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Among the computational features that determine the computing power of polarizationless
P systems with active membranes, the depth of the membrane hierarchy is one of the least
explored. It is known that this model of P systems can solve PSPACE-complete problems
when no constraints are given on the depth of the membrane hierarchy, whereas the
complexity class P#P‖ is characterized by monodirectional shallow P systems with minimal 
cooperation, whose depth is 1. No similar result is currently known for polarizationless
systems without cooperation or other additional features. In this paper we show that these
P systems, using a membrane hierarchy of depth 2, are able to solve at least all decision
problems that are in the complexity class PNP‖ , the class of problems solved in polynomial 
time by deterministic Turing machines that are given the possibility to make a polynomial
number of parallel queries to oracles for NP problems.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Membrane systems, also known as P systems, have been introduced by Gh. Păun in 1998 as a framework to define parallel
models of computation inspired by the functioning of living cells. In the basic model, a tree-like membrane hierarchy divides 
the Euclidean space into regions. Each membrane can contain other membranes; the outermost membrane is called the skin, 
and divides the P system from the surrounding environment. The leaves of the membrane hierarchy correspond to elementary
membranes, that is, membranes that do not contain any other membrane. Each membrane delimits a region, that contains 
a (possibly empty) finite multiset of objects over a finite alphabet. Every membrane label has an associated set of rewriting 
rules, written following an appropriate formal grammar; these rules are usually applied in the so-called maximally parallel 
way to evolve the multiset of objects located in the region. Each of the objects obtained from the application of the rewriting 
rules can possibly cross the membrane enclosing the region, thus moving up in the membrane hierarchy, or can cross one 
of the membranes contained into the region in which it has been produced, moving down towards the bottom of the 
membrane hierarchy.

Since the introduction of this basic model of computation many variants of P systems have been proposed and studied in 
the literature, giving rise to the research field known as membrane computing. This is currently a very active field of research, 
where three types of models are extensively studied: cell-like P systems [1], based on the tree-like hierarchical structure 
of the membranes within a living cell; tissue-like P systems [2], based on the intercommunication between the cells in 
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biological tissues, and usually modeled as a graph-like interconnection structure of computing elements, each representing 
a cell; and spiking neural P systems [3], inspired by the electrical impulses (called spikes) that neurons emit as information, 
also represented as networks of cells exchanging information in the form of spike symbols. Two nice and clear introductions 
to P systems can be found in [4,5], while a comprehensive presentation of the state of knowledge in 2010 is given in The 
Oxford Handbook of Membrane Computing [6]. For the latest developments and an extensive bibliography, we refer the reader 
to the P systems Web page [7].

Since their birth, P systems have stimulated a relevant number of investigations both on the theoretical side – dealing 
with their computing power and efficiency in solving computationally difficult problems – and from the point of view of 
applications – studying how P systems can be applied to simulate several kinds of natural phenomena. Focusing on cell-like 
P systems, one of the models that have attracted most attention, especially from the theoretical point of view, are P systems 
with active membranes [8]. In this kind of P systems the membranes take a more active role during the computations: not 
only they contain objects, rules, and other membranes, but each membrane may also have an associated electrical charge, 
which typically can be negative, positive, or neutral. The electrical charge of a membrane affects the applicability of the rules 
located in the enclosed region, and also the communication between different regions, that is, the ability of objects to cross 
the membranes. A feature commonly found in P systems with active membranes is the presence of division or separation 
rules. These rules, inspired by biological mitosis, duplicate an existing membrane, thus modifying the membrane hierarchy, 
respectively copying or separating the objects that occur in the parent membrane into the two offspring membranes. The 
membrane structure can also be modified by dissolution rules: when executed, a dissolution rule destroys the membrane in 
which it is applied, making all the objects and membranes contained in it “fall out” in the surrounding region.

During the two decades following their introduction, P systems with active membranes have been employed to solve 
classically intractable problems, like NP-complete ones [9] or, more recently, problems in the complexity class P#P and in 
the entire counting hierarchy [10]. To reach these results, the simulation of Turing machines provides an important building 
block. In particular, the construction of P systems that simulate Turing machines using as few membranes (or cells) as 
possible and limiting the depth of the system is a “trick” that allows to nest multiple machines in order to solve problems 
in large complexity classes. For example, nesting of nondeterministic machines – where the nondeterminism was simulated 
by membrane division – and a counting mechanism allow to characterize P#P , the class of all problems solvable by a 
deterministic Turing machine with access to a #P oracle [10,11]. The same ideas can be applied to tissue P systems, where 
the different communication topology makes even more important to keep the Turing machine simulations compact [12].

Considering the computational features used by P systems with active membranes, we have that uniform families of this 
kind of systems, with charges and bidirectional communication (that is, objects can cross membranes in both directions), are 
able to solve P#P-complete problems when only one level of membrane nesting (those kinds of P systems are usually called 
shallow systems) is allowed [13,10], and PSPACE-complete problems when this restriction is removed [14]. The presence 
of simple cooperation rules, like the ones provided by antimatter, where two opposite objects can annihilate each other, 
allows the systems to reach P#P with a shallow membrane structure, also when the systems have no charges [11]. Even 
when the communication is severely restricted, as in monodirectional systems [15], where send-in is forbidden, uniform 
families of monodirectional P systems with active membranes with charges characterize PNP or, if shallow, the class PNP‖ , as 
shown in [15]. It is interesting to see that this is not the case for monodirectional systems with antimatter: the additional 
cooperation provided by object annihilation makes it possible to perform a counting operation once (in a destructive way), 
thus providing families of this kind of systems the ability to solve all problems in P#P where only one oracle query suffices, 
even with only one level of nesting [11]. Considering monodirectional P systems with minimal cooperation [16–18], in [19]
it has been proved that these systems, working in polynomial time, characterize the class P#P‖ of all decision problems 
solvable in polynomial time by a deterministic Turing machine with access to a single query to a #P oracle. This result 
shows that charges are not essential for monodirectional shallow P systems, thus helping to understand the roles of depth 
and the direction of communication for reaching computing power beyond NP [20].

