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Systems of fixpoint equations over complete lattices, which combine least and greatest 
fixpoints, often arise from verification tasks such as model checking and behavioural 
equivalence checking. In this paper we develop a theory of approximation in the style 
of abstract interpretation, where a system over some concrete domain is abstracted 
into a system on a suitable abstract domain, ensuring sound and possibly complete 
over-approximations of the solutions. We also show how up-to techniques, commonly 
used to simplify coinductive proofs, fit into this framework, interpreted as abstractions. 
Additionally, we characterise the solution of fixpoint equation systems through parity 
games, extending prior work limited to continuous lattices. This game-based approach 
allows for local algorithms that verify system properties, such as determining whether a 
state satisfies a formula or two states are behaviourally equivalent. We describe a local 
algorithm, that can be combined with abstraction and up-to techniques to speed up the 
computation.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Systems of fixpoint equations over complete lattices, consisting of (mixed) least and greatest fixpoint equations, allow 
one to uniformly express many verification tasks. Notable examples come from the area of model-checking. In fact, in order 
to express properties of infinite computations, specification logics almost invariably rely on some notion of recursion which 
leads to the use of fixpoints as key mathematical tool.

Invariant/safety properties can be characterised as greatest fixpoints, while liveness/reachability properties as least fix-
points. Using both least and greatest fixpoints leads to expressive specification logics. The μ-calculus [38] is a prototypical 
example, encompassing various other logics such as LTL and CTL. Another area of special interest for the present paper is 
that of behavioural equivalences, which typically arise as solutions of greatest fixpoint equations. The most famous example 
is bisimilarity that can be seen as the greatest fixpoint of a suitable operator over the lattice of binary relations on states 
(see, e.g., [51]).
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In the first part of the paper we propose a theory of approximation for systems of equations in the style of abstract 
interpretation. The general idea of abstract interpretation [15,16] consists of extracting properties of programs by defining 
an approximated program semantics over a so-called abstract domain, usually a complete lattice. Concrete and abstract 
semantics are typically expressed in terms of (systems of) least fixpoint equations, with conditions ensuring that the ap-
proximation obtained is sound, i.e., that properties derived from the abstract semantics are also valid at the concrete level. 
In an ideal situation also the converse holds and the abstract interpretation is called complete (see e.g. [26]).

Abstract interpretation has been applied also for the model checking of various kinds of μ-calculi and temporal logics 
(see, e.g., [29,42,17,53,20,39]). In particular, in [17] a general framework for abstract interpretation of temporal calculi and 
logics is devised, with the identification of conditions for soundness and completeness of the abstraction. The approach, that 
in [17] is devised over boolean lattices, can be naturally adapted to the setting of systems of fixpoint equations over com-
plete lattices, where least and greatest fixpoints can coexist (§ 4): a system over some concrete domain C is abstracted by a 
system over some abstract domain A, and suitable conditions are singled out that ensure the soundness and completeness 
of the approximation. The approximation theory can be used on a number of verification tasks. We show how to recover 
and generalise some results on property preserving abstractions for the μ-calculus [42]. We also discuss an application to 
fixpoint extension of Łukasiewicz logic, considered in [47] as a precursor to model-checking PCTL or probabilistic μ-calculi.

When dealing with greatest fixpoints, a key proof technique relies on the coinduction principle, which uses the fact that 
a monotone function f over a complete lattice has a greatest fixpoint ν f , which is the join of all post-fixpoints, i.e., the 
elements l such that l � f (l). As a consequence proving l � f (l) suffices to conclude that l � ν f .

Up-to techniques have been proposed for “simplifying” proofs [45,52,50,48] and for reducing the search space in ver-
ification (e.g., in [9], up-to techniques applied to language equivalence of NFAs are shown to provide in many cases an 
exponential speed-up). A sound up-to function is a function u on the lattice such that ν( f ◦ u) � ν f and hence l � f (u(l))
implies l � ν( f ◦ u) � ν f . The characteristics of u (typically, extensiveness, i.e. l � u(l) for all elements l) make it easier to 
show that an element is a post-fixpoint of f ◦ u rather than a post-fixpoint of f .

We show that up-to techniques admit a natural interpretation as abstractions in our framework (§ 5). This allows us 
to generalise the theory of up-to techniques to systems of fixpoint equations and contributes to the understanding of the 
relation between abstract interpretation and up-to techniques, a theme that received some recent attention [7].

We have recently shown in [3] that the solution of systems of fixpoint equations can be characterised in terms of a 
parity game when working in a suitable subclass of complete lattices, the so-called continuous lattices [54]. Here, relying 
on our approximation theory, we get rid of continuity and design a game that works for general complete lattices (§ 6.1).

