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Brain fog can be described as a constellation of new-onset neuropsychiatric

sequelae in the post-acute phase of COVID-19 (long COVID). The symptoms

include inattention, short-term memory loss, and reduced mental acuity, which

may undermine cognition, concentration, and sleep. This cognitive impairment,

persisting for weeks or months after the acute phase of SARS-CoV-2 infection,

can significantly impact on daily activities and the quality of life. An important role

for the complement system (C) in the pathogenesis of COVID-19 has emerged

since the beginning of pandemic outbreak. A number of pathophysiological

characteristics including microangiopathy and myocarditis have been attributed

to dysregulated C activation due to SARS-CoV-2 infection. Mannan-binding

lectin (MBL), the first recognition subcomponent of the C lectin pathway, has

been shown to bind to glycosylated SARS-CoV-2 spike protein, genetic variants

of MBL2 are suggested to have an association with severe COVID-19

manifestations requiring hospitalization. In the present study, we evaluated

MBL activity (lectin pathway activation) and levels in the sera of a cohort of

COVID-19 patients, presenting brain fog or only hyposmia/hypogeusia as

persistent symptoms, and compared them with healthy volunteers. We found

significantly lower levels of MBL and lectin pathway activity in the sera of patients

experiencing brain fog as compared to recovered COVID-19 patients without

brain fog. Our data indicate that long COVID-associated brain fog can be listed

among the variegate manifestations of increased susceptibility to infections and

diseases contributed by MBL deficiency.
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1 Introduction

Acute and chronic manifestations due to severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infection have continued to

stimulate an ever-growing body of research. Much has been already

published about the acute phase symptoms (i.e., anorexia, myalgia,

productive sputum, fever, exhaustion, dyspnoea) of Coronavirus

Disease 2019 (COVID-19), as initial non-specific upper airway

symptoms due to viral infections before developing into

pneumonia (1–3). From the neurological point of view,

manifestations of the central and peripheral nervous systems, such

as meningitis, encephalitis, myelitis, Guillain-Barré syndrome, Miller

Fisher syndrome and cerebrovascular diseases, have been reported

(4–10). In particular, recent scientific literature has revealed anosmia

and dysgeusia as typical symptoms of the acute phase, which persist

for weeks or months after infection and can be included among the

so-called “long COVID symptoms” (11, 12). Prominent among the

long-term consequences of COVID-19 are neuropsychiatric

sequelae, also referred to as “brain fog” (13). The brain fog

summarizes a range of variegate neurological complications,

including inattention, short-term memory loss and reduced mental

acuity (14). Impaired cognition, attention, concentration, and sleep

are the commonly reported neuropsychiatric manifestations

associated with the post-recovery phase of COVID-19 (14). This

cognitive impairment may last for weeks or even months after the

acute phase. To understand the pathophysiology of the brain fog,

clinicians are currently trying to identify structural, metabolic and

perfusion alterations in the brain using advanced neuroimaging

techniques (15–19). Many ideas have been proposed to explain the

aetiology of brain fog-associated symptoms, such as SARS-CoV-2

neuro-invasion, abnormal systemic and neuroimmunological

response, cytokine overactivation, neuroglial dysfunction, virus-

induced coagulopathy and endotheliopathy; however, the exact

pathogenic mechanisms remain largely unknown (13, 20–23).

The important role of the complement system (C) in the

pathogenesis of COVID-19 has emerged since the beginning of

the COVID-19 (24–26). In general, C1q, a major player in the

complement-mediated neuroinflammation (27, 28), can be

produced by microglia cells; in concert with TNF-a and IL-1a, it
can induce the polarization through a A1 phenotype, which is the

neurotoxic and pro-inflammatory phenotype of astrocytes (29, 30).

Reactive astrocytes increase the expression level of many genes of

the classic pathway, such as C1r, C1s, C3, and C4, which are

harmful for the neurovascular unit (28). However, little is known

about the of role of the C system in neuroinflammation due to

long COVID.

A recent study demonstrated that the subcomponent of the C

lectin pathway, mannan-binding lectin (MBL), can bind to

glycosylated SARS-CoV-2 spike protein, activating the C, and

inhibiting SARS-CoV-2 cell entry in vitro (31). Single-nucleotide

polymorphisms (SNPs) of MBL2 impact serum levels and

functional activity of MBL (32). Interestingly, Stravalaci et al.

demonstrated that genetic polymorphisms at the MBL2 locus are

associated with COVID-19 severity (31). Therefore, MBLmay act as

a double-edged sword in the resistance to infection as well as in the
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pathogenesis of COVID-19. MBL deficiency is the most frequent C

immunodeficiency, occurring in more than 10% of general

population (33, 34). Interestingly, MBL polymorphisms have been

reported as predisposing factors for susceptibly to infectious as well

as systemic diseases such as systemic lupus erythematosus,

rheumatoid arthritis and sepsis (33, 35–37).