In this paper we continue the investigation about the influence of the membrane hierarchy depth on the computational 
power of P systems with active membranes. In particular, we prove that depth-2 polarizationless P systems with active 
membranes, using non-cooperative evolution rules, bidirectional communication rules, dissolution rules and weak division 
rules for non-elementary membranes, working in polynomial time, can solve at least all decision problems in the class 
PNP‖ . Compared with the result obtained in [15], here the P systems are bidirectional but without charges; under these 
conditions, reaching PNP‖ is obtained by increasing the membrane hierarchy depth from 1 to 2. In general, we will allow 
to use a polynomial number of different NP oracles; however, we will also discuss the cases in which one oracle or even 
one query suffices. For simplicity, we will prove our result using semi-uniform families of P systems; albeit it is possible to 
extend it to uniform families, we will not delve into details on how to do it, as this transformation is mostly annoying from 
a technical point of view and not really interesting from a scientific point of view.

It is important to notice that the results presented here are specific to the case of polarizationless P systems. In fact, 
when polarization is present, even without cooperation all problems in P#P can be solved by shallow systems [13], whereas 
depth-2 systems can solve at least the problems in P#P#P

, i.e., those residing in the second level of the counting hier-
archy [10]. In fact, the result presented here is, as far as the authors know, the first one showing that polarizationless 
P system of constant depth can go beyond P.

The rest of this paper is organized as follows: Section 2 recalls some basic notions and notations which are used in the 
following. In Section 3 we provide a high-level description on how polynomial-time deterministic Turing machines with NP
44
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oracles can be simulated using our model of depth-2 P systems with active membranes. Section 4 shows in particular how 
a single NP query can be simulated, thus allowing to use P systems as oracles, and in Section 5 the main result is stated. 
Section 6 contains the conclusions, and proposes some directions for future research.

2. Basic notions

In this paper we consider semi-uniform and uniform families of P systems with active membranes without charges, 
working in polynomial time and using non-cooperative evolution rules, communication (send-in and send-out) rules, disso-
lution rules and elementary and weak non-elementary division rules. A detailed introduction to this model of computation 
can be found in The Oxford Handbook of Membrane Computing [6], that also contains a more general introduction to P systems, 
how they operate and the related notions of formal language theory and multiset processing.

Definition 1. A polarizationless P system with active membranes, of initial degree d ≥ 1, is a tuple

� = (�,�,μ, wh1 , . . . , whd , R)

where:

• � is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
• � is a finite set of labels;
• μ is a membrane structure (i.e., a rooted unordered tree, usually represented by nested brackets) consisting of d mem-

branes labeled by elements of � in a one-to-one way;
• wh1 , . . . , whd , with h1, . . . , hd ∈ �, are multisets (finite sets with multiplicity) of objects in �, describing the initial 

contents of each of the d regions of μ;
• R is a finite set of rules.

The rules in R considered in this paper are of the following types:

(a) Object evolution rules, of the form [a → w]h .
They can be applied inside a membrane labeled by h and containing the object a; this object is rewritten into the 
multiset w (i.e., the object a is removed from the multiset in h and replaced by the objects in w). Since the left-hand 
side of the rule contains only one object, rules of this kind are usually called non-cooperative evolution rules.

(b) Send-in communication rules, of the form a [ ]h → [b]h .
They can be applied to a membrane labeled by h and such that its parent region, i.e., the one containing it, contains an 
occurrence of the object a; the object a is sent into h, becoming b.

(c) Send-out communication rules, of the form [a]h → [ ]h b.
They can be applied to a membrane labeled by h and containing an occurrence of the object a; the object a is sent out 
from h to the parent region, becoming b.

(d) Dissolution rules, of the form [a]h → b.
They can be applied to any membrane (except the outermost one) labeled by h and containing an occurrence of the 
object a; the object a is sent out from h to the parent region becoming b, the membrane h ceases to exist and all the 
other objects it contains are sent into the parent region.

(e) Elementary division rules, of the form [a]h → [b]h [c]h .
They can be applied to a membrane labeled by h, containing an occurrence of the object a but having no other mem-
brane inside (that is, an elementary membrane); the membrane is divided into two membranes having label h; the 
object a is replaced, respectively, by the single objects b and c, while the other objects of the multiset contained in 
membrane h are replicated in both membranes.

(f) Weak non-elementary division rules, of the form [a]h → [b]h [c]h .
They can be applied to a membrane labeled by h containing an occurrence of the object a, and possibly further mem-
branes; the membrane is divided into two membranes having label h; the object a is replaced in the two offspring 
membranes, respectively, by the single objects b and c, while the rest of the contents (including whole membrane 
substructures) is replicated in both.

In what follows we will consider P systems having small constant depth, especially depths 1 and 2. The depth of a P system 
is defined as the depth of its membrane hierarchy, represented as a tree. Thus, P systems consisting of a single membrane 
have depth 0, P systems whose skin contains only elementary membranes have depth 1, and so on. Also, given a P system 
�, for simplicity we will refer to a membrane and all its content (including the whole membrane substructures) as a sub-
system of �; the depth of such a sub-system is defined in the obvious way, considering the sub-system as if it were itself a 
P system.

The configuration of a P system at a given time step is described by listing the multisets of objects contained in each 
membrane. A computation step changes the current configuration of the system according to the following set of principles:
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• Each object and membrane can be subject to at most one rule per step, except for object evolution rules: inside each 
membrane, several evolution rules can be applied simultaneously.

• The application of rules is maximally parallel [6]. Each object appearing on the left-hand side of an applicable evolution, 
communication, dissolution or division rule must be subject to exactly one copy of them: an object cannot remain idle 
if there are rules applicable to it. Analogously, each membrane can only be subject to one communication, dissolution, 
or division rule (types (c)–(f)) per computation step; for this reason, these rules will be called blocking rules in the rest 
of the paper. As a result, the only objects and membranes that do not evolve are those associated with no rule.

• When several conflicting rules can be applied at the same time, a nondeterministic choice is performed; this implies 
that, in general, multiple possible configurations can be reached after a computation step from a certain configuration.

• In each computation step, all the chosen rules are applied simultaneously in an atomic way. However, in order to clarify 
the operational semantics, each computation step is conventionally described as a sequence of micro-steps as follows. 
First, all evolution rules are applied inside the elementary membranes, followed by all communication, dissolution 
and division rules involving the membranes themselves; this process is then repeated on the membranes containing 
them, and so on towards the outermost membrane, still respecting the restriction that each object can be subject to at 
most one rule for each computation step. This means, in particular, that each membrane evolves only after its internal 
configuration has been updated. For instance, before a membrane division occurs, all chosen object evolution rules must 
be applied inside it; this way, the objects that are duplicated during the division are already the final ones.

• The outermost membrane cannot be divided or dissolved, and any object sent out from it cannot re-enter the system 
again.