The above results open the way to the development of game-theoretical algorithms, possibly integrating abstraction and 
up-to techniques, for solving systems of equations over complete lattices. While global algorithms deciding the game at 
all positions, based on progress measures [36], have already been studied in [30,3], here we focus on local algorithms, 
confining the attention to specific positions. For instance, in the case of the μ-calculus, rather than computing the set of 
states satisfying some formula ϕ , one could be interested in checking whether a specific state satisfies or does not satisfy 
ϕ . For probabilistic logics, rather than determining the full evaluation of ϕ , we could be interested in determining the 
value for a specific state or only in establishing a bound for such a value. Similarly, in the case of behavioural equivalences, 
rather than computing the full behavioural relation, one could be interested in determining whether two specific states are 
equivalent. Taking inspiration from backtracking methods for bisimilarity [32] and for the μ-calculus [58,57], we design a 
local (also called on-the-fly) algorithm for general systems of fixpoint equations (§ 7) and show how these algorithms can 
be enhanced with up-to techniques.

Related work Our contribution is based on the notion of approximation as formalised in abstract interpretation [15,16]. 
Due to the intimate connection of Galois connections and closure functions, there is a close correspondence with up-to 
techniques for enhancing coinduction proofs [48,50], originally developed for CCS [45]. However, as far as we know, recent 
research has only started to explore this connection: the paper [7] explains the relation between sound up-to techniques 
and complete abstract domains in the special setting where the semantic function has an adjoint. This adjunction or Galois 
connection plays a different role than the abstractions: its existence roughly means that the system exhibits some form of 
“determinism”. Transported to our setting, it implies that in the game formalisation the existential player has a unique best 
move, making the solution of the associated game quite efficient (for a detailed discussion the reader is referred to [4].)

Systems of fixpoint equations largely derive their interest from μ-calculus model-checking [10]. Evaluating μ-calculus 
formulae on a transition system can be reduced to solving a parity game and the exact complexity of this task is still open. 
Progress measures, introduced in [36], allow one to solve parity games with a complexity which is polynomial in the number 
of states and exponential in (half of) the alternation depth of the formula. Recently quasi-polynomial algorithms for parity 
games [11,37,41] and nested fixpoints [31,2] have been devised. Instead of improving the complexity bounds, our aim here is 
to introduce heuristics, based on a local algorithm and up-to functions that are known to achieve good efficiency in practice. 
In particular, we explain how up-to techniques, which have been traditionally used just for coinductive equivalences, can be 
naturally generalised to systems of fixpoint equations over a complete lattice with special interest for the integration with 
a μ-calculus model-checking algorithm.

Abstraction in the setting of μ-calculus and, more generally, temporal logic verification, is a vast topic which has been 
widely studied. A classical approach consists in exploiting a state-based abstraction over a transition system. This induces 
an abstract transition relation which overapproximates the concrete behaviour thus ensuring soundness for the verification 
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of ACTL, the universal fragment of CTL [12]. As already mentioned, property-preserving abstraction for the μ-calculus using 
simulations viewed as Galois connections has been studied in [42] and we will show that this approach can be obtained as 
an instance of our framework.

In order to overcome the limitation to universal fragments of temporal logics, various approaches have been proposed, 
based on mixed [20] or modal [27] transition systems, where the abstract system is endowed with two transition relations 
coping with the different preservation requirements arising from universal and existential operators of the logics.

The abstraction of the μ-calculus along a Galois connection and its soundness is discussed in [5]. A general framework for 
abstract interpretation of temporal calculi and logics is developed in [17]. In particular, an abstract calculus for expressing 
nested fixpoint expressions is studied, parametric with respect to the basic operators. The calculus is interpreted over 
complete boolean lattices and conditions ensuring the soundness and the completeness of the abstraction along a Galois 
connection are singled out. As we already mentioned, such results are closely related to those in § 4. The main differences 
reside in the fact that we work with general complete lattices, rather than with boolean lattices. In addition, we treat 
separately soundness and completeness, and, in order to establish a connection with up-to techniques, we distinguish two 
forms of completeness (for the abstraction and for the concretisation).

The local algorithm that we propose in § 7.1 for solving arbitrary fixpoint equation systems over general lattices is a 
generalisation of the algorithm for the modal μ-calculus presented in [57]. The use of assumptions as stopping conditions 
in the algorithm is reminiscent of parameterized coinduction [56,34], closely related to up-to-techniques, as spelled out in 
[49]. The presented algorithm is mostly agnostic of the specific setting. Since various other approaches to the local solution 
of parity games have been proposed in the literature, e.g., [25] and [40], it would be interesting to investigate the possibility 
of re-using these approaches in our setting and determine those which are most effective. This point is further developed 
in the concluding section.