Since the pathogenesis of the neurological “long COVID

syndrome” remains largely unclear (20) and the C cascade is

known to be involved in brain development, homeostasis, injury

and regeneration (38), the aim of the study was to evaluate a

correlation between the neurological “long COVID syndrome” and

the C pathway. In particular, we determined MBL levels and activity

in the sera of a cohort of COVID-19 patients affected by the “long

COVID syndrome”. Thus, we divided the cohort into patients who

developed brain fog and those who complained of hyposmia/

hypogeusia as persistent symptoms, comparing them with

healthy volunteers.
2 Materials and methods

2.1 Participants

The study cohort comprised patients who were referred to the

Neuro-Long-COVID ambulatory service of the University Hospital

of “Cattinara” (Trieste, Italy) between 1st November 2021 and 1st

March 2022, and were selected from a previously described

cohort (39). Participants were screened for the presence of self-

reported neurological symptoms experienced during the post-acute

COVID-19 period (SARS-CoV-2 positivity was determined by

nasopharyngeal swab and RT-qPCR). Neurological symptoms had

to be persistent or occuring ex novo at least after 4 weeks from acute

COVID-19 manifestations. Among participants, 32 subjects

reported symptoms of brain-fog (BF +ve group); 13 subjects

complained of only hyposmia/hypogeusia as persistent symptoms

(BF -ve group). Three volunteers without persistent neurological

symptoms, but with history of SARS-CoV-2 positivity, were also

included in the BF -ve group. Eighteen healthy controls (CTRL

group) without a history of positive SARS-CoV-2 nasopharyngeal

swab were also recruited. A total of 66 blood samples were collected,

processed and randomly selected for experiments. Anamnestic data

of all participants were collected (Table 1) and an extensive

neurological assessment of the BF +ve and BF -ve groups was

performed. Cognitive screening test Montreal Cognitive

Assessment (MoCA) was carried out on patients experiencing BF.

General anamnestic data on all participants were collected

for the presence of neurological, psychiatric, cardiovascular,

respiratory , metabol ic , endocrine and rheumatologic

comorbidities, malignancies and overweight/obesity. Additionally,

BF +ve and BF -ve patients were asked to provide information about

the acute phase of SARS-CoV-2 infection, including the presence of

acute upper respiratory symptoms, headache, myalgia or joint pain,

hyposmia or anosmia, palpitations, diarrhoea or gastrointestinal

tract symptoms, asthenia, dyspnoea, respiratory failure and the

requirement of ventilation. Long COVID manifestations were
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1191083
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bulla et al. 10.3389/fimmu.2023.1191083
extensively studied; following screening for symptoms lasting for

more than four weeks after the infection onset; the patients were

examined for persistent neurological symptoms (i.e., paraesthesia,

hyposmia or anosmia, mood disturbances, insomnia, asthenia,
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headache, dizziness) and other persistent non-neurological

symptoms (i.e., myalgia or joint pain, ocular problems, tinnitus,

persistent fever, palpitations, respiratory and gastrointestinal

symptoms), besides cognitive impairment.
TABLE 1 Clinical features of the cohort.

Patients’ characteristics BF +ve (n=32) BF -ve (n =16) CTRL (n= 18)

Age (years) 53.5 (44.75-58.25) 46.5 (31.75-62.25) 43.5 (28.5-53.75)

Sex

Male (M) 8 (25%) 4 (25%) 5 (27.8%)

Female (F) 24 (75%) 12 (75%) 13 (72.2%)

Time from Covid-19 testing (positive) and blood sampling (days) 319.5 (289.8-356) 320 (279-368.8) n.a.

Comorbidities

Neurological 11 (34.4%) 3 (18.8%) 2 (11.1%)

Psychiatric 5 (15.6%) 0 (0%) 1 (5.6%)

Cardiovascular 11 (34.4%) 4 (25.0%) 4 (22.2%)

Respiratory 6 (18.8%) 1 (6.3%) 0 (0%)

Metabolic 10 (31.3%) 4 (25.0%) 2 (11.1%)

Malignancies 4 (12.5%) 0 (0%) 0 (0%)

Endocrine 6 (18.8%) 4 (25.0%) 3 (16.7%)

Rheumatologic 2 (6.3%) 1 (6.3%) 1 (5.6%)

Overweight/Obesity 8 (25.0%) 0 (0%) 4 (22.2%)

Acute Covid Symptoms

Dyspnea 15 (46.9%) 1 (6.3%) n.a.