A halting computation of the P system � is a finite sequence �C = (C0, . . . , Ck) of configurations, where C0 is the initial 
configuration, every Ci+1 is reachable from Ci via a single computation step, and no rules of � are applicable in Ck .

P systems can be used as language recognizers by employing two distinguished objects yes and no: we assume that all 
computations are halting, and that either one copy of object yes or one copy of object no is sent out from the outermost 
membrane, and only in the last computation step, in order to signal acceptance or rejection, respectively. If all computations 
starting from the same initial configuration are accepting, or all are rejecting, the P system is said to be confluent. If this is 
not necessarily the case, then we have a non-confluent P system, and the overall result is established as for nondeterministic 
Turing machines: it is acceptance if and only if an accepting computation exists. All P systems in this paper are assumed to 
be confluent.

In order to solve decision problems (or, equivalently, decide languages), we use families of recognizer P systems � = {�x :
x ∈ ��}. Each input x is associated with a P system �x deciding the membership of x in a language L ⊆ �� by accepting 
or rejecting. The mapping x 	→ �x must be efficiently computable for inputs of any length, as discussed in detail in [21]; 
usually, one of the two following uniformity conditions is imposed.

Definition 2. A family of P systems � = {�x : x ∈ ��} is said to be (polynomial-time) semi-uniform if the mapping x 	→ �x
can be computed in polynomial time by a deterministic Turing machine.

Definition 3. A family of P systems � = {�x : x ∈ ��} is (polynomial-time) uniform if the mapping x 	→ �x can be computed 
by two polynomial-time deterministic Turing machines E and F as follows:

• F (1n) = �n , where n is the length of the input x and �n is a common P system for all inputs of length n, with a 
distinguished input membrane.

• E(x) = wx , where wx is a multiset encoding the specific input x.
• Finally, �x is simply �n with wx added to the input membrane.

Any explicit encoding of �x is allowed as output of the construction, as long as it is at most polynomially shorter than 
the one where the rules are listed one by one, the membrane structure is represented in such a way that all membranes 
are listed one by one and their content is encoded in unary. This restriction is enforced in order to mimic a (hypothetical) 
realistic process of construction of the P systems, where membranes and objects are presumably placed in a constant 
amount during each construction step, and require actual physical space proportional to their number; see also [21] for 
further details on the encoding of P systems.

3. Structure of the simulation

As stated in the Introduction, the aim of this paper is to prove that semi-uniform families of depth-2 P systems of the 
kind defined above can simulate the computations of deterministic Turing machines working in polynomial time, and having 
access to one (or even to a polynomial number) of NP oracles. Further, the queries made to the oracle(s) are independent of 
each other; this means that they can all be prepared in advance, and they can be performed in parallel. Stated shortly, what 
we are going to prove is that the above defined P systems are able to solve at least all decision problems in the complexity 
class PNP‖ . Albeit the construction we will present uses semi-uniform families of P systems, in Section 5 we will give some 
indications on how to extend it to uniform families.
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Before going into the details of the proof, let us provide a high-level view on how the simulation works, as a road map 
to follow so as not to get lost.

Let x ∈ �� be an input string of length n, and let M be a deterministic Turing machine working in polynomial time p(n)

with access to an oracle O for a problem in NP. The task of M is determining whether x is a positive instance of a decision 
problem in PNP‖ ; equivalently, this amounts to determining whether x ∈ L for a given language L ∈ PNP‖ , thus looking at the 
complexity class as a set of languages. To simplify the simulation made by the P system, we start assuming that M can ask 
at most one query to the oracle O; we will later show how to extend the proof to a polynomial number of queries, either 
asked to the same oracle or to different oracles. Further, the simulation of M will start just from the moment in which the 
query is executed: indeed, all the previous computation steps performed by M can be simulated by the deterministic Turing 
machine that builds the P system, either in the semi-uniform or in the uniform setting.

Since the problem solved by the oracle is in NP, there exists a nondeterministic Turing machine N working in polynomial 
time t(n) (such a number of computation steps is polynomial with respect to the length of the query string and, hence, 
with respect to n) that has an accepting computation starting with the query string as input if and only if the query has a 
positive answer, that is, if and only if the query string is in the NP language accepted by the oracle.

Without loss of generality, we can also assume that both M and N have a binary alphabet, � = {0, 1}. Further, since 
both machines work in polynomial time, and at most one new tape cell can be visited at each computation step, we can 
consider only p(n) tape cells for M and t(n) tape cells for N . So, let x0, . . . , xp(n)−1 be the content of the tape of M at the 
moment in which the query is asked to O, and let y0, . . . , yt(n)−1 be the (possibly padded) query string. Moreover, let r be 
the current state of M , j the position of the tape head of M , and q the initial state of N . Also, assume that the tape head 
of N is located in position 0, and that the answer to the query will be written in position i on the tape of M .

Since we are working under the polynomial semi-uniformity condition, the deterministic Turing machine that builds the 
P system �x can first simulate M up to the moment of the execution of the oracle query, and then output the description of 
the P system, whose initial configuration will be the one at the moment in which the oracle query is going to be performed. 
So doing, the initial membrane structure of �x will contain the following membranes:

• The skin membrane, labeled M , where the simulation of the deterministic Turing machine M will take place.
• A collection of membranes labeled (k, �) and (k, �)′ , for 0 ≤ k < p(n) and 0 ≤ � ≤ p(n), contained in M . These mem-

branes will be used to store the content of the tape of the simulated deterministic Turing machine M , at each time 
step; precisely, membrane (k, �) will represent the content of tape cell k at time step �. Membranes (k, �)′ will serve 
the same purpose, and will be used as an auxiliary work space during the simulation of a computation step of the 
Turing machine M .

• A membrane labeled N , contained in M . This is where the simulation of the nondeterministic Turing machine N , on its 
own simulating the oracle query, will occur.

• A collection of membranes labeled (k, �) and (k, �)′ for 0 ≤ k < t(n) and 0 ≤ � ≤ t(n), contained in N . Similarly to 
what happens for membrane M , these membranes will be used to store the content of the tape of the simulated 
nondeterministic Turing machine N , at each time step; precisely, membrane (k, �) will represent the content of tape 
cell k at time step �. Membranes (k, �)′ will serve the same purpose, and will be used as an auxiliary work space during 
the simulation of a computation step of machine N .

• t(n) membranes labeled F0, . . . , Ft(n)−1, directly contained in membrane M . These membranes will generate an expo-
nential number of copies of themselves, and will be used at the end of the simulation of the oracle query to reduce 
the number of copies of yesN objects – if any – to just one copy. In fact, during the simulation of the oracle query the 
nondeterministic Turing machine N is simulated, and one copy of the yesN object is produced for each accepting com-
putation path of the machine; as the presence of multiple copies of this object may disturb the subsequent computation 
steps, a reduction to a single copy is needed.