Synopsis The rest of the paper is structured as follows. In § 2 we introduce some basic order-theoretical notions and 
notation used in the paper. In § 3 we introduce systems of equations over complete lattices and their solutions, showing 
how various verification problems reduce to solutions of systems of equations over suitable lattices. In § 4 we propose a 
theory of approximation for systems of fixpoint equations over complete lattices in the style of abstract interpretation. In 
§ 5 we show how up-to techniques can be seen as special form of abstraction and thus generalised to systems of fixpoint 
equations. In § 6 we present the game-theoretical characterisation of the solution of a system of equations and discuss the 
idea of selections. In § 7 we outline a local algorithm for solving the game, showing how it can take advantage of the up-to 
techniques for systems of equations. In § 8 we conclude the paper and outline future research. For the sake of readability 
full proofs and some technical results used only in proofs have been moved to the appendix.

This paper is the full version of [4]. The main novelty is a local algorithm which works for general systems of fixpoint 
equations (while the algorithm in [4] was restricted to a single greatest fixpoint equation). Moreover, the paper has been 
extended by including full proofs of technical results and additional examples.

2. Preliminaries and notation

A preordered or partially ordered set 〈P , �〉 is often denoted simply as P , omitting the (pre)order relation. Given X ⊆ P , 
we denote by ↓X = {p ∈ P | ∃x ∈ X . p � x} the downward-closure and by ↑X = {p ∈ P | ∃x ∈ X . x � p} the upward-closure of 
X . The join and the meet of a subset X ⊆ P (if they exist) are denoted � X and 

�
X , respectively.

Definition 2.1 (complete lattice, basis). A complete lattice is a partially ordered set (L, �) such that each subset X ⊆ L admits 
a join � X and a meet 

�
X . A complete lattice (L, �) always has a least element ⊥ =�∅ and a greatest element � = �∅, 

referred to as bottom and top, respectively. A basis for a complete lattice is a subset B L ⊆ L such that for each l ∈ L it holds 
that l =�(↓l ∩ B L).

For instance, the powerset of any set X , ordered by subset inclusion (2X , ⊆) is a complete lattice. Join is union, meet is 
intersection, top is X and bottom is ∅. A basis is the set of singletons B2X = {{x} | x ∈ X}. Another complete lattice used in 
the paper is the real interval [0, 1] with the usual order ≤. Join and meet are the sup and inf over the reals, 0 is bottom 
and 1 is top. Any dense subset, e.g., the set of rationals Q ∩ (0, 1], is a basis.

A function f : L → L is monotone if for all l, l′ ∈ L, if l � l′ then f (l) � f (l′). By Knaster-Tarski’s theorem [59, Theorem 1], 
any monotone function f on a complete lattice has a least fixpoint arising as the meet of all pre-fixpoints μ f = �{l | f (l) �
l} and a greatest fixpoint arising as the join of all post-fixpoints ν f =�{l | l � f (l)}.

The least and greatest fixpoint can also be obtained by iterating the function on the bottom and top elements of the 
lattice. This is often referred to as Kleene’s theorem (at least for continuous functions) and it is one of the pillars of abstract 
interpretation [19]. Given a complete lattice L, define its height λL as the supremum of the length of any strictly ascending, 
possibly transfinite, chain. Then we have the following result.

Theorem 2.2 (Kleene’s iteration [19]). Let L be a complete lattice and let f : L → L be a monotone function. Consider the (transfi-
nite) ascending chain ( f β(⊥))β where β ranges over the ordinals, defined by f 0(⊥) = ⊥, f α+1(⊥) = f ( f α(⊥)) for any ordinal α
3
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and f α(⊥) =�β<α f β(⊥) for any limit ordinal α. Then μ f = f γ (⊥) for some ordinal γ ≤ λL . The greatest fixpoint ν f can be 
characterised dually, via the (transfinite) descending chain ( f α(�))α .

Given a complete lattice L, a subset X ⊆ L is directed if X �= ∅ and every pair of elements in X has an upper bound 
in X . If L, L′ are complete lattices, a function f : L → L′ is (directed-)continuous if for any directed set X ⊆ L it holds that 
f (� X) =� f (X). The function f is called strict if f (⊥) =⊥. Co-continuity and co-strictness are defined dually.

Definition 2.3 (Galois connection). Let (C, �), (A, ≤) be complete lattices. A Galois connection (or adjunction) is a pair of 
monotone functions 〈α, γ 〉 such that α : C → A, γ : A → C and for all a ∈ A and c ∈ C it holds that α(c) ≤ a iff c � γ (a).

Equivalently, for all a ∈ A and c ∈ C , (i) c � γ (α(c)) and (ii) α(γ (a)) ≤ a. In this case we will write 〈α, γ 〉 : C → A. The 
Galois connection is called an insertion when α ◦ γ = idA .

For a Galois connection 〈α, γ 〉 : C → A, the function α is called the left (or lower) adjoint and γ the right (or upper) 
adjoint. The left adjoint α preserves all joins and the right adjoint γ preserves all meets. Hence, in particular, the left 
adjoint is strict and continuous, while the right adjoint is co-strict and co-continuous.

