the absence of com
plete prophages among the Japanese genomes. It is 
worth noting that H. pylori phages identified in 
Japanese strains, such as KHP30 and KHP40, were 
reported to exist as extrachromosomal episomes, 
indicative of a pseudolysogenic state.24 However, 
we could not identify the presence of such phage 
episomes in the HpGP dataset, neither for Japan nor 
for other genomes. It is possible that the analyzed 
Japanese strains could be susceptible to infection by 
KHP30-like phages, which appear to be present as 
an episome despite carrying an integrase gene.

The significantly uneven prevalence of pro
phages is also exhibited by ancestry (Fisher's exact 
test p-value = <.0001). H. pylori populations like 
hspSWEuropeEAfricaUSA (76%; 13/17) and 
hspEurasia2 (55%; 43/78) have the highest preva
lence of prophages, while hspIndigenousAmerica 
(1 out of 22) and hpAfrica2 (0 out of 4) have the 
lowest (Table 1, Figure 1c). The variable prevalence 
mirrors the evolutionary trajectory of phage acqui
sition and loss, along with local adaptation. One 
possible explanation is that the H. pylori popula
tions without prophages diverged before prophage 
acquisition or originated from an ancestral subset 
without prophages. If the absence of prophages in 
a larger sample is confirmed, then this could 
explain why the hpAfrica2 population, the most 
divergent among H. pylori populations, lacks any 
prophage, possibly indicating a split from other 
H. pylori populations prior to prophage acquisi
tion. Thus, the limited number of hpAfrica2 gen
omes in our HpGP dataset underscores the 
importance of investigating prophage presence in 
more samples from this group. The distinct preva
lence across populations suggests that prophages 
could contribute to the evolution of more adapted 
H. pylori subpopulations. Some bacterial popula
tions may have acquired mechanisms to regulate or 
control prophage induction and maintain a balance 
between lysogeny and the lytic cycle. This equili
brium could result in more stable prophage inte
gration and a higher abundance of prophages in 
those populations.

The prophage prevalence was similar regardless 
of disease status of the host (i.e., non-atrophic gas
tritis, advanced intestinal metaplasia and gastric 
cancer, Chi-square test p-value = .4254), suggesting
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that prophage carriage may not have a direct impact 
on disease outcomes. Furthermore, the occurrence 
of prophages is not associated with the virulence 
factor CagA, as annotated by NCBI (Chi-square 
test p-value = .4254). This suggests that prophage 
carriage may not have a direct impact on disease 
outcomes.

H. pylori prophages have a structured population

We previously used prophage sequence typing 
(PST) based on integrase and holin genes to cate
gorize five phage populations: Africa1, EastAsia, 
SWEurope, NEurope, and Colombia.6,12,25 

Despite utilizing just two phage genes, this

Table 1. Prophage prevalence by H. pylori ancestry.

H. pylori population
Total number 
of genomes

Genomes with 
prophage (n)

Genomes with 
prophages (%)

Genomes with 
complete prophages 

(n)

Genomes with 
complete prophages 

(%)

Proportion of 
complete prophages 

(%)

hspSWEuropeEAfricaUSA 17 13 76.5 0 0. 0.
hspEurasia2 78 43 55.1 13 16.7 30.2
hspSWEurope 175 64 36.6 24 13.7 37.5
hspSWEuropeChile 43 15 34.9 3 7. 20.
hspAfrica1MiscAmerica 21 7 33.3 1 5. 14.
hspAfrica1NAmerica 57 18 31.6 6 11. 33.
hspAfrica1WAfrica 7 2 29. 0 0. 0.
hspEurasia1 173 50 28.9 21 12.1 42.0
hspSahul 15 4 26.7 2 13. 50.
hspSWEuropeMiscAmerica 111 25 22.5 5 5. 20.
HpAsia2 34 8 23.5 5 15. 63.
hspAfrica1SAfrica 38 8 21.1 5 13. 63.
hspNEurope 50 10 20.0 0 0. 0.
hspEAsia 166 30 18.1 11 6.6 36.7
hspIndigenousAmerica 22 1 4.6 0 0. 0.
HpAfrica2 4 0 0. 0 0. 0.
Total 1011 298 29.5 96 9.5 32.2

Incomplete (or remnant) prophages are the majority (71.5%; 213/298) in H. pylori genomes. Out of the 213 genomes containing remnant prophages, 202 have 
incomplete prophages, while 11 have both complete and incomplete prophages.

Figure 1. Global overview of H. pylori prophage abundance and population structure. (a) Prophage sequence typing (PST) based on the 
integrase and holin genes. The DISTRUCT plot of the Bayesian population was assigned using STRUCTURE and an admixture model for 
K populations (K = 4 to K = 6) for 260 genomes containing the prophage integrase and holin genes. Each prophage is represented by 
a vertical line divided into K colored segments representing the membership coefficients in each cluster. (b) Concatenated integrase 
and holin phylogenetic tree. Outer circles represent population membership for PST with 4, 5, and 6 populations assigned, and for the 
H. pylori fineSTRUCTURE assigned population. (c) Uneven prevalence of prophage elements by H. pylori ancestry (p < .0001). The 
percentage of prophage presence by H. pylori fineSTRUCTURE ancestry is indicated by a black line.
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approach holds importance due to the common 
incompleteness of prophage sequences. The higher 
prevalence of these two genes compared to com
plete genomes makes the method valuable. PST 
evaluated 260 prophage sequences, surpassing the 
96 complete prophages, enabling the analysis of 
more prophage sequences. STRUCTURE analysis 
offers the best K in between 4 and 6 prophage 
populations. At K = 5, a new EastAsia2 population 
emerges, encompassing genomes from China, 
Korea, Singapore, and Taiwan (Supplementary 
Table S2). At K = 6, the former Colombia popula
tion clustered with other prophages from Latin 
America, leading to a proposed name change to 
Latin America (Figure 1a). The phylogenetic tree 
(Figure 1b) based on concatenated integrase and 
holin genes shows prophage sequences clustering 
by their PST population. Interestingly, specific 
H. pylori ancestries show nonrandom prophage 
populations (Figure 1b; Supplementary Figure 
S2c), corroborating a previous finding.26 For 
instance, the H. pylori subpopulation hspEAsia is 
mainly lysogenic for EastAsia and EastAsia2 proph
age populations, while the only H. pylori lysogen 
from subpopulation hspIndigenousAmerica carries 
a prophage with NEurope ancestry 
(Supplementary Figure S2c). This suggests that 
the introduction of prophages into the 
hspIndigenousAmerica population (typically 
found in Indigenous populations) arose after 
the introduction of H. pylori European lineages, 
reflecting the European colonization of America. 
Similarly, when analyzing by country of isolation, 
the same tendency is observable. For instance, 
Peruvian genomes are lysogens of prophages with 
ancestries from SWEurope, NEurope and 
LatinAmerica (Supplementary Figure S2b). No rela
tionship is observable between prophage ancestry and 
associated disease (Supplementary Figure S2a). These 
observations point to prophages being more involved 
in H. pylori adaptation to certain geographies, rather 
than being associated with disease outcome. Each 
H. pylori subpopulation has its own prophage 