• A membrane AN directly contained in M . This membrane will be used at the end of the execution of the query, to 
“read” its answer (either yes or no). To be precise, it will be used to check for the presence of one copy of the yesN
object, denoting a positive answer produced by the membrane N simulating the oracle query; if no yesN object occurs 
then it will send to membrane M one copy of the object noN , denoting a negative answer to the query.

The initial content of the membranes will be the following:

• The membrane M contains the object r̄ j,0,12t(n)+5. This denotes that the simulated Turing machine M is in state r, its 
tape head is located on the j-th cell of the tape, and these are the values at time instant 0. The subscript 12t(n) + 5
will be used as a timer, to let the simulation of machine M start as soon as the query answer has been produced. When 
the timer reaches 0, the bar over r is removed and the simulation of M starts.

• Each of the membranes (k, 0) in M , for 0 ≤ k < p(n), contains one copy of the object x̄k,12t(n)+5. As stated above, 
x0, . . . , xp(n)−1 is the content of the tape of the Turing machine M at the moment of the query to the oracle, and 
membranes (k, 0) represent the content of the tape of M at the time step 0, that is, at the first computation step of 
M . Just like above, the subscript 12t(n) + 5 is used as a timer to synchronize the start of the simulation of machine M
with the production of the query answer. When this timer reaches 0, the bar over x is removed.
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Fig. 1. Structure and initial content of membrane M .

Fig. 2. Structure and initial content of membrane N .

• Each of the membranes Fk contains the object ck , for 0 ≤ k < t(n). Such an object will drive the production of an 
exponential number of copies of membranes Fk , as described above.

• Membrane AN contains the object noN,12t(n)+3, that represents a negative answer to the query, as described above. The 
second subscript is used as a counter, to produce the answer noN to the query (only) in case there are no copies of 
object yesN .

• Membrane N contains the object q0,0, where q is the initial state of the nondeterministic Turing machine N that 
simulates the oracle query, and the two subscripts denote respectively the current position of the tape head and the 
current time step.

• Each of the membranes (k, 0) in N , for 0 ≤ k < t(n), contains one copy of the object yk . As stated above, y0, . . . , yt(n)−1
is the (possibly padded) query string, which is located on the tape of the nondeterministic Turing machine N . Hence 
the objects in membranes (k, 0), inside membrane N , represent the content of the tape of machine N at the first time 
step.

• All the other membranes are empty.

Figs. 1 and 2 show the structure and initial content of membranes M and N , respectively.
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At the beginning of the computation, the P system �x simulates the execution of the query to oracle O, as will be 
described in Section 4. This is performed inside membrane N , that simulates the nondeterministic Turing machine N , that 
on its own simulates the oracle O. The query string is located on the tape of machine N , whose content in the initial 
configuration is represented by the objects contained in membranes (k, 0), inside membrane N , for 0 ≤ k < t(n).

Each computation step of the Turing machine N is simulated by �x in nine steps. First of all, �x has to “read” the 
symbol (either 0 or 1) contained in the i-th cell of the tape of N . As stated above, the content of the tape of N at time t is 
represented by the objects in membranes (k, t). The “read” operation is performed in three steps.

First step In the first step, the object qi,t – denoting the fact that the machine N is currently (at time step t) in state q, and 
the tape head is located on the i-th cell – enters into the membrane (i, t), and stores in its subscript the value 0 as a guess 
about the symbol contained in the cell.

Second step In the second step, all membranes (k, t) that contain a 0 are dissolved; if membrane (i, t) is among them, then 
the state/head position object q falls out in membrane N having correctly stored in its subscript the symbol of the i-th cell 
of the tape of Turing machine N; if instead membrane (i, t) is not dissolved, then the subscript of q is modified to indicate 
that the symbol contained in the i-th cell of the tape of N is 1.

Third step In the third step, all membranes (k, t) that contain a 1 are dissolved.

Fourth and fifth steps Now that the “read” operation has been performed, in the two subsequent steps all the objects that 
were inside the membranes (k, t) – both those representing the tape symbols, and the state/head position object – are 
moved into the correct (k, t)′ auxiliary membranes. Also, in the fifth step, all the objects that represent the tape symbols 
in membranes (k, t)′ store in their subscript both their position k on the tape and the time value t + 1, thus preparing 
themselves for the configuration that will represent the next state of the Turing machine N .

Sixth step In the sixth step, the state/head position object dissolves the membrane that contains it, and the object repre-
senting the symbol in the i-th cell of the tape is deleted; this is done because the current symbol in the i-th cell of the 
tape has to be overwritten with a new symbol, as indicated by the transition function of the Turing machine N .

Seventh step In the seventh time step the transition function is applied, and a single object incorporating the result (new 
state, new symbol to be written in the i-th cell of the tape, and new position of the tape head) is produced. In case 
the simulated computation step of the Turing machine N is nondeterministic, then a weak non-elementary division of 
membrane N occurs, and each of the two offspring membranes receives a composite object that corresponds to one of the 
triples that constitute the result of the transition function. Cases in which the transition function produces more than two 
triples are not considered, as they can be easily handled through an appropriate sequence of membrane divisions.

Eighth step In the eighth step all membranes (i, t)′ are dissolved, and the objects representing the result of the transition 
function are “unpacked”.

Ninth step Finally, in the ninth step all the objects representing the content of the tape of the Turing machine enter into 
the corresponding membranes (k, t + 1), reflecting the content of the tape at time t + 1; the state/head position object is 
rewritten in a form that allows to start the simulation of the next computation step of the Turing machine N .

The simulation of a computation path of the Turing machine N terminates when a final state is reached. If this is an 
accepting state, one copy of the object yesN is produced and sent out to membrane M . As discussed in Section 5, without 
loss of generality we may assume that all computation paths of N terminate simultaneously. When this happens, membrane 
M contains one copy of object yesN for each accepting computation (if any) of machine N . By using a “funnel” mechanism, 
that involves the creation of an exponential number of copies of membranes Fk , these objects yesN are transformed to a 
single copy of object yesN,−1. Such an object interacts with the membrane AN to finally produce one object that represents 
the answer to the oracle query, that is, 1i in case of positive answer, and 0i in case of negative answer. This object enters 
the membrane (i, 0) contained into membrane M , simulating the fact that the answer to the query is written in the i-th 
cell of the tape of the Turing machine M . Now the simulation of the deterministic Turing machine M can start, and it 
is performed just like the simulation of the nondeterministic Turing machine N , with the difference that the transition 
function of M never makes nondeterministic choices. The simulation terminates when a final state is reached, at which 
point a single object (either yes or no) representing the result of the computation is emitted to the environment, during the 
last computation step.