A function f : L → L is idempotent if f ◦ f = f and extensive if l � f (l) for all l ∈ L. When f is monotone, extensive and 
idempotent it is called an (upper) closure. In this case, 〈 f , i〉 : L → f (L) is a Galois connection, where i is the inclusion, is an 
insertion and f (L) = { f (l) | l ∈ L} is a complete lattice.

We will often consider tuples of elements. Given a set A, an n-tuple in An is denoted by a boldface letter a and its 
components are denoted as a = (a1, . . . , an). For an index n ∈N we write n for the integer interval {1, . . . , n}. Given a ∈ An

and i, j ∈ n, with i ≤ j, we write ai, j for the subtuple (ai, ai+1, . . . , a j). The empty tuple is denoted by (). Given two tuples 
a ∈ Am and a′ ∈ An we denote by (a, a′) or simply by aa′ their concatenation in Am+n .

Given a complete lattice (L, �) we will denote by (Ln, �) the set of n-tuples endowed with the pointwise order defined, 
for l, l′ ∈ Ln , by l � l′ if li � l′i for all i ∈ n. The structure (Ln, �) is a complete lattice. More generally, for any set X , the set 
of functions L X = { f | f : X → L}, endowed with pointwise order, is a complete lattice.

A tuple of functions f = ( f1, . . . , fm) with f i : X → Y , will be seen itself as a function f : X → Y m , defined by 
f (x) = ( f1(x), . . . , fm(x)). We will also need to consider the product function f × : Xm → Y m , defined by f ×(x1, . . . , xm) =
( f1(x1), . . . , fm(xm)).

3. Systems of fixpoint equations over complete lattices

We deal with systems of (fixpoint) equations over some complete lattice, where, for each equation one can decide to 
consider either the least or the greatest solution. We define systems, their solutions and we provide some examples that 
will be used as running examples.

Definition 3.1 (system of equations). Let L be a complete lattice. A system of equations E over L is an ordered list of m
equations of the form xi =ηi f i(x1, . . . , xm), where f i : Lm → L are monotone functions (with respect to the pointwise order 
on Lm) and ηi ∈ {μ, ν}. The system will often be denoted as x =η f (x), where x, η and f are the obvious tuples. We denote 
by ∅ the system with no equations.

Systems of this kind have been often considered in connection to verification problems, mainly for μ-calculus model-
checking (see e.g., [13,55,30,3]). In particular, [30,3] work on general classes of complete lattices.

Note that f can be seen as a function f : Lm → Lm . The solution of the system is a selected fixpoint of such function. 
We first need some auxiliary notation.

Definition 3.2 (substitution). Given a system E of m equations over a complete lattice L of the kind x =η f (x), an index i ∈ m
and l ∈ L we write E[xi := l] for the system of m −1 equations obtained from E by removing the i-th equation and replacing 
xi by l in the other equations, i.e., if x = x′xi x′′ , η = η′ηiη′′ and f = f ′ f i f ′′ then E[xi := l] is x′x′′ =η′η′′ f ′ f ′′(x′, l, x′′).

Definition 3.3 (solution). Let L be a complete lattice and let E be a system of m equations over L of the kind x =η f (x). The 
solution of E , denoted sol(E) ∈ Lm , is defined inductively:

sol(∅) = () sol(E) = (sol(E[xm := sm]), sm)

where sm = ηm(λx. fm(sol(E[xm := x]), x)).

For solving a system of m equations x =η f (x), the last variable xm is considered as a fixed parameter x and the system 
of m − 1 equations E[xm := x] that arises from dropping the last equation is recursively solved. This produces an (m − 1)-
tuple parametric on x, i.e., we get s1,m−1(x) = sol(E[xm := x]). Inserting this parametric solution into the last equation, we 
get an equation in a single variable
4
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a

c

b

d e

(a)

a

c

bde

(b)

x1 =ν p ∧�x1
x2 =μ x1 ∨�x2

(c)

x1 =ν {b,d, e} ∩�T x1
x2 =μ x1 ∪�T x2

(d)

Fig. 1. Example of fixpoint equations for a μ-calculus formula interpreted over a transition system.

x =ηm fm(s1,m−1(x), x)

that can be solved by taking for the function λx. fm(s1,m−1(x), x), the least or greatest fixpoint, depending on whether the 
last equation is a μ- or ν-equation. This provides the m-th component of the solution sm = ηm(λx. fm(s1,m−1(x), x)). The 
remaining components are obtained inserting sm in the parametric solution s1,m−1(x) previously computed, i.e., s1,m−1 =
s1,m−1(sm).

The order of equations matters: changing the order typically leads to a different solution, as shown in the example 
below.