Respiratory failure 2 (6.3%) 0 (0%) n.a.

Use of non-invasive-ventilation (NIV) 1 (3.1%) 0 (0%) n.a.

Long-Covid Symptoms

Fatigue 12 (37.5%) 2 (12.5%) n.a.

Dyspnea/Upper respiratory symptoms 12 (37.5%) 1 (6.3%) n.a.

Myalgia/arthralgia 8 (25.0%) 0 (0%) n.a.

Hyposmia/hypogeusia 5 (15.6%) 13 (81.3%) n.a.

Insomnia 6 (18.8%) 0 (0%) n.a.

Headache 4 (12.5%) 0 (0%) n.a.

Mood disturbances 3 (9.4%) 0 (0%) n.a.

Paresthesia 3 (9.4%) 0 (0%) n.a.

Ocular problems 2 (6.3%) 0 (0%) n.a.

Tinnitus 1 (3.1%) 0 (0%) n.a.

Dizziness 1 (3.1%) 0 (0%) n.a.

Fever (low grade) 1 (3.1%) 0 (0%) n.a.

Tachycardia/palpitations 1 (3.1%) 0 (0%) n.a.

GI tract symptoms 0 (0%) 0 (0%) n.a.
Data are expressed as median (IQR: Q1-Q3) or total number (percentage, %). BF +ve, brain fog positive group; BF -ve, brain fog negative group; CTRL, control group; n.a., not applicable; NIV,
non-invasive ventilation; GI, gastrointestinal.
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All clinical studies were performed according to the declaration

of Helsinki. The protocol for this study was approved by the local

ethics committee (CEUR-2021-OS-48).
2.2 Sample collection

During a follow-up visit, a 5-mL blood sample was collected

by intravenous puncture using a vacuum collection system. The

samples were transported, within 3 hours, to the Immunolaboratory

of the University of Trieste, where they were processed to separate

serum from blood cells. Serum was stored at -80°C until the time

of analysis.
2.3 Quantitation of sVCAM-1, CRP and
MBL levels

Commercial ELISA kits were used for the measurement of

serum levels of soluble Vascular Cell Adhesion Molecule-1

(sVCAM-1; RayBiotech, Milan, Italy), C-reactive Protein (CRP;

Invitrogen, ThermoFisher, Milan, Italy) and MBL (HyCult, Milan,

Italy), following the manufacturer’s instructions. Absorbance

was read using PowerWave X Microplate Reader (Bio-Tek

Instruments) spectrophotometer.
2.4 Evaluation of complement
pathways functionality

The activation of classical, alternative and lectin pathways was

determined using a commercial kit Wieslab® (Technogenetics, Milan,

Italy). The assay was performed following the manufacturer’s

instructions. The absorbance was read using PowerWave X

Microplate Reader (Bio-Tek Instruments) spectrophotometer.
3 Results

3.1 Clinical characteristics of the patients

Demographic features, comorbidities, acute and long-COVID

symptoms of the three groups (BF +ve, BF –ve and CTRL) are

presented in Table 1. In particular, 32 patients from the Neuro-

Long-COVID ambulatory service complaining of brain fog

symptoms were enrolled in the brain fog group (BF +ve). Among

these group, females were prevalent (75%) and the median age of

the group was 53.5 years. Among the pre-existing comorbidities, the

most common were neurological (34.4%), cardiovascular (34.4%),

metabolic (31.3%) and overweight/obesity (25%). Neurological co-

morbidities were represented by migraine, presence or history of a

pituitary microadenoma, sciatic pain, and in one patient, history of

episodes of subjective dizziness. None of the BF +ve patients had

cognitive deficits before COVID-19. During the acute phase of

SARS-CoV-2 infection, almost half of patients of the BF +ve group

presented dyspnoea (46.9%), whereas only 2 individuals
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experienced respiratory failure and one subject required the use

of non-invasive ventilation (NIV). Besides the cognitive deficits, the

most frequently reported long COVID symptoms were fatigue,

dyspnoea/upper respiratory symptoms and myalgia/arthralgia

(37.5%, 37.5% and 25.0% of the total cases, respectively).