circulating populations (Supplementary Table S2), 
and this feature may confer niche-specific adaptation.

Recombination between prophage populations 
takes place on intra- and inter-population scales

The recombination among prophages provides an 
opportunity to study their diversity and gene flow 
and to disclose aspects related to human migrations. 
We have applied ChromoPainter/fineSTRUCTURE 
to study the population genetic structure, admixture 
and recombination across the complete prophages 
(80 genomes) using genome-wide single nucleotide 
polymorphism (SNP) data. We have excluded iden
tical prophage sequences (GRE-041 and GRE-046 
have highly similar bacterial genomes pointing to 
the possibility of a strain infecting distinct Greek 
patients), as well as prophages presenting large gen
ome inversions and cargo genes, since these pose an 
obstacle to multiple genome alignment. This is 
observable when contrasting the networks 
(Supplementary Figure S3a and Figure 2b) obtained 
with 95 or 80 complete prophages, in which the 
former shows a rather box-like network, indicating 
incompatibilities in the data that cannot be 
explained by a simple tree-like evolution scenario. 
Also the phylogenetic trees for 95 and 80 complete 
prophage genomes (Supplementary Figure S3C and 
Figure 2c) evidence longer branches for prophages 
carrying inversions and cargo genes, reporting more 
genetic change or divergence, which, in fact, is 
attributed to the prophage genome rearrangement 
or cargo gene presence rather than to a true diver
gence of the DNA sequence. Additionally, the gene 
cluster comparison of all prophage regions 
(Supplementary Figure S4) also allows the detection 
of rearrangements and cargo genes.

The co-ancestry heatmap (Figure 2a) with 
unevenly distributed colors shows variation in the 
number of DNA fragments inferred to be donated 
by other donor individuals. The principal 
fineSTRUCTURE split shows SWEurope phage 
population genetic differentiation (Figure 2a), which 
is also supported by the network (Figure 2b) and 
phylogenetic tree (Figure 2c) analyses. This observa
tion suggests genetic isolation, also supported by long 
branches in the network and phylogenetic tree, con
firming previous findings.8 In the principal
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Figure 2. Population structure and phylogenetics of the complete H. pylori prophages. (a) Co-ancestry matrix of H. pylori prophage 
genomes. The color of each matrix square represents the expected number of fragments exported from a donor genome (column) to 
a recipient genome (row), inferred by Bayesian clustering in fineSTRUCTURE. The black and gray boxes indicate evidence of higher 
recombination between genomes based on the co-ancestry matrix. (b) SplitsTree phylogenetic network reconstructed using the 
complete genome alignment of 80 complete prophages. Prophage genomes in bold are reference prophage representative of the 
main populations. Tip colors correspond to those of Figure 2a. (c) Maximum-likelihood phylogenetic trees from complete prophage 
genome alignment. Circles from inside to outside: phage fs – prophage population determined by fineSTRUCTURE coded as in 
Figure 2a; PST K4, PST K5 and PST K6 – populations determined by phage sequencing typing (based on integrase and holin) coded as 
in Figure 1a; Hp fs - bacterial population determined by fineSTRUCTURE. (d) Schematic map of the prophage insertion sites. Prophage 
sequence is in green evidencing its 5’ end (left end) and 3’ end (right end). The most common insertion site is found from left to right 
between the bacterial genes: metK and lpxD (genes in blue); HD domain and outer membrane protein (genes in orange); and between 
RM genes (genes in gray). (e) Percentage of prophage insertion sites by PST K = 4, according to site: S-adenosylmethionine synthetase 
metK gene at 5’ end (%metK), HD family hydrolase gene at 5’ end (%HD), and flanked by restriction and modification (RM) genes (% 
RM). (f) Percentage of prophage insertion sites as in Figure 2d by fineSTRUCTURE population.
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component analysis (PCA), whose first six compo
nents explain 44.7% of the variance, SWEurope pro
phages diverge from others along the first component 
(Supplementary Figure S3b). Accordingly, the nine 
sub-groups found within the SWEurope 
(SWEurope_s1 to SWEurope_s9) population mainly 
exchange DNA segments among themselves. The 
other three populations Africa, NEurope and 
EastAsia present 2, 6, and 4 sub-groups, respectively. 
These three populations are mainly receivers of DNA 
segments from individuals of the same population. 
Still, they also receive DNA segments from individuals 
of these three populations (i.e., they have signatures of 
inter-population recombination). It is noteworthy 
that none of the prophages assigned to LatinAmerica 
population by STRUCTURE were included in the 
fineSTRUCTURE analysis, while one prophage from 
the EastAsia2 population assigned by STRUCTURE 
(from Taiwan, Supplementary Table S2) corresponds 
to fineSTRUCTURE EastAsia_s4, the most distant 
among the EastAsia subgroups. The four main proph
age populations also revealed a high degree of differ
entiation among populations and genetic diversity 
within populations. Globally, PST, fineSTRUCTURE 
and PCA revealed a clear prophage population struc
ture. The fine-scale genetic structure detected by hap
lotype sharing (fineSTRUCTURE) explained 
substantially more variance in complete prophages 
than PCA and PST. The recombination signatures 
found provide prophages with increased diversity, 
which may help them escape bacterial immunity by 
recombining with other phages or prophages, and 
adaptation to new environments/bacterial 
populations.