Example 3.4 (solving a simple system of equations). Consider the powerset lattice 2S of any non-empty set S and the system 
of equations E consisting of the following two equations

x =μ x ∪ y

y =ν x ∩ y

In order to solve the system E , initially we need to compute the solution of the first equation x =μ x ∪ y parametric in 
y, that is, sx(y) = μ(λx.(x ∪ y)) = y. Now we can solve the second equation y =ν x ∩ y replacing x with the parametric 
solution, obtaining an equation in a single variable whose solution is ν(λy.(sx(y) ∩ y)) = ν(λy.y) = S . Finally, the solution 
of the first equation is obtained by inserting y = S in the parametric solution x = sx(S) = S .

Observe that even in this simple example, if we consider the system obtained from E by swapping the two equations, 
the solution changes and becomes x = y = ∅.

Example 3.5 (μ-calculus formulae as fixpoint equations). We adopt a standard μ-calculus syntax. For fixed disjoint sets PVar of 
propositional variables, ranged over by x, y, z, . . . and Prop of propositional symbols, ranged over by p, q, r, . . ., each paired 
with the associated complement p̄, formulae are defined by

ϕ ::= t | f | p | p̄ | x | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | �ϕ | ηx. ϕ

where p ∈ Prop, x ∈ PVar and η ∈ {μ, ν}.
The semantics of a formula is given with respect to an unlabelled transition system (or Kripke structure) T = (ST , →T )

where ST is the set of states and →T ⊆ST ×ST is the transition relation. Given a formula ϕ and an environment ρ : Prop∪
PVar → 2ST mapping each proposition or propositional variable to the set of states where it holds, we denote by | |ϕ| |Tρ the 
semantics of ϕ defined as usual (see, e.g., [10]). Explicitly, define the semantic counterparts of the modal operators as 
follows: given a relation R ⊆ X × X let �R , �R : 2X → 2X be the functions defined, for Y ⊆ X , by

�R(Y ) ={x ∈ X | ∃y ∈ Y . (x, y) ∈ R}
�R(Y ) ={x ∈ X | ∀y ∈ X .(x, y) ∈ R ⇒ y ∈ Y }

and let us write �T and �T for �→T and �→T

Then

||t||Tρ = ST ||p||Tρ = ρ(p) ||ϕ1 ∧ ϕ2||Tρ = ||ϕ1||Tρ ∩ ||ϕ2||Tρ ||�ϕ||Tρ = �T ||ϕ||Tρ
||f||Tρ = ∅ ||p̄||Tρ = ST \ ρ(p) ||ϕ1 ∨ ϕ2||Tρ = ||ϕ1||Tρ ∪ ||ϕ2||Tρ ||�ϕ||Tρ =�T ||ϕ||Tρ

||x||Tρ = ρ(x) ||ηx. ϕ||Tρ = η(λS. ||ϕ||Tρ[x�→S])
where ρ[x �→ S] is the environment defined by ρ[x �→ S](x) = S and ρ[x �→ S](y) = ρ(x) for y �= x.

As observed by several authors (see, e.g., [13,55]), a μ-calculus formula can be seen as a system of equations, with an 
equation for each fixpoint subformula. For instance, consider ϕ = μx2.((νx1.(p ∧�x1)) ∨�x2) that requires that some path 
eventually reaches a state from which p always holds on all paths. The equational form is given in Fig. 1c. Consider a 
transition system T = (ST , →T ) where ST = {a, b, c, d, e} and →T is as depicted in Fig. 1a, where p holds in the grey states 
b, d and e.

The formula ϕ interpreted over the transition system T leads to the system of equations over the lattice 2ST in Fig. 1d.
The solution is x1 = {b, d, e} (states where p always holds) and x2 = {a, b, d, e} (states where the formula ϕ holds).
5
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0(x) = 0, 1(x) = 1 (constant)
r · x = rx (scalar mult.)
x � y = max(x, y) (weak disj.)
x � y = min(x, y) (weak conj.)
x ⊕ y = min(x + y,1) (strong disj.)
x � y = max(x + y − 1,0) (strong conj.)

(a) Semantics of μ-terms (x, y ∈ [0, 1])

a

·

·

b

c

1
3

1
3

1
3

1
3

1
6

1
2

1

1

(b) A PNTS

ϕ

{
x1 =ν p ��x1
x2 =μ x1 ⊕�x2

ϕ′
{

x1 =ν p ��x1
x2 =μ x1 ⊕�x2

(c) Formulae as systems

Fig. 2. Examples of Łukasiewicz μ-calculus formulae for a PNTS, and semantics of μ-terms.

Example 3.6 (Łukasiewicz μ-terms). Systems of equations over the real interval [0, 1] have been considered in [47] as a 
precursor to model-checking PCTL or probabilistic μ-calculi. More precisely, the authors study a fixpoint extension of 
Łukasiewicz logic, referred to as Łukasiewicz μ-terms, whose syntax is as follows:

t ::= 1 | 0 | x | r · t | t � t | t � t | t ⊕ t | t � t | ηx.t

where x ∈ PVar is a variable (ranging over [0, 1]), r ∈ [0, 1] and η ∈ {μ, ν}. The various syntactic operators have a semantic 
counterpart, given in Fig. 2a.