4. Simulating an NP oracle query

We will now focus on how to perform the simulation of the nondeterministic Turing machine N , on its own simulating 
the oracle query, inside membrane N . The same construction will also be employed to simulate the deterministic Turing 
machine M , by neglecting the rules dealing with nondeterministic transitions.
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4.1. Simulation of a nondeterministic Turing machine computation step

Let N be a nondeterministic Turing machine, having set of states Q , tape alphabet � = {0, 1}, and transition function 
δ : Q × � → 2Q ×�×{−1,1} . Without loss of generality we assume that in the simulated machine N each nondeterministic 
step consists of at most two choices, that is, |δ(q, a)| ≤ 2 for all q ∈ Q and all a ∈ �.

P system �x can simulate in 9 of its steps one computation step of the Turing machine N , as follows. Assume that at 
time step t the machine N is in state q, with the tape head on the i-th cell; this is encoded by the presence of object qi,t
in membrane N . The content of the tape x0, x1, . . . , xt(n)−1 ∈ �t(n) is encoded by having the object xi inside the membrane 
(i, t), for 0 ≤ i < t(n).

First step In the first step, the object qi,t enters the membrane (i, t) to “read” the symbol in position i on the tape, while the 
objects representing the content of the tape start to count to (eventually) dissolve the membrane where they are contained:

qi,t [ ](i,t) → [qi,t](i,t) for q ∈ Q , 0 ≤ i < t(n), and 0 ≤ t ≤ t(n)

[0 → 00](i,t) for 0 ≤ i < t(n) and 0 ≤ t ≤ t(n)

[1 → 11](i,t) for 0 ≤ i < t(n) and 0 ≤ t ≤ t(n)

Notice that objects 1 take 1 as a subscript, instead of 0. This is because at the second time step each object 00 will dissolve 
the membrane containing it, while at the third step the remaining membranes (i, t) will be dissolved by their objects 10. 
This mechanism allows the P system to know what kind of object has dissolved the membrane, thus simulating the read 
operation of the symbol contained in the i-th cell of the tape of the Turing machine N .

Second step At the second step of the simulation, the object qi,t representing the state and the tape head position of the 
Turing machine acquires a new subscript 0 as a guess to indicate that the tape cell i contains the symbol 0. If such a guess is 
correct, then membrane (i, t) contains the object 00; the occurrence of this object dissolves the membrane, thus completing 
the “read” operation of symbol 0 in the i-th cell. Overall, every membrane (i, t) that contains the object 00 is dissolved, and 
the objects 00 that trigger the dissolution save in their subscript the current time step t of machine N and their position 
on the tape. On the other hand, the dissolution of all membranes (i, t) containing the object 11 must be postponed to the 
next step, as discussed above, hence objects 11 are rewritten to 10 to wait one step:

[qi,t → qi,t,0](i,t) for q ∈ Q , 0 ≤ i < t(n), and 0 ≤ t ≤ t(n)

[00](i,t) → 0i,t for 0 ≤ i < t(n) and 0 ≤ t ≤ t(n)

[11 → 10](i,t) for 0 ≤ i < t(n) and 0 ≤ t ≤ t(n)

Third step At the third step of the simulation, all the membranes (i, t) that contain the object 10 are dissolved. Also in 
this case, the objects 10 that trigger the dissolution save in their subscript the current time step t of machine N and their 
position on the tape. Notice that, before membrane (i, t) is dissolved, the object qi,t updates its guess on the content of the 
i-th cell of the tape, changing to 1 the third component of its subscript. If, instead, membrane (i, t) was dissolved in the 
previous step, because the i-th cell of the tape of Turing machine N contains the symbol 0, then the object qi,t,0 that has 
fallen out in membrane N is primed to wait one time step. The same treatment goes to all the objects 0i,t that have fallen 
out in membrane N during the previous time step:

[qi,t,0 → qi,t,1](i,t) for q ∈ Q , 0 ≤ i < t(n), and 0 ≤ t ≤ t(n)

[qi,t,0 → q′
i,t,0]N for q ∈ Q , 0 ≤ i < t(n), and 0 ≤ t ≤ t(n)

[0i,t → 0′
i,t]N for 0 ≤ i < t(n) and 0 ≤ t ≤ t(n)

[10](i,t) → 1i,t for 0 ≤ i < t(n) and 0 ≤ t ≤ t(n)

Fourth step At the fourth time step, all the objects representing the tape symbols, that are now in membrane N with a sub-
script indicating their position on the tape, enter into the auxiliary membranes (i, t)′, losing their subscripts. At this point, 
the collection of membranes (i, t)′ represents the content of the tape of machine N , just like the collection of membranes 
(i, t) represented it before and during the first time step. However, the difference is that now the state/tape head object 
q has stored in its subscript what is the symbol contained in the i-th cell of the tape. During this time step this object is 
primed, in order to wait:

[qi,t,1 → q′
i,t,1]N for q ∈ Q , 0 ≤ i < t(n), and 0 ≤ t ≤ t(n)

[q′
i,t,0 → q′′

i,t,0]N for q ∈ Q , 0 ≤ i < t(n), and 0 ≤ t ≤ t(n)
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0′
i,t [ ](i,t)′ → [0](i,t)′ for 0 ≤ i < t(n) and 0 ≤ t ≤ t(n)

1i,t [ ](i,t)′ → [1](i,t)′ for 0 ≤ i < t(n) and 0 ≤ t ≤ t(n)

Fifth step At the fifth time step, also the state/head position object q enters into the membrane (i, t)′ corresponding to the 
i-th cell of the tape. In the meanwhile, all the objects that entered into membranes (i, t)′ during the previous time step 
prepare themselves to go into membranes (i, t + 1), that will represent the content of the tape at the beginning of the next 
computation step of the Turing machine N:

q′
i,t,1 [ ](i,t)′ → [qi,t,1](i,t)′ for q ∈ Q , 0 ≤ i < t(n), and 0 ≤ t ≤ t(n)

q′′
i,t,0 [ ](i,t)′ → [qi,t,0](i,t)′ for q ∈ Q , 0 ≤ i < t(n), and 0 ≤ t ≤ t(n)