Looking at particular prophage subpopulations 
it was possible to establish links with the human 
migrations, specially by joining data from isolate 
country of origin, H. pylori ancestry and phage 
fineSTRUCTURE (Supplementary Table S2). The 
subgroups SWEurope_s9 (from Algeria and the 
US) and Africa_s2 (from Algeria, Brazil, Israel, 
and Spain) exchange DNA chunks between them, 
meaning that these two distinct prophage popula
tions recombine in Algeria, pointing to the migra
tory history between the North African region and 
the Iberian Peninsula, while all isolates from 
Algeria shared the same bacterial ancestry. 
American strains often exhibit a mixed population 
composition resulting from European 

colonization, the historical practice of slavery, and 
frequent migratory movements. A noteworthy 
observation pertains to the apparent isolation of 
the SWEurope_s9 subgroup (from Portugal and 
Brazil), which reflects the shared historical bond 
between the two countries attributed to the for
mer’s colonization. Concerning the East Asian sub
groups (Supplementary Table S2), it is worth 
noting that the subgroups from Southeast Asia 
(EastAsia_s4: Singapore, Taiwan and Vietnam) 
and the Far East (EastAsia_s3: China, Kyrgyzstan, 
and Korea) exhibit more pronounced intra-group 
recombination in line with their specific geogra
phical locations, to a lesser extent with each other, 
and distinctly separated from the two other East 
Asian groups, like EastAsia_s1 from Chile. 
Regarding NEurope subgroups, s1 (Malaysia) and 
s2 (Bangladesh, Indonesia, India) extendedly 
recombine among each other and belong to more 
close geographic locations. NEurope_s3 essentially 
recombine among themselves, corresponding to 
Baltic countries Latvia and Lithuania, and neigh
boring Poland. The remaining subgroups within 
NEurope recombine among them stemming from 
diverse sources, primarily comprising European 
nations. Finally, Africa_s1 comprises prophages 
from Costa Rica, and Africa_s2 (Algeria, Brazil, 
Israel, and Spain) that recombine more among 
each subgroup. Only a limited number of African 
prophages are available for tracing the spread of 
prophages and migrations within this continent.

H. pylori prophages have hotspots for integration 
sites and occasionally disrupt bacterial genes

H. pylori prophages do present hotspots for inte
gration that are related to the main populations 
(Figure 2d-f, Supplementary Table S2). The most 
prevalent insertion spot, found in 27.9% (83/298) 
of genomes with prophages, is between the 
methionine adenosyltransferase (metK) and 
UDP-3-O-(3-hydroxymyristoyl)glucosamine 
N-acyltransferase (lpxD) genes, particularly 
abundant in Africa1 and NEurope prophages 
(Figure 2d), consistent with a previous study.7 

When considering only the group of complete 
prophages analysed by fineSTRUCTURE, there 
is a confirmation that the subpopulations belong
ing to Africa1 are exclusively integrated between 
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these two genes, while the subpopulations from 
NEurope are predominantly integrated here 
(Figure 2e). The proteins encoded by these genes 
catalyze the formation of S-adenosylmethionine 
(AdoMet) from methionine and ATP (MetK) and 
are involved in the biosynthesis of lipid A, 
a phosphorylated glycolipid that anchors the lipopo
lysaccharide to the outer membrane of the cell 
(LpxD).

The gene encoding an HD family hydrolase, 
found in 25.8% (77/298) of the genomes, is 
the second most common hotspot for prophage 
insertion, situated at the 5’ end of the prophage 
(left end of the prophage), with a higher frequency 
in EastAsia and SWEurope prophages (Figure 2e). 
When considering only complete prophages, the 
subpopulations determined by fineSTRUCTURE 
that are most prevalently inserted here are also 
from SWEurope and EastAsia (Figure 2f). The 
bacterial gene found at the 3’ end of the prophage 
(right end of the prophage) is not conserved for 
this hotspot. However, although not entirely con
served, the bacterial gene found on the 3’ end of the 
prophage most frequently present (48 genomes) 
codes for an outer membrane protein (homA, 
according to Prokka annotation), and the second 
most frequent (nine genomes) a gene coding for 
S-adenosyl-L-methionine hydroxide adenosyl
transferase family protein.

Another remarkable and novel observation is 
that prophages often insert adjacent to RM systems 
(8.1%, 24/298) (Supplementary Table S3). An RM 
system, a prokaryotic immune system, consists of 
a DNA methyltransferase, which transfers a methyl 
group to a specific DNA sequence, and a restriction 
enzyme, which cleaves DNA lacking that 
methylation.27 However, these systems are often 
distinct among genomes, and in these cases, the 
insertion site is not truly a unique site between 
the bacterial genomes. We could verify that three 
of these RM systems appear repeated as insertion 
sites for prophages.

The conservation of the integration site sug
gests a specificity of the phage integrase for DNA 
sequences found at these hotspots. Indeed, the 
phylogenetic analysis and population structure 
support the existence of distinct populations of 
prophages that have characteristic insertion sites, 
which is also observable for the integrase gene.11 

The conservation of the integration site may also 
reflect prophages being in decay and the presence 
of vertical transmission of prophages within each 
H. pylori lineage. This scenario could apply par
ticularly to remnant prophages, whose incomple
teness hampers phage excision. Inspection of the 
intergenic regions flanking complete prophages 
revealed conserved sequences at each integration 
hotspot, which may constitute the integrase 
recognition sequences. The intergenic region 
between bacterial and prophage for complete pro
phages integrating between bacterial genes metK and 
lpxD has, on average, 297 bp (SD, 3 bp). The inter
genic region at 5’ end (between metK and first proph
age gene) displays a notably conserved sequence, 
characterized by two specific conserved segments: 
TAAGCTATAATAAGCC (at −56 bp from prophage 
start) and GATTATTTTAATAAGGACAA (at −24 
bp from prophage start), that may be important for 
integrase recognition and prophage insertion. The 
intergenic region at the prophage 3’ end (between 
the last prophage gene and the bacterial lxpD gene) 
has, on average, 668 bp (SD, 150 bp) and is character
ized by repeat sequences (average size of 42 bp, SD of 
73 bp) that may result from prophage insertion. 
Similarly, the intergenic region of the second most 
common insertion site between HD domain and an 
outer membrane/hypothetical protein, with 399 ± 57 
bp, has three conserved regions upstream prophage 
start: TTTTTAAATAAAA (at −167 bp from proph
age start), TTTTTTTCGTATAATAA (at −138 bp) 
and CAAAATAGTATAAA (at −24 bp). The inter
genic region downstream of the prophage is charac
terized by shorter sequence repeats, with an average 
of 10 bp (SD, 32 bp). These repeats may be generated 
after the integration of prophage into the host gen
ome via recombination.23