Then, each Łukasiewicz μ-term, in an environment ρ : PVar →[0, 1], can be assigned a semantics which is a real number 
in [0, 1], denoted as | |t| |ρ . Exactly as for the μ-calculus, a Łukasiewicz μ-term can be naturally seen as a system of fixpoint 
equations over the lattice [0, 1]. For instance, the term νx2. (μx1. ( 5

8 ⊕ 3
8 x2) � ( 1

2 � ( 3
8 ⊕ 1

2 x1))) from an example in [47] can 
be written as the system:

x1 =μ (
5

8
⊕ 3

8
x2)� (

1

2
� (

3

8
⊕ 1

2
x1))

x2 =ν x1

Example 3.7 (Łukasiewicz μ-calculus). The Łukasiewicz μ-calculus, as defined in [47], extends the Łukasiewicz μ-terms with 
propositions and modal operators. The syntax is as follows:

ϕ ::= p | p̄ | x | r · ϕ | ϕ � ϕ | ϕ � ϕ | ϕ ⊕ ϕ | ϕ � ϕ | �ϕ | �ϕ | ηx.t

where x ranges in a set PVar of propositional variables, p ranges in a set Prop of propositional symbols, each paired with an 
associated complement p̄, and η ∈ {μ, ν}.

The Łukasiewicz μ-calculus can be seen as a logic for probabilistic transition systems. It extends the quantitative modal 
μ-calculus of [44,35] and it allows to encode PCTL [6]. For a finite set S, the set of (discrete) probability distributions over S
is defined as D(S) = {d : S→[0, 1] | ∑s∈S d(s) = 1}. A formula is interpreted over a probabilistic non-deterministic transition 
system (PNTS)1 N = (S, →) where → ⊆ S ×D(S) is the transition relation. An example of PNTS can be found in Fig. 2b. 
Imagine that the aim is to reach state b. State a has two transitions. A “lucky” one where the probability to get to b is 1

3
and an “unlucky” one where b is reached with probability 1

6 . For both transitions, with probability 1
3 one gets back to a

and then, with the residual probability, one moves to c. Once in states b or c, the system remains in the same state with 
probability 1.

Given a formula ϕ and an environment ρ : Prop∪PVar → (S→[0, 1]) mapping each proposition or propositional variable 
to a real-valued function over the states, the semantics of ϕ is a function | |ϕ| |Nρ : S→ [0, 1] defined as expected using the 
semantic operators. In addition to those already discussed, we have the semantic operators for the complement and the 
modalities: for v : S→[0, 1]

v̄(x) = 1 − v(x) �N(v)(x) = max
x→d

∑
y∈S

d(y) · v(y) �N(v)(x) = min
x→d

∑
y∈S

d(y) · v(y)

As it happens for the propositional μ-calculus, also formulae of the Łukasiewicz μ-calculus can be seen as systems of 
equations, but on a different complete lattice, i.e., [0, 1]S . For instance, consider the formulae ϕ = μx2.(νx1.(p ��x1) ⊕�x2) and ϕ′ = μx2.(νx1.(p ��x1) ⊕�x2), rendered as (syntactic) equations in Fig. 2c. Roughly speaking, they capture the 
probability of eventually satisfying forever p, with an angelic scheduler and a daemonic one, choosing at each step the best 
or worst transition, respectively. Assuming that p holds with probability 1 on b and 0 on a and c, we have | |ϕ| |ρ(a) = 1

2 and 
| |ϕ′| |ρ(a) = 1

4 .

1 PNTS are the same as (unlabelled) Markov decision processes, as observed also in [47].
6
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Example 3.8 ((bi)similarity over transition systems). For defining (bi)similarity uniformly with the previous Example 3.5 on the 
μ-calculus, we work on unlabelled transition systems with atoms T = (S, →, A) where A ⊆ 2S is a fixed set of atomic 
properties over the states. Everything can be easily adapted to labelled transition systems.

Given T = (S, →, A), consider the lattice of relations on S, ordered by subset inclusion, namely Rel(S) = (2S×S, ⊆). 
We take as basis the set of singletons BRel(S) = {{(x, y)} | x, y ∈S}. The similarity relation on T , denoted �T , is the greatest 
fixpoint of the function simT : Rel(S) → Rel(S), defined by

simT (R) = {
(x, y) ∈ R | ∀a ∈ A. (x ∈ a ⇒ y ∈ a) ∧ ∀x → x′. ∃y → y′. (x′, y′) ∈ R

}
In other words �T can be seen as the solution of a system consisting of a single greatest fixpoint equation x =ν simT (x).

For instance, consider the transition system T in Fig. 1a and take p = {b, d, e} as the only atom. Then similarity �T is 
the transitive reflexive closure of the relation {(c, a), (a, b), (b, d), (d, e), (e, b)}.