Corrected median Montreal Cognitive Assessment (MoCA) score

of this group was 24.5 (q1-q3 = 23.2-27.1).

As for the group without brain fog (BF -ve), a total of 16 cases

were recruited from the Neuro-Long-COVID ambulatory service.

The group had a high number of female patients (75%) and the

median age was 46.5 years. The most frequent comorbidities were

cardiovascular, metabolic and endocrine (25.0% each). Only one

patient reported dyspnoea as a symptom of the acute phase of

SARS-CoV-2 infection. Almost the entire group complained of

hyposmia/hypogeusia as long COVID symptoms (81.3%).

With regard to healthy controls (CTRL), 18 people with median

age of 43.5 years were selected (72.2% female volunteers). Most

prevalent comorbidities were cardiovascular (22.2%), overweight/

obesity (22.2%), and endocrine (16.7%) comorbidities.
3.2 Characterization of the inflammatory
state of the patient cohort

In order to characterize the inflammatory state and the

endothelial dysfunction in our cohort of patients, we measured

soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and C-

reactive protein (CRP) in their serum samples. Our results indicated

the presence of significantly higher levels of CRP in BF +ve sera, as

compared to both BF -ve and CTRL patients (Figure 1A).

Furthermore, sVCAM-1 levels were higher in all the patients

that had recovered for COVID-19 (BF +ve and BF -ve) compared

to 8 patients from the CTRL group that were randomly

chosen (Figure 1B).
3.3 Evaluation of MBL levels and
complement pathway functionality in BF
+ve and BF -ve patients

MBL deficiency is the most frequent C deficiency worldwide

(34). Based on the previous evidence of association between MBL2

genetic polymorphisms and COVID-19 severity (31), we

investigated a potential correlation between MBL deficiency, or

low MBL levels, and the development of brain fog after COVID-19.

We observed significantly lower levels of MBL in the sera of BF +ve

patients compared to BF -ve group (Figure 2A).

Our results were confirmed by functional analysis of the three

pathways of the C using Wieslab ELISA assay. Sera belonging to the

BF +ve group presented a lower percentage of lectin pathway

activation compared to BF -ve patients (Figure 2D), whereas no

differences were found in the activation level of classical and

alternative pathways (Figures 2B, C).

With a view to ascertain the distribution of patients with low or

zero levels of MBL among the different groups, we noted that BF

+ve group presented a higher percentage of MBL deficient subjects
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A B

FIGURE 1

Serum levels of C-reactive protein (CRP) and soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1). (A) CRP levels were measured in brain fog group
(BF +ve; n = 32), experiencing only hyposmia/hypogeusia (BF -ve; n = 15) and in control non-infected patients (CTRL; n = 18). (B) sVCAM-1 levels
were measured in brain fog group (BF +ve; n = 19), experiencing only hyposmia/hypogeusia (BF -ve; n = 14) and in control non-infected patients
(CTRL; n = 8, control individuals were randomly selected). *p<0.05; **p<0.01; ***p<0.001; ns, not significant; T-test.
A B D

E F G

C

FIGURE 2

(A) Measurement of circulating levels of MBL in the sera of brain fog group (BF +ve, n = 32), experiencing only hyposmia/hypogeusia (BF -ve, n = 16)
and non-infected control patients (CTRL, n = 18). (B–D) Evaluation of the functionality percentage of BF +ve and BF -ve patients using Wieslab ELISA
kit. (E–G) Pie graphs representing the percentages of MBL low patients in BF +ve (31.3%), BF -ve (18.8%) and CTRL (22.2%) groups. **p<0.01; T-test.
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(31.3%; Figure 2E) as compared to BF -ve (18.8%; Figure 2F) as well

as CTRL groups (22.2%; Figure 2G).
4 Discussion

The term long COVID refers to symptomatic manifestations

persisting at least 12 weeks after SARS-CoV-2 infection (40, 41). It

can reveal in both sexes and at all ages, despite being more

frequently present in women and in older people (42). Many

individuals infected with SARS-CoV-2 developed one or more

long-lasting symptoms which strongly impair daily function and

quality of life. Among the range of clinical manifestations associated

with long COVID, neurological issues are the most frequent (7–9,

41), occurring approximatively in one third of long COVID patients

(43–47). The most common neurological symptoms comprise

fatigue, headache, attention disorder, cognitive impairment,

ageusia, anosmia, memory loss, dizziness (41). Therefore, not

only acute phase symptoms of COVID-19, but also post-COVID

sequelae, is a matter of concern for the healthcare system as well

as clinicians.