Taking into consideration the insertion sites and 
the co-ancestry heatmap (Figure 2), there appear to 
have occurred two hypothetical major prophage 
prototypes, each with its specific integration site 
(one integrating adjacent to metK and the other 
to HD domain) that have recombined, giving rise 
to the other populations. Two hypotheses arise, 
introducing uncertainty: either SWEurope or 
NEurope recombined, potentially resulting in 
EastAsia and Africa1, or an alternative scenario 
involving a recombination between NEurope and 
EastAsia, potentially giving rise to SWEurope. The
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recombination opportunity may have arisen from 
simultaneous infection of the same bacterial gen
ome by these prototypes; or by the presence of 
mixed H. pylori infections of the human host. 
Giving strength to the former, we found two dis
tinct genomes (LAT-012 and NPL-009) where 
a complete and a remnant prophage appear at 
these two conserved insertion sites, proving an 
opportunity for recombination. In the case of 
NPL-009, both prophages belong to the NEurope 
population and are identical in their sequences. 
However, LAT-012 prophages belong to distinct 
prophage populations; the complete prophage is 
inserted adjacent to the HD domain gene within 
the SWEurope_s7 population, whereas the rem
nant belongs to NEurope and is inserted adjacent 
to the metK gene. This LAT-012 remnant prophage 
has signs of multiple rearrangements dispersed 
across two bacterial genome sites. One segment of 
the remnant prophage is adjacent at its 5’ end to the 
metK gene and merges at its 3’ end with a tfs region. 
Meanwhile, the other segment of the remnant 
prophage is positioned approximately 650 kilo
bases apart, next to the lpxD gene.

Gene disruption upon insertion is among the fac
tors that render prophages non-neutral to bacteria. 
Disrupted genes are detectable adjacent to 14.8% 
(109/[96 + 272]x2; among the 736 genes flanking pro
phages, 109 are pseudogenes) of all H. pylori prophage 
insertion sites (Supplementary Table S4). Whether 
prophage excision leads to gene integrity restoration 
remains to be determined. Most disrupted genes are 
hypothetical proteins, followed by RM genes, a gene 
class known to be variable among H. pylori 
genomes.22 Noteworthy, among the examined bacter
ial genomes, the H. pylori genome carries the largest 
number of RM genes.28 The repertoire of RM systems 
and other sequence-specific DNA methyltransferases 
in H. pylori is strain-specific and variable, forming 
a unique and ever-changing methylome.22,29,30 

H. pylori provided a unique opportunity to under
stand the interaction between these epigenetic systems 
and prophages. Indeed, 62.5% (15/24) of the prophage 
genomes flanked by RM genes present RM disrup
tion, disrupting bacterial genomic methylation 
(Supplementary Table S3). Disrupting methyltrans
ferase genes altered the phenotype, evaluated by the 
epigenomic methylation found in the genome (i.e., the 

methyltransferase recognition target site was not 
methylated). Whenever a methyltransferase gene 
was disrupted by prophage insertion, the methyltrans
ferase recognition target site was not methylated (gen
omes GER-001, IDN-001, ITA-026, LIT-041, POL- 
007, POL-102, POL-103, POL-104, POR-013, SGP- 
018, SPA-301, SPA-709, SPA-801, USA-427), unless 
a second methyltransferase recognizing the same tar
get site is present (genomes DOM-009, GRE-041, 
SPA-323, USA-422, USA-434 and VNM-002, in 
Supplementary Table S3). Concerning the disruption 
of the companion endonuclease alone, in half of the 
cases the methylation is present (DOM-009, IDN-001 
and USA-422) and absent in the other half (BGR-007, 
POL-007, and USA-429). Of note, not for all cases of 
RM system disruption it is possible to verify if there is 
a phenotypic alteration, like when the target methyla
tion site is undetermined or when there are con
straints related to decoding 5-methylcytosine using 
PacBio sequencing. The RM system disruption by 
prophages suggests a mechanism to counteract host 
immunity, and another form of interplay between 
mobile genetic elements, where prophages are acting 
as epigenetic switches. Moreover, the disrupted gene 
list also reveals a set of genes whose loss of function is 
not essential for cell survival. Here, we have verified 
that prophage integration can disrupt host genes, but 
prophage excision may eventually reverse this 
disruption.31

H. pylori complete and remnant prophage present 
genome synteny

The synteny of gene cassettes is often conserved 
between different phages, especially among bacter
iophages of small genome size, presumably repre
senting a feature of bacteriophage evolution.32 Both 
complete and incomplete prophages presented 
a well-conserved pattern of genomic organization 
and synteny (Supplementary Figure S4). In terms 
of gene organization throughout the prophage gen
ome, gene order is kept among prophage even 
across distinct populations, pointing to i) distinct 
prophage populations sharing a common evolu
tionary lineage; ii) these genes being essential for 
phage function and being conserved over time; iii) 
for the importance of the gene order in regulation; 
and iv) its role in governing the phage life cycle.
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H. pylori genome rearrangement split prophage 
sequences leading to prophage remnants

An open question regarding H. pylori prophages con
cerns the existence of polylysogeny (i.e., carrying 
multiple prophages). Prophage fragmentation makes 
it challenging to determine the existence of polylyso
geny. We found 20.5% (59/298) of HpGP genomes 
harboring multiple prophages, considering both com
plete and incomplete. Of these 59 genomes, 49 had 
two regions, nine had three, and one had four. In 
most (49) genomes, these prophage regions corre
spond to prophage fragmentation) by the bacterial 
chromosome, rather than the presence of distinct 
prophages. In 15 genomes, however, there is indeed 
more than one prophage present.