Bisimilarity ∼T can be obtained analogously as the greatest fixpoint of bisT (R) = simT (R) ∩ simT (R−1). In the transition 
system T above, bisimilarity ∼T is the least equivalence such that b ∼T d ∼T e.

4. Approximation for systems of fixpoint equations

In this section we propose a theory of approximation for systems of fixpoint equations over complete lattices. The 
general setup is borrowed from abstract interpretation [15–17], where a concrete domain C and an abstract domain A are 
fixed. Semantic operators on the concrete domain C have a counterpart in the abstract domain A, and suitable conditions 
can be imposed on such operators to ensure that the least fixpoints of the abstract operators are sound and/or complete 
approximations of the fixpoints of their concrete counterparts. In particular [17] deals with temporal specification logics in 
the style of the μ-calculus, interpreted over boolean lattices, where least and greatest fixpoints are naturally nested.

Similarly, here we will have a system of equations x =η f C (x) over a concrete domain C and its abstract counterpart 
x =η f A(x) over an abstract domain A, and we want that the solution of the latter provides an approximation of the 
solution of the former.

Let us first focus on the case of a single equation. Let (C, �) and (A, ≤) be complete lattices, where the intuition is 
that a larger element is less precise than a smaller one. Let f C : C → C and f A : A → A be monotone functions. The 
fact that f A is a sound (over)approximation of f C can be formulated in terms of a concretisation function γ : A → C , 
that maps each abstract element a ∈ A to a concrete element γ (a) ∈ C , for which, intuitively, a is an overapproximation. 
In the setting of abstract interpretation, where the interest is in program semantics, typically expressed in terms of least 
fixpoints, the desired soundness property is μ f C � γ (μ f A). A standard sufficient condition for soundness (see [15,16,46]) 
is f C ◦ γ � γ ◦ f A . The same condition ensures soundness also for greatest fixpoints, i.e., ν f C � γ (ν f A), provided that γ
is co-continuous and co-strict (see, e.g., [17, Proposition 15], which states the dual result). For clarity we state this result 
explicitly in the appendix (see Lemma A.1(1)).

Then we can suitably combine the conditions for least and greatest fixpoints, similarly to what is done in [17, Lemma 36]. 
We will allow a different concretisation function for each equation.

Theorem 4.1 (sound concretisation for systems). Let (C, �) and (A, ≤) be complete lattices, let EC of the kind x =η f C (x) and E A of 
the kind x =η f A(x) be systems of m equations over C and A, with solutions sC ∈ Cm and sA ∈ Am, respectively. Let γ be an m-tuple 
of monotone functions, with γi : A → C for i ∈ m. If γ satisfies f C ◦ γ × � γ × ◦ f A with γi co-continuous and co-strict for each i ∈ m
such that ηi = ν , then sC � γ ×(sA).

The standard abstract interpretation framework of [19] relies on Galois connections: concretisation functions γ are right 
adjoints, whose left adjoint, the abstraction function α, intuitively maps each concrete element in C to its “best” overap-
proximation in A. When 〈α, γ 〉 is a Galois connection, α is automatically continuous and strict, while γ is co-continuous 
and co-strict. This fact, already exploited in [17, Theorem 40] for boolean lattices, leads to the following result on general 
complete lattices, where, besides the soundness conditions, we also make explicit the completeness conditions.

Theorem 4.2 (abstraction via Galois connections). Let (C, �) and (A, ≤) be complete lattices, let EC of the kind x =η f C (x) and E A

of the kind x =η f A(x) be systems of m equations over C and A, with solutions sC ∈ Cm and sA ∈ Am, respectively. Let α and γ be 
m-tuples of monotone functions, with 〈αi, γi〉 : C → A a Galois connection for each i ∈ m.

1. Soundness: If γ satisfies f C ◦ γ × � γ × ◦ f A or equivalently α satisfies α× ◦ f C ≤ f A ◦ α× , then α×(sC ) ≤ sA (equivalent to 
sC � γ ×(sA)).

2. Completeness (for abstraction): If α satisfies f A ◦ α× ≤ α× ◦ f C with αi co-continuous and co-strict for each i ∈ m such that 
ηi = ν , then sA ≤ α×(sC ).

3. Completeness (for concretisation): If γ satisfies γ × ◦ f A � f C ◦ γ × with γi continuous and strict for each i ∈ m such that 
ηi = μ, then γ ×(sA) � sC .
7
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Completeness for the abstraction, i.e., sA ≤ α×(sC ), together with soundness, leads to α×(sC ) = sA . This is a rare but very 
pleasant situation in which the abstraction does not lose any information as far as the abstract properties are concerned. 
We remark that here the notion of “completeness” slightly deviates from the standard abstract interpretation terminology 
where soundness is normally indispensable, and thus complete abstractions (see, e.g., [26]) are, by default, also sound.