[0 → 0i,t+1](i,t)′ for 0 ≤ i < t(n) and 0 ≤ t < t(n)

[1 → 1i,t+1](i,t)′ for 0 ≤ i < t(n) and 0 ≤ t < t(n)

Sixth step At the sixth time step, all the objects representing the contents of the tape cells are primed, to wait. Then, the 
state/head position object q dissolves the membrane (i, t)′ that contains it. The other object (either 0′

i,t+1 or 1′
i,t+1) that 

was contained in the dissolved membrane falls out to membrane N , and will be deleted during the next time step:

[qi,t,0](i,t)′ → q̃i,t,0 for q ∈ Q , 0 ≤ i < t(n), and 0 ≤ t ≤ t(n)

[qi,t,1](i,t)′ → q̃i,t,1 for q ∈ Q , 0 ≤ i < t(n), and 0 ≤ t ≤ t(n)

[0i,t+1 → 0′
i,t+1](i,t)′ for 0 ≤ i < t(n) and 0 ≤ t < t(n)

[1i,t+1 → 1′
i,t+1](i,t)′ for 0 ≤ i < t(n) and 0 ≤ t < t(n)

Seventh step At the seventh time step, the P system is ready to simulate the application of the transition function δ of the 
Turing machine N . Recall that we assumed |δ(q, a)| ≤ 2 for all q ∈ Q and a ∈ �; we examine the cases |δ(q, a)| = 1 and 
|δ(q, a)| = 2 separately. So, suppose that δ(q, a) = {(r, b, d)}, where q is the current state, a is the symbol read on the tape, r
is the new state, b is the new symbol to be written on the tape, and d ∈ {−1, 1} indicates the movement of the tape head. 
At this time step, the object q̃i,t,a is rewritten to represent the result of the application of the transition function; notice 
that the evolution rule produces a single object, that will be “unpacked” at the next time step. In the meanwhile, the 0 and 
1 objects in membranes (i, t)′ continue to wait, while the object (0 or 1) in membrane N is rewritten to the “junk” object 
#, thus making it inactive. This is made because the content of the i-th cell of the tape has to be replaced with the new 
symbol b indicated in the output triple of the transition function; the object bi,t+1 that represents this new symbol will be 
produced at the next time step:

[q̃i,t,a → 〈ri+d,t+1 bi,t+1〉]N for 0 ≤ i < t(n) and 0 ≤ t < t(n)

[0′
i,t+1 → 0′′

i,t+1](i,t)′ for 0 ≤ i < t(n) and 0 ≤ t < t(n)

[1′
i,t+1 → 1′′

i,t+1](i,t)′ for 0 ≤ i < t(n) and 0 ≤ t < t(n)

[0′
i,t+1 → #]N for 0 ≤ i < t(n) and 0 ≤ t < t(n)

[1′
i,t+1 → #]N for 0 ≤ i < t(n) and 0 ≤ t < t(n)

If the transition function is instead non-deterministic, i.e., of the form δ(q, a) = {(r, b, dr), (s, c, ds)}, then the same rules 
as above are applied, but instead of rewriting q̃i,t,a via an evolution rule, a weak non-elementary division rule is applied on 
membrane N:

[q̃i,t,a]N → [〈ri+dr ,t+1 bi,t+1〉]N [〈si+ds,t+1 ci,t+1〉]N for 0 ≤ i < t(n)

and 0 ≤ t < t(n)

Eighth step Irrespective from the fact that membrane N has been divided or not during the seventh step, at the eighth time 
step all membranes (i, t)′ are dissolved, and the objects representing the result of the transition function δ are “unpacked”:

[〈ri+d,t+1 bi,t+1〉 → r̂i+d,t+1 b̂i,t+1]N for r ∈ Q , b ∈ {0,1}, d ∈ {−1,1},

0 ≤ i < t(n), and 0 ≤ t < t(n)

[0′′
i,t+1](i,t)′ → 0̂i,t+1 for 0 ≤ i < t(n) and 0 ≤ t < t(n)

[1′′
i,t+1](i,t)′ → 1̂i,t+1 for 0 ≤ i < t(n) and 0 ≤ t < t(n)
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Ninth step At the ninth step it is only necessary to send all the objects representing the tape content into the corresponding 
membranes. Simultaneously, the object representing the new state, that in the previous step was rewritten to an auxiliary 
object for synchronization purposes, is now rewritten to a usable form:

[r̂i+d,t+1 → ri+d,t+1]N for r ∈ Q , d ∈ {−1,1},

0 ≤ i < t(n), and 0 ≤ t < t(n)

0̂i,t+1 [ ](i,t+1) → [0](i,t+1) for 0 ≤ i < t(n) and 0 ≤ t < t(n)

1̂i,t+1 [ ](i,t+1) → [1](i,t+1) for 0 ≤ i < t(n) and 0 ≤ t < t(n)

The configuration of the P system now correctly represents the configuration of the nondeterministic Turing machine N
after executing its computation step, and it can be used to start the simulation of the next computation step.

When the simulation of the Turing machine N reaches one of the states qi,t(n) , for some i, this is a final state by the 
assumptions we imposed on N . If such a state is accepting then the P system executes the following rule to send out a 
“yes” answer to the query:

[qi,t(n)]N → [ ]N yesN for 0 ≤ i < t(n) and q accepting

Since the P system �x simulates one step of the Turing machine N in nine of its time steps, the slowdown induced 
by the simulation is only linear: t(n) computation steps of N require 9t(n) + 1 steps of �x . At the end of the simulation, 
membrane M contains as many copies of the object yesN as the number of accepting computations of N .

4.2. Reading the query answer

Once the yesN objects – one for each accepting computation of the nondeterministic Turing machine N – have been sent 
out in the skin membrane M , it is necessary to actually “read” the answer to the query and communicate it to the Turing 
machine M . To do so, without loss of generality, we will write either 1 (for a positive answer) or 0 (for a negative one) in 
the i-th cell of the tape of machine M . This means, in particular, that if multiple yesN objects are present then exactly one 
copy of the object 1(i,0) must be sent into the membrane with label (i, 0) contained into membrane M . On the other hand, 
if no object yesN is present then exactly one copy of object 0(i,0) must be sent into the same membrane.