Noteworthy, in five of these 15 genomes (LAT-012; 
POL-007, SPA-322, LAT-036; POL-009), there is 
both a prophage genome split and more than one 
prophage. In the case of prophage fragmentation, the 
regions of the prophage appear scattered by the bac
terial genome, whether all prophage pieces are still 
present. Often not all pieces that make a complete 
prophage appear to be present. We hypothesize that 
the rearrangement by inversion within the prophage 
genome (Figure 3a), or by the H. pylori genome 
rearrangement involving prophage regions 
(Figure 3b) leads to prophage remnants. The rearran
gements involve inversions, transpositions, and 
duplications (Figure 3b,c). These genome rearrange
ments involve dispersing just the prophage regions 
(Figure 3b), or prophage regions and bacterial regions 
that are usually present in synteny blocks (Figure 3d). 
Prophage inactivation by prophage genome rearran
gement may constitute a new strategy of host defense 
leading to prophage decay, where the rearrangements 
pulverize prophage segments across the genome, and 
later, some may be lost. Indeed, in most genomes we 
observe prophage remnants (213/298). Of these, 11 
genomes have completed and other fragmented pro
phages, and 202 have only incomplete prophages.

Interestingly, prophages often break in two halves 
with the breaking point being in a prophage gene with 
high homology to bacterial genes (DUF3519 domain, 
DNA binding chromosome segregation), pointing to 
a genome rearrangement generated by homologous 
recombination involving DNA sequences with near 
identical sequences, one bacterial and the other from 
a prophage.

Concerning the 15 polylysogenic genomes, in six 
there is a (partial) prophage duplication, meaning 
that only nine cases had vestiges of polylysogeny. In 
all polylysogenic genomes, the combinations found 
were complete and remnant(s) prophages, or only 
remnant prophages, with dot plots showing the 
absence of sequence homology (genomes GER- 
015, LAT-012, ISR-009, POL-007, SPA-322, SPA- 
323, POL-103, COL-301, and SPA-707), pointing to 
distinct prophages. In none of the cases, two distinct 
complete prophages were found, pointing to proph
age mediated superinfection exclusion, either by 
prophage insertion site occupancy, or the presence 
of a prophage regulator preventing infection by the 
same phage. There are two hypothetical prophage 
repressor genes (see below) commonly present in 
complete prophages, which may be associated with 
superinfection exclusion. Interestingly, when there 
is more than one distinct prophage per genome, in 
no case were the two repressors observed in all the 
prophages present (i.e., at least one of the prophages 
did not have these repressors). Our data indicate the 
absence of true polylysogeny in the H. pylori gen
omes. Small bacterial genomes generally have a low 
co-occurrence of prophages,33 as is the case of 
H. pylori.

Prophage can merge with other mobile elements

Interestingly, we often observed the merging of 
prophage sequences with other mobile elements 
(Supplementary Table S5). The most common 
pattern involved insertion sequences, found inte
grated in the prophage in 48% (145/298) of the 
genomes. Insertion sequences may disrupt the 
gene regulation within the prophage sequence, 
impacting the phage life cycle. Additionally, pro
phages merged with a Type IV secretion (tfs) 
cluster were found in 10% (34/298) and, less fre
quently, with cag pathogenicity island (PAI) in 
3.4% (10/298) of the genomes. The convergence 
of mobile elements may disrupt cagPAI and tfs by 
prophages, and vice-versa. Typically, prophages 
were found adjacent to cag4 or cagS. The former 
is known to be a splitting point of cagPAI into 
a right segment (cagI) and a left segment (cagII), 
usually split by insertion sequences, which provide 
intermediate pathogenicity phenotypes.34 Here, we
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show for the first time that prophages can also split 
cagPAI. Prophages may contribute as well to rem
nant tfs plasticity zone, a region that is important 
for the colonization of H. pylori and disease 
progression.35 When merged, mobile elements 
lose their typical gene order, and can together be 
vertically transmitted by cell division, gained and/ 
or lost, as well as to impose intermediate pheno
types, regarding the pathogenicity of the strain. 
Merging with other mobile elements changes the 
genomic organization of prophages, probably dis
rupting their gene regulation. This may constitute 
a weapon in the phage-bacteria arms-race.

Remnant prophages contribute to the expansion of 
the pangenome and exhibit greater levels of 
pseudogenization

Considering complete and incomplete prophage 
regions, the phage pangenome comprises 147 
genes (Supplementary Table S6), including cargo 
genes (see below). Out of these, 57 (38.8%, 57/147) 
are hypothetical proteins, adding complexity to 
H. pylori bacteriophage biology understanding. 
The high genetic diversity within H. pylori pro
phages is reflected in the proportion of genes with 
unknown functions. Within the pangenome, some 
genes are shared with integrative elements, like

Figure 3. Prophage inactivation by genome rearrangement in 298 complete genomes. (a) Prophage genome inversion (present in 13; 
4.4%) as shown by dotplots of 7 complete prophages with inversions, depicted as green lines in perpendicular directions. (b) Prophage 
split into two fragments across the bacterial genome, represented as green boxes and arrows (present in 49; 16.4%). (c) Schematic 
representation of prophage genome rearrangement involving inversion, transposition and/or duplication (present in 32; 10.7%). (d) 
Schematic representation of the case of bacterium and prophage genome rearrangement implying inversion and/or transposition 
(present in 17; 5.7%).
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type IV secretion proteins, that may have arisen 
from merging distinct mobile elements (see above). 
None of the genes is shared between all prophages, 
which was expected since remnant prophages were 
included. Focusing solely on the complete proph
age group, we identified a pangenome of 107 genes. 
Among these, nine genes were present in at least 
90% of the prophages (Figure 4a), with a decreasing 
proportion of hypothetical proteins (28.0%, 30/ 
107). We cannot disregard that the high genetic 
diversity of sequences observed may contribute to 
identifying them as different genes, even if they 
code for proteins with a similar function, as is 
observed for insertion sequences within prophages.