One of the most common concerns about long COVID is the

frequent onset of the so called “brain fog”. Brain fog has been

previously associated with viral aftermath (48), but also with chronic

fatigue syndrome (49), chemotherapy treatments (50), fibromyalgia

and other chronic conditions (51). Since brain fog is considered as one

of the most debilitating post-COVID symptoms, understanding its

pathophysiological mechanisms is an urgent clinical need.

Multiple explanations have been offered towards the aetiology of

symptoms associated with brain fog, such as viral neuro-invasion,

virus-induced coagulopathy and endotheliopathy, and abnormal

immunological response (20). A recent study has implicated long-

term tissue damage and unresolved inflammation due to viral

persistence and lymphopenia as the main cause of long COVID (43).

Interestingly, chronic inflammation, especially neuroinflammation, is

frequently the driving force behind COVID-associated cognitive

impairment (52). In order to assess the contribution of inflammation

as well as endothelial dysfunction, we first measured the serum levels of

C-reactive protein (CRP) and Vascular Cell Adhesion Molecule-1

(sVCAM-1), respectively. sVCAM-1 is considered a marker of

chronic cerebral blood flow dysregulation due to cerebral endothelial

damage (53), whereas CRP is an acute phase reactant, a well-known

systemic marker for inflammation (54). Our data showed a

significantly higher level of CRP in BF +ve sera compared to both

BF -ve and CTRL groups. These results partially confirmed the

observations of Mandal et al. who reported elevated levels of CRP in

long COVID-19 patients (55). Thus, we specifically noted a chronic

condition of inflammation with higer levels of inflammatory

biomarkers in BF +ve patients. On the contrary, sVCAM-1 levels

were higher in the patients who had recovered from COVID-19 (BF

+ve and BF -ve) compared to the CTRL group, confirming that SARS-

CoV-2 infection can be considered an endothelial disease.

The C system is a protective factor in the early stages of SARS-

CoV-2 infection enhancing virus elimination; however, an excessive
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or aberrant activation of the C, leading to hyperinflammation and

endothelial injury, has extensively been attributed to severe

COVID-19 pathogenesis (56, 57). Interestingly, MBL may also

function as a double-edged sword in COVID-19 (31). MBL is a

key player in the innate immune defense system, which allows us to

fight various pathogens by direct recognition and neutralization,

acts both as an opsonin for pathogens as well as a recognition

molecule in C activation via the lectin pathway. MBL is capable of

binding human immunodeficiency virus-1 (HIV-1) and hepatitis

virus B (HBV), contributing to host susceptibility to infection and

disease progression (58, 59). Reduced levels of circulating MBL are

associated with an increased risk of invasive pneumococcal disease,

other bacterial infections (e.g., Staphylococcus aureus, Pseudomonas

aeruginosa, Clostridium difficile), sepsis, and death from pneumonia

(60–62).

Around 10-20% of humans harbour point mutations in the

MBL gene (MBL2), which are associated with low MBL activity and

consequent higher incidence of infections. In fact, polymorphisms

in MBL2 promoter and coding sequences adversely affect plasma

levels, oligomeric state and ligand binding ability of MBL (63).

Interestingly, genetic polymorphisms at the MBL2 locus have

previously been associated with susceptibility to SARS-CoV-2

infection (64), and more recently, with COVID-19 severity (31,

65). Due to its preponderant and ambivalent role in infection and

pathogenesis, we aimed at investigating a potential contribution of

MBL to long COVID, especially brain fog onset. Our study found

significantly lower levels of MBL and lower lectin pathway

activation in the sera of BF +ve patients compared to BF –ve

group, whereas the activation of classical and alternative pathways

was not compromised. The frequency of patients with low or no

MBL levels in the BF +ve group (31.3%) seems higher compared to

those registered in the general population (>10%), revealing a

possible connection between low MBL levels and brain fog onset.

Thus, low levels of MBL not only reflect a reduced capacity to

inhibit SARS-CoV-2 infection (31), but it can also predispose

individuals to more severe symptoms during acute phase (65) as

well as long COVID brain fog onset.
5 Conclusion

MBL level and lectin pathway activity are significantly reduced

in subjects experiencing brain fog as a neuropsychiatric sequela in

the post-acute phase of COVID-19. Thus, long COVID-associated

brain fog can be listed among the variegate manifestations of

increased susceptibility to infections and diseases induced by

MBL deficiency.
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