This procedure will be performed with the help of a “funnel”, that reduces the amount of objects of type yesN from a 
possibly exponential number (at most 2t(n) , if each step of N was nondeterministic and all computations accepted) to either 
1 or 0. This funnel is implemented using 2k membranes labeled Fk , for 0 ≤ k < t(n), contained in membrane M . While this 
is an exponential number of membranes, the P system can generate them “at run time” by applying a sequence of division 
rules to the membranes with labels F0, . . . , Ft(n)−1 that occur in membrane M in the initial configuration of �x . Recall that 
every membrane Fk , for 0 ≤ k < t(n), initially contains one copy of the object ck . The correct number of membranes Fk is 
then generated through the following set of division rules for elementary membranes:

[c j]Fk
→ [c j−1]Fk

[c j−1]Fk
for all 0 < j ≤ k

After at most t(n) − 1 time steps, all the membranes with labels of the form Fk have been generated. Since the simulation 
of the nondeterministic Turing machine N requires 9t(n) + 1 time steps of the P system, the generation of these membranes 
can be performed in parallel with the simulation of the oracle query.

The main idea behind the operation of the funnel is that if there are at most 2k+1 objects of type yesN,k in membrane 
M , then at most 2k of them will be able to enter membranes Fk at a given step, while the remaining objects (at most 2k) 
will enter during the next time step. Once an object of type yesN,k enters a membrane labeled Fk , it counts for one time 
step before dissolving the membrane and rewriting itself as yesN,k−1. Note that the dissolution is never in conflict with any 
other blocking rule, since by the time it can be applied all objects of type yesN,k have been processed by their associated 
send-in rules. The objects falling out when Fk is dissolved, that were not responsible for the dissolution, are rewritten into 
junk objects. Since at most 2k objects were responsible for dissolving the membranes Fk , there are now at most 2k objects 
of type yesN,k−1; these allow to perform the same operations as above with the 2k−1 membranes labeled Fk−1. At the end 
of the entire process only one object will remain, making it possible to determine the answer to the query.

Going into the details, the objects yesN,k enter into the corresponding membranes Fk by the following rules:

yesN [ ]Ft(n)−1
→ [yes′

N,t(n)−1]Ft(n)−1

yesN,k [ ]Fk
→ [yes′

N,k]Fk
for 0 ≤ k < t(n) − 1

Notice that the first rule is only due to the fact that the object yesN is not of the form yesN,k .
When an object yesN,k is inside a membrane labeled Fk , it waits for one step before dissolving the membrane:

[yes′
N,k → yes′′

N,k]Fk
for 0 ≤ k < t(n)

[yes′′
N,k]Fk

→ yesN,k−1 for 0 ≤ k < t(n)
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Any object falling out without dissolving the membrane is then rewritten into a “junk” object:

[yes′′
N,k → #]M for 0 ≤ k < t(n)

At the end of the process, if at least one object of type yesN was present in the skin membrane, then after 3t(n) time steps 
this membrane will contain exactly one copy of the object yesN,−1.

Since the simulation of the Turing machine N requires 9t(n) + 1 steps before sending out the objects yesN (one for each 
accepting computation) and the generation of yesN,−1 requires 3t(n) additional steps, after 12t(n) + 1 time steps since the 
start of the computation there is exactly one object yesN,−1 in membrane M if and only if the answer to the oracle query 
computed by the nondeterministic Turing machine N is positive.

The P system can now use the membrane labeled AN to “read” the answer to the query. This membrane contains one 
copy of the object noN,12t(n)+3, which is rewritten 12t(n) + 3 times before being sent out as 0i :

[noN,t → noN,t−1]AN
for 0 ≤ t < 12t(n) + 3

[noN,0]AN
→ [ ]AN

0i

In the meantime, if the object yesN,−1 exists, it enters the membrane AN and dissolves it, waits one step and then it is 
rewritten as 1i . The no object fallen out from the dissolved membrane becomes the junk symbol:

yesN,−1 [ ]AN
→ [yesN ]AN

[yesN ]AN
→ yes′

N

[yes′
N → 1i]M

[noN,0 → #]M

In this way, at time step 12t(n) + 4 exactly one among the objects 0i and 1i occurs in the skin membrane. At the next time 
step this object can be sent into the membrane (i, 0) representing the i-th cell of the tape of the Turing machine M at the 
beginning of its simulation:

0i [ ](i,0) → [0](i,0) for 0 ≤ i < p(n)

1i [ ](i,0) → [1](i,0) for 0 ≤ i < p(n)

Since the simulation of the oracle Turing machine N is based on the careful synchronization of the dissolution steps, the 
simulation of the Turing machine M must start at time 12t(n) + 6, that is, one step after the answer to the query computed 
by N has been written on the tape of M . This can be accomplished by adding a timer to the object representing the initial 
state r and tape head position j of Turing machine M , as well as to the objects representing the content of those cells of the 
tape of M where there is no answer to the query (or queries, in case of multiple ones, as described below). The membranes 
(i, 0) that will contain the answers to the queries are left unchanged, since their contents will be determined at the end of 
the simulation of the oracle Turing machines. The corresponding set of rules is as follows:

[r̄ j,0,� → r̄ j,0,�−1]M for 0 < � ≤ 12t(n) + 5

[r̄ j,0,0 → r j,0]M

[0̄� → 0̄�−1](i,0) for 0 < � ≤ 12t(n) + 5,

tape cell i not containing a query answer

[0̄0 → 0](i,0) for tape cells i not containing a query answer

[1̄� → 1̄�−1](i,0) for 0 < � ≤ 12t(n) + 5,

tape cell i not containing a query answer

[1̄0 → 1](i,0) for tape cells i not containing a query answer

The simulation of the Turing machine M starts at time step 12t(n) +6 and is performed just like we have described above 
for the simulation of the nondeterministic machine N , with the difference that this time there will be no nondeterministic 
choices, that is, it will be |δ(q, a)| = 1 for all q ∈ Q and a ∈ �. The simulation will halt when a final state of machine M is 
obtained, at which point the acceptance object yes or the rejection object no will be sent-out to the environment, in the 
last computation step.
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5. Solving problems in PNP
‖

The above construction shows how to perform the simulation of a deterministic Turing machine M asking a single query 
to an oracle, in turn simulated by a nondeterministic Turing machine N . It is however possible to extend the construction 
to allow a polynomial number q(n) of oracle queries, all performed in parallel. To be as general as possible, we can assume 
that each query is asked to a different NP oracle Oi , simulated by a corresponding nondeterministic Turing machine Ni , 
for 1 ≤ i ≤ q(n). In turn, each Turing machine Ni will be simulated by an associated sub-system Ni located in the skin 
membrane of �x . As a special case there may be a single oracle O, simulated by a nondeterministic Turing machine N , 
queried q(n) times. However, also in this case the skin membrane of �x will contain q(n) copies of the sub-system N , each 
simulating the execution of one query; this duplication is necessary, as each sub-system dissolves some of its membranes 
during the computation and thus cannot be reused after the execution of a query.