Pseudogenes, often considered nonfunctional 
relics of once-active genes, can arise through var
ious processes, such as gene duplication, genomic 
rearrangements, population bottlenecks, and 
genetic drift.36 These nonfunctional genes accumu
late mutations over time that disrupt their ability to 
be transcribed or translated into functional pro
teins. The proportion of pseudogenes per 30kb 
genome segment was significantly higher among 
prophage genes, either complete (average 2.51; 
SD, 2.21; IQR, 2.86 pseudogenes/30kb) or incom
plete (5.64; SD, 10.02; IQR, 8.64), than within bac
terial genes (1.41; SD, 0.26; IQR, 0.31; Mann- 
Whitney U-test p-value <.0001, respectively). 
These pseudogenes carried internal stop codons, 
possessed frameshift mutations, and/or were 
incomplete. An increased presence of pseudogenes 
in the mobile genetic pool has been previously 
observed as well.37 Moreover, the proportion of 
pseudogenes is also significantly higher in incom
plete than in complete prophages (Mann-Whitney 
U-test p-value <.0001). This observation suggests 
that H. pylori prophages suffer pseudogenization, 
which may hamper switching toward a lytic cycle 
and prophage arrest within the bacterial genome. 
This is compatible with the reductive evolution of 
the vertically inherited prophage regions, being 
even more evident in prophage remnants. An 
increased presence of pseudogenes has been 
found in intracellular bacteria that rely on exploit
ing host metabolites.37,38 A parallel with intracel
lular bacteria can be made for prophages that 
benefit from host replication for propagation. 
Pseudogenization may be a way to purge prophages 
from the bacterial genome, first these regions get 

retained (no longer able to follow a lytic cycle), but 
ultimately leading to gene deletion and genome 
reduction. The link between pseudogene preva
lence and prophages could be affected by confoun
ders like the dynamic nature of genomes and the 
potential of gene reactivation, underscoring the 
need to address these factors in future research.

Prophage gene function provides clues to a model 
for lytic and lysogenic cycles

Based on the observed architectural genome synteny 
organization and the prediction of gene function of 
the 147 pangenome genes, we developed a model for 
the regulation of lytic and lysogenic cycles (Figure 4, 
Supplementary Figure S5, Table S6). Two prophage 
coding sequences toward the 5’ end of the prophage 
genome had homology with the MarR-like family of 
transcriptional regulators, placed downstream of the 
integrase gene, further pointing to a role in the lytic/ 
lysogenic switch (genes #5 and #7, alias for genes 
numbered gff.5 and gff.7 in Supplementary Table 
S6). Members of this transcriptional regulator family 
are usually dimers that respond to chemical signals 
and stresses, converting them into changes in gene 
activity.39 We hypothesize that these MarR like tran
scriptional regulators may govern lysogenic and lytic 
cycles by binding to AT-rich palindromic motifs 
(which were found in prophage genomes near pro
moter regions), repressing transcription and con
trolling RNA polymerase expression of the genes 
under the control of these promoters (Figure 4), 
favoring the lysogenic cycle. In contrast, when 
MarR is not expressed in sufficient amounts, or is 
inactivated, it may lead to the lytic pathway. 
Importantly, the control of lysogeny by a MarR like 
repressor (localized upstream of the integrase gene) 
has been proposed for a T7-like prophage exhibiting 
a lysogenic cycle.40 Another key player in the induc
tion of the lytic cycle appears to be a putative histi
dine kinase (HK)-like protein (Supplementary Table 
S6, gene #18). We propose that stimulation 
by HK may induce its autophosphorylation. The 
HK may act as the primary sensor, transferring the 
phosphate to other transcription factors to directly 
regulate the expression of a series of genes required 
for the lytic cycle. The putative phosphorylation of 
MarR-like transcriptional regulator (probable Cys- 
phosphorylation of MarR encoded by gene #5,
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Figure 4. Proposed mechanism for lysis/lytic cycle regulation in H. pylori prophages. (a) Gene cluster of complete prophage references 
representative of the four main prophage populations (bold tips in Figure 2b), VNM-002 – EastAsia, POL-008 – NEurope; POR-009 – 
SWEurope; ALG-004 – Africa. Genes are color coded (Green – integrase; red – holin; blue – core (≥40% identity with presence in ≥ 90% 
of complete prophage genomes; integrase also within this group); gray – other genes). The predicted promoters are depicted with red 
arrows and coded with letters. The predicted gene function is shown (Grey letters for transcriptional regulators). (b) Schematic of 
proposed lytic and Lysogenic cycles, based on representation of the ALG-004 prophage genome. 1: Choosing between lytic/lysogenic 
cycles upon infection. The repressor MarR regulates the events governing lysogeny versus lytic cycle, hypothetically binding to an AT- 
rich palindromic motif. The yellow hexagons contains the number of TTAA sites in the promoter region, where MarR can potentially 
bind, impeding gene transcription under the control of these promoters, leading to lysogeny. When MarR is not expressed in sufficient 
amounts, or is inactivated leads to the lytic pathway. MarR may also prevent infection by the same phage. 2: Switch to the lytic cycle. 
The putative histidine kinase (HK) hypothetically receives a stimulus (green arrow), inducing autophosphorylation of HK. The HK acts 
as the primary sensor, then the phosphate is transferred to other transcription factors to directly regulate the expression of a series of 
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which contains eight cysteine residues susceptible to 
phosphorylation or His-phosphorylation of the nine 
histidine residues; and gene #7, containing four 
cysteine residues) may inactivate the repressor lead
ing to the lytic cycle. Usually, HK is involved in 
signal transduction across the cellular membrane 
by phosphotransfer and phosphatase activity. This 
HK-like enzyme may induce the host to phosphor
ylate other response regulator, changing gene 
expression. An HK-like gene associated with 
a quorum sensing system has been reported in 
a Clostridium difficile prophage.41,42 Thus, an HK- 
like gene may be involved in a quorum sensing 
mechanism just leading to phage release in the pre
sence of neighboring cells in sufficient numbers to 
be infected. An argument favoring the association of 
phage induction and quorum sensing is that a high 
concentration of a susceptible host increases the 
advantages of phage lysis. High cell density detection 
by quorum sensing has been shown to play a role in 
prophage induction, either increasing,43 or 
decreasing44 it. A third ArsR-like transcriptional 
regulator, which is a response regulator 
(Supplementary Table S6, gene #28) may regulate 
late gene expression. The phosphorylated ArsR-like 
may control the transcription of genes beyond their 
baseline levels. A last regulator was identified, 
a NusG-like, similar to the N protein in phage λ 
(Supplementary Table S6, gene #34). The genes 
under the control of the transcriptional regulator 
NusG-like, including the lysis-cassette genes that 
lead to the bacterium lysis at the end of the lytic 
cycle, may have accelerated transcription elongation 
rate by suppressing specific transcription pause sites.

Other relevant genes unrelated to the switch of 
lytic/lysogenic cycle were also identified, remarkably 
with a gene organization based on function: lyso
geny; replication; genome segregation; phage struc
ture; phage assembly; genome packing; and cell lysis 
(Figure 4). In the lysogenic module, the integrase 
and MarR-like transcriptional regulators are found; 
the replication module presents a DNA helicase and 

a DNA primase; the segregation module presents 
a chromosome segregation protein with 
a DUF3519 domain identical to a bacterial gene 
(see above), which may be relevant for equipartition 
of episomal phages during cell division. Indeed, 
H. pylori has a homologous bacterial gene, and 
often incomplete prophages are fragmented at this 
gene, frequently occurring genome rearrangement 
at this gene level, pointing to homologous recombi
nation between phage and bacterial genes. Two 
assembly modules follow, and noteworthy phages 
from SWEurope and Africa present more features 
(Supplementary Figure S5) with homology with 
structural phage proteins. These may explain the 
smaller phage tail length observed for phages like 
KHP3024 (EastAsia) than for phiHP3311 (Africa1). 
Finally, the lysis module presents the genes asso
ciated with cell burst and progeny release.

H. pylori prophages have a small but relevant cargo 
gene repertoire

A prophage cargo gene is a gene within its gen
ome that is not necessary for phage replication, 
assembly or virion structure. These genes, which 
can involve toxin production, antibiotic resis
tance, or metabolic pathways, may provide bene
fits to either the host bacterium or the phage 
itself. We could identify cargo genes within 
prophage sequences, even in complete prophages 
(Supplementary Table S7). These cargo genes are 
not essential for the function of the phage, but 
were present within the prophage element. The 
cargo genes include tfs genes; toxin-antitoxin sys
tems; methyltransferase (an N-6 DNA methylase); 
or bacterial gene blocks. Of note, several proph
age coding regions are identified as hypothetical 
proteins, and we must not dismiss that some of 
these may also constitute cargo genes that intro
duce novel properties to the phage and bacteria. 
The tfs plasticity zone clusters have been

genes required for the lytic cycle. The putative phosphorylation of MarR (probable cys-phosphorylation of MarR encoded by gene 5, 
contains 8 cysteine residues susceptible to phosphorylation) may inactivate the repressor leading to the lytic cycle. 3: The full lytic 
cycle. The ArsR transcriptional regulator (homo-dimer) may regulate late gene expression. Phosphorylated ArsR may control 
transcription of genes beyond their baseline levels. The genes under the control of the transcriptional regulator NusG (including 
the lysis-cassette genes that lead to the bacterium lysis at the end of the lytic cycle) may have accelerated transcription elongation 
rate by suppression of specific transcription pause sites (green arrows).
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described as a virulence factor.35 Thus, the tfs 
cargo genes may contribute to the virulence of 
the strain. Toxin-antitoxin systems have only 
been briefly described in H. pylori,45 and are 
here described for the first time in the context 
of the prophage genome as the most common 
cargo gene. Toxin-antitoxin systems are prevalent 
in bacterial chromosomes and plasmids, serving 
various functions that span from stabilizing plas
mids to facilitating biofilm formation and pro
moting bacterial persistence. In these systems, 
the toxin’s harmful effects are neutralized by the 
presence and activity of an antitoxin, which can 
be either an RNA or a protein.46–48 The presence 
of toxin-antitoxin may produce a post- 
segregational killing effect, favoring prophage 
maintenance. This phenomenon has been 
reported for Escherichia coli prophage P1.49 

When these addiction genes are lost, the cell’s 
reservoir of antitoxin diminishes, enabling the 
toxin to exert its harmful effects on the cell.50 

The bacterial gene blocks within a prophage gen
ome sets the stage for phage transduction in 
H. pylori, in which bacteriophages transfer 
genetic material from one bacterium to another. 
This bacterial gene block appears to have resulted 
from a prophage genome inversion. Phage cargo 
genes can play a critical role in bacterial evolu
tion, as they facilitate the exchange of genetic 
information between different bacterial strains, 
and may contribute to bacteria adapting to new 
environments and acquiring new traits.

Conclusion

In this study, we have meticulously characterized 
the prophages of H. pylori within the high-quality 
HpGP dataset. Prophage genes were more common 
than previously reported (29.5%) but decreased to 
about a third (9.5%) for complete prophages. 
H. pylori prophages present specific populations, 
thus shaping bacterial ecology. Prophage preva
lence varies with geography and H. pylori ancestry, 
representing a complex interplay of ecological, 

evolutionary, and genetic factors. The HpGP set 
revealed that prophage sequences are often frag
mented and scattered across the H. pylori chromo
some. This dispersion of prophage elements due to 
bacterial genome rearrangement disrupts the typi
cal and likely essential modular organization 
required for the prophage to complete a lytic 
cycle. Likewise, merging with other mobile ele
ments also disrupts sequences. These prophage 
genome rearrangements, merging with other 
mobile elements, and pseudogenization appear to 
be new players in the arms race between bacteria 
and phage. While functional annotation is challen
ging for phage genes, our analysis successfully 
determined the gene function for 61.2% of the 
prophage pangenome, which consists of 147 
genes. Notably, this included key genes that 
enabled the formulation of an in silico-derived 
hypothesis regarding the switch model between 
lysis and lysogeny. This publicly available prophage 
catalog, together with its annotated pangenome, 
provide a necessary foundation for future experi
ments to untangle prophage evolution, ecology, 
function, regulation, phage–host interaction, and 
potential application in phage therapy.