Another special case stems from the following question: Can the number of oracle queries be reduced to just 1, as 
it happens with the characterization of the complexity class P#P‖ provided in [19]? In particular, Proposition 1 of [19]
shows that a polynomial number of parallel #P queries can be simulated by a single #P query in polynomial time. The 
idea behind the proof is that the nondeterministic Turing machine that simulates the single #P query takes all the query 
strings as input, concatenated and separated with a new symbol $, and outputs as a result a number that encodes all 
the query answers. Unfortunately, the same trick cannot be used when dealing with the complexity class PNP‖ . Indeed, let 
O1, . . . , Oq(n) be the NP oracles, and let N1, . . . , Nq(n) be the nondeterministic Turing machines simulating them. We can 
define a nondeterministic Turing machine N that takes as input the string x1$x2$ · · ·$xq(n) , where xi is a query string for 
oracle Oi and, for every 1 ≤ i ≤ q(n), simulates one after the other each nondeterministic Turing machine Ni on input xi , 
recording the answers a1, . . . , aq(n) on its tape. However, being the simulator of an NP oracle, the Turing machine N can 
only return one bit of information (either yes or no) as its answer, hence it cannot return any string-based or number-based 
representation of the entire sequence of query answers a1, . . . , aq(n). The most general answer that can be returned by the 
Turing machine N is the result of a Boolean function having the values a1, . . . , aq(n) as input. In this scenario, a single 
sub-system N contained in the skin membrane of �x can simulate the nondeterministic Turing machine N , computing the 
query answers a1, . . . , aq(n), and finally compute the overall result as the prescribed Boolean function over the input values 
a1, . . . , aq(n). Hence, in this case, only one sub-system N inside membrane M suffices.

Going back to the scenario in which the skin membrane of �x contains q(n) sub-systems Ni , for 1 ≤ i ≤ q(n), the fact that 
in the simulation described in Section 4 all operations are precisely synchronized, produces some technical annoyance when 
more than one query has to be simulated. Fortunately, all computations of the oracle nondeterministic Turing machines Ni

can be easily padded to the same length t(n) with no asymptotic loss of efficiency [22, Proposition 7.1]. In this way, all 
sub-systems Ni of �x will produce the answer to their query simultaneously. To distinguish the processing of each query, 
every membrane N contained in the skin membrane of �x will have a different label. The same must be done with the 
membranes AN , and F0, . . . , Ft(n)−1, that are used to process the yes and no objects that represent the answers to the 
queries, and a new subscript must be added to the objects themselves in order not to mix them. So doing, all queries can 
be performed independently, they complete at the same time, and the simulation of M can start with the answer to all 
queries written on the tape on different cells.

All this said, we can now state the main result of this paper:

Theorem 1. Semi-uniform families of depth-2 polarizationless P systems with active membranes, with rules for the evolution and 
communication of objects, and rules for the dissolution and division of elementary and (weak) non-elementary membranes, are able 
to solve all problems in PNP‖ in polynomial time.

As a last observation, Theorem 1 can be extended to uniform families of the same kind of P systems. Recall from Def-
inition 3 that, for each n, in the uniform setting a deterministic Turing machine F builds in polynomial time a common 
structure �n for all P systems dealing with inputs of length n. Such a structure has a distinguished input membrane, where 
the multiset wx encoding the specific input x is placed, thus obtaining the P system �x . In order to extend our result to 
the uniform setting, we have thus to deal with two technical problems: (1) the structure (and hence the rules) of �n is 
fixed for all inputs of length n, and (2) all input objects are initially put in one membrane. Problem (1) can be easily solved 
by using one (or even a polynomial number of) universal nondeterministic Turing machine N to simulate the oracle(s), and 
a universal deterministic Turing machine M to simulate (with a polynomial slowdown) the computation of the Turing ma-
chine that invokes the oracle. The input to each of the universal machines will consist of a multiset of objects, that encodes 
both the input string and the description of the actual (deterministic or nondeterministic) Turing machine to be simulated. 
The two multisets of objects – one for machine N , and one for machine M – will be put in the input membrane of �x . To 
solve Problem (2), each object will have a subscript that indicates where the object should be placed in order to correctly 
represent the initial configuration of the two Turing machines. The simulation described in this paper is thus preceded by 
a preparation phase, executed using an appropriate set of communication rules, that simply places the input objects in the 
correct place. When this phase is completed, the simulation of the oracle nondeterministic Turing machine N can start, 
followed by the simulation of the deterministic Turing machine M .
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6. Conclusions and directions for future research

In this paper we have proved that polarizationless P systems with active membranes, having a membrane hierarchy of 
depth 2 and using non-cooperative evolution rules, bidirectional communication rules, dissolution rules and weak division 
rules for non-elementary (and for elementary) membranes, working in polynomial time, can solve at least all decision 
problems in the complexity class PNP‖ , the class of problems solved in polynomial time by deterministic Turing machines 
that are given the possibility to make a polynomial number of parallel queries to oracles for NP problems.

For simplicity we have proved our result in the semi-uniform setting, and limiting to one the number of oracle queries. 
However, we have given indications on how to extend this result to the uniform setting, and/or to the case in which a 
polynomial number of queries is performed, also possibly to different oracles. We have also discussed some restricted cases, 
in which either the number of nondeterministic Turing machines that simulate the oracles or even the number of the 
membranes in the P system that simulate such Turing machines, can be reduced to one.

Concerning future research, in our opinion the most interesting open problem is whether it is possible to obtain a char-
acterization of the complexity class PNP‖ by means of the model of P systems used in this paper; in particular, determining 
what are the combinations of different computational features that allow to obtain or not such a characterization is cer-
tainly a challenging but intriguing avenue for new research. Maybe not so interesting from a theoretical point of view, but 
certainly useful when trying to apply the techniques described in this paper to real simulations, is to make explicit the 
construction just sketched above of the uniform construction. As the reader can imagine, this task is certainly possible but 
tedious, given the amount of technical details to be dealt with.
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[2] C. Martín-Vide, Gh. Păun, J. Pazos, A. Rodríguez-Patón, Tissue P systems, Theor. Comput. Sci. 296 (2) (2003) 295–326, https://doi .org /10 .1016 /S0304 -

3975(02 )00659 -X.
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