Material and methods

Sample acquisition

Our analysis was based on 1011 H. pylori genomes 
from the HpGP, which represent 50 countries. The 
sample acquisition details as well as bacterial isola
tion, DNA extraction, library preparation, SMRT/ 
PacBio sequencing, data QC, and de novo assembly 
can be found in the study conducted concurrently 
with the present work.51 The HpGP includes 12 
countries from which no H. pylori genome 
sequences have previously been published. 
Collecting material from diverse geographical 
regions poses significant logistical challenges, and 
while sample groups could ideally be more diverse, 
the inclusion of 1011 genomes from the HpGP 
represents the best possible representation given 
these constraints.
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Prophage identification

Prophages were identified in the genomes using the 
default options of BLASTn,52 and previous H. pylori 
identified prophages25 as a query. BLASTn between 
the prophage query and the bacterial chromosome 
identifies sequences with homology. However, due 
to sequence variability, this matching is not always 
correctly delimited in the bacterial chromosome. 
Thus, all hits were manually investigated so that 
the prophage region could be delimited, indepen
dently of query cover since we were also targeting 
incomplete prophages. The coding regions upstream 
and downstream of the identified regions were 
investigated using BLASTn against the nucleotide 
database until genes of bacterial origin were found, 
thus delimiting the prophage region. To perform the 
manual curation, the sequence flanking the proph
age on each side is investigated by analyzing the 
following genes to verify whether they were bacterial 
or phage-related, using BLASTn against the nucleo
tide database of NCBI. If the analyzed genes are 
found to be phage-related, they are added to the 
prophage; otherwise, they help in delimiting the 
prophage within the bacterial genome. This was 
done until we found a bacterial gene that delimits 
the prophage sequence. To ensure that this bacterial 
gene was not a cargo gene among other bacterial 
genes, we verified the absence of another prophage 
in the immediate vicinity, as well as the gene order of 
the prophage, since prophage present genome syn
teny (by visualizing the annotated prophages in the 
Geneious 8 software). This analysis was performed 
for the two insertion sites of the prophage at the 5’ 
and 3’ ends. Additionally, using the annotated gen
ome files a search for specific bacteriophage protein 
annotations were performed, using the keywords, 
“capsid,” “virion,” “lysin,” “holin,” “tail,” “structur*,” 
“integrase,” and “portal.” The hits were investi
gated using BLASTn and BLASTp and the 
prophage regions delimited. Furthermore, to 
verify for the presence of novel prophages 
without homology to the query used or the 
word search, we have used the phage detection 
algorithm PhiSpy,19 which is designed for de 
novo discovery of phage regions. H. pylori pro
phages described as complete typically have 
a size over 20 Kb, whereas remnant prophages 
have sizes much lower than this cutoff. 

Contiguous prophage regions longer than 20 
kb with a prophage gene composition delimit
ing the sequence were marked as complete; 
while those with shorter sequences, or absence 
of phage genes delimiting the sequence, or 
situations where most genes were not phage- 
related were labeled incomplete. The locus tag 
of the bacterial genes at 5’ and 3’ ends delimit
ing the prophages were registered to evaluate 
integration site predominance. Python libraries 
numpy, matplotlib and scipy were used for 
box-plot, linear regression, chi-square or 
Fisher's exact test, and the Mann-Whitney 
U-test determination (genome size; GC con
tent; number of pseudogenes identified during 
annotation). Certain assumptions of linear 
regression models, such as normality and 
homogeneity of residuals, as well as linearity 
for quantitative predictors, were evaluated 
using the Shapiro–Wilk test. We have done 
the Shapiro–Wilk test to evaluate the normality 
assumption, and Levene’s test to assess the 
equality of variances among the groups, before 
proceeding with either Fisher’s exact test or the 
independent t-student test.

Prophage populations and phylogenetic analysis

Prophage sequences containing concatenated 
integrase and holin genes, as well as complete 
prophage genomes, were aligned utilizing 
MAFFT version 753 with default settings. 
Maximum-likelihood phylogenetic trees were 
generated from nucleotide alignments through 
fasttreeMP 2.1.11.54 The Interactive Tree Of 
Life55 was employed for the visualization and 
annotation of the resultant trees. Furthermore, 
a phylogenetic network concerning complete pro
phages was constructed using SplitsTree 4.10 
software.56 This software serves as a robust tool 
for depicting both conflicting and coherent infor
mation contained within a dataset.

We inferred the prophage population using the 
integrase and holin genes to run STRUCTURE,6,57 

using the admixture model and 30,000 iterations, 
preceded by a burn-in phase of 30,000 iterations. 
Multiple runs were executed for values of 2 ≤ K ≤ 9, 
and comparisons were made based on the highest
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mean log-likelihood values obtained. Utilization of 
these two genes for population determination 
enabled the incorporation of both complete and 
incomplete prophages that possess them.

For the complete prophages the population 
structure was determined using chromosome 
painting and fineSTRUCTURE algorithms as pre
viously described.8 Genome-wide SNPs, extracted 
with SNP-sites,58 were grouped into segments 
using a co-ancestry matrix, detailing the count of 
segments from each donor to each recipient. 
ChromoPainter (version 0.04) conducted the chro
mosome painting algorithm individually for each 
recipient. Subsequently, fineSTRUCTURE (version 
0.02) underwent 100,000 iterations of burn-in and 
Markov Chain Monte Carlo to cluster individuals 
based on the co-ancestry matrix.57 Also, for com
plete prophage genomes, the genetic diversity 
assessment among the prophage populations deter
mined employed the PopGenome package59 within 
R. This involved calculating FST (fixation index) to 
assess genetic structure and quantify inter- 
subpopulation genetic variation within the overall 
population, determining nucleotide diversity for 
gauging polymorphism in both groups, and using 
Tajima’s D statistics to identify deviations from 
neutrality. Furthermore, a PCA was conducted 
using the function glPca from the adegenet 
package60 in R.

Prophage pangenome and functional annotation

The prophage pangenome was determined using 
Roary,61 as previously described,8 setting −i (the 
minimum percentage identity of the shorter length 
for BLASTp) to 70. Each protein sequence of the 
pangenome was investigated for its three- 
dimensional structure using Alphafold262 with 
default parameters for monomer assembly, 
Phyre263 and SwissModel.64 BLASTp and Pfam 
searches were conducted as well for the protein 
sequences. Globally, this analysis gave insight into 
protein function, which is of paramount impor
tance concerning the high number of coding 
sequences identified without attributed function. 
Phage promoters were predicted using PHIRE.65 

GO terms were determined to provide structured 
controlled ontologies describing fundamental 

characteristics of gene products.66 RM system 
annotation and epigenetic details can be found at 
REBASE.28 According to the Pacific biosciences 
white paper on base modifications, PacBio sequen
cing is very good at finding the chemical modifica
tions at N6-adenine and N4-methylcytosine that 
occur on DNA molecules, but has great limitations 
decoding 5-methylcytosine.

Genome synteny and rearrangement analysis

The genome synteny was visualized with EasyFig67 

and clinker.68 Additionally, during manual delimi
tation of prophage sequences any observed genome 
rearrangement, like inversions, were registered. 
Dot-plots of particular genes or regions were con
structed using Geneious version 8.
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