Moreover, completeness for the concretisation is normally of limited interest in abstract interpretation. Alone, it states 
that the abstract solution is an underapproximation of the concrete one, while typically the interest is in overapproxima-
tions. Together with soundness, it leads to sC = γ ×(sA), a very strong property which is not meaningful in program analysis. 
Keeping the concepts of soundness and completeness separated and considering also completeness for the concretisation is 
helpful in some cases, especially when dealing with up-to functions, which are designed to provide underapproximations of 
fixpoints.

As in the standard abstract interpretation framework, dealing with Galois connections, we can consider the best (small-
est) sound abstraction of the concrete system in the abstract domain.

Definition 4.3 (best abstraction). Let (C, �) and (A, ≤) be complete lattices, let EC be a system of m equations over C of the 
kind x =η f (x). Let α and γ be m-tuples of monotone functions, with 〈αi , γi〉 : C → A a Galois connection for each i ∈ m. 
The best abstraction of EC is the system over A defined by x =η f #(x), where f # = α× ◦ f ◦ γ × .

Standard arguments show that f # is a sound abstraction of f over A, and it is the smallest one. Moreover, sound abstract 
operators can be obtained compositionally out of basic ones, preserving soundness, but not necessarily completeness.

Example 4.4 (abstraction for μ-calculus). The paper [42] observes that (bi)simulations over transition systems can be seen as 
Galois connections and interpreted as abstractions. Then it characterises fragments of the μ-calculus which are preserved 
and strongly preserved by the abstraction. We next discuss how this can be derived as an instance of our framework.

Let TC = (SC , →C ) and T A = (SA, →A) be transition systems and let 〈α, γ 〉 : 2SC → 2SA be a Galois connection. It is 
a simulation, according to [42], if it satisfies the following condition: α ◦ �TC ◦ γ ⊆ �T A . In this case T A is called a 〈α, γ 〉-
abstraction of TC , written TC �〈α,γ 〉 T A . This can be shown to be equivalent to the ordinary notion of simulation between 
transition systems [42, Propositions 9 and 10]. In particular, if R ⊆ SC ×SA is a simulation in the ordinary sense then one 
can consider 〈�R−1 , �R〉 : 2SC → 2SA , where �R−1 is the function �R−1 (X) = {y ∈ SA | ∃x ∈ X . (x, y) ∈ R}. This is a Galois 
connection (in the abstract interpretation setting �R−1 and �R are often denoted p̃reR and postR , respectively [14]) inducing 
a simulation in the above sense, i.e., �R−1 ◦�TC ◦�R ⊆ �T A .

When TC �〈α,γ 〉 T A , by [42, Theorem 2], one has that α “preserves” the μ�-calculus, i.e., the fragment of the μ-calculus 
without � operators. More precisely, for any formula ϕ of the μ�-calculus, we have α(| |ϕ| |TC

ρ ) ⊆ | |ϕ| |T A
α◦ρ . This means that 

for each sC ∈ SC , if sC satisfies ϕ in the concrete system, then all the states in α({sC }) satisfy ϕ in the abstract system, 
provided that each proposition p is interpreted in A with α(ρ(p)), the abstraction of its interpretation in C .

This can be obtained as an easy consequence of Theorem 4.2, where we use the same function α as an abstraction 
for all equations. The condition α ◦ �TC ◦ γ ⊆ �T A above can be rewritten as α ◦ �TC ⊆ �T A ◦ α which is the soundness 
condition (α× ◦ f C ≤ f A ◦ α×) in Theorem 4.2 for the semantics of the diamond operator. For the other operators the 
soundness condition is trivially shown to hold. In fact,

• for t and f we have α(∅) = ∅ and α(SC ) ⊆ SA ;
• for ∧ and ∨ we have α(X ∪ Y ) = α(X) ∪ α(Y ) and α(X ∩ Y ) ⊆ α(X) ∩ α(Y );
• a proposition p represents the constant function ρ(p) in TC and α(ρ(p)) in T A by definition.

In order to extend the logic by including negation on propositions, in [42], an additional condition is required, called 
consistency of the abstraction with respect to the interpretation: α(ρ(p)) ∩ α(ρ(p)) = ∅, for all p. This is easily seen to 
be equivalent to α(ρ(p)) ⊆ α(ρ(p)) which is the soundness condition (α× ◦ f C ≤ f A ◦ α×) in Theorem 4.2 for negated 
propositions.

Our theory naturally suggests generalisations of [42]. E.g., by (the dual of) Theorem 4.1, continuity and strictness of the 
abstraction α are sufficient to retain the results, hence one can deal with an abstraction not being an adjoint, thus going 
beyond ordinary simulations.

Example 4.5 (abstraction for Łukasiewicz μ-terms). For Łukasiewicz μ-terms, as introduced in Example 3.6, leading to systems 
of fixpoint equations over the reals, we can consider as an abstraction a form of discretisation: for some fixed n define the 
abstract domain [0, 1]/n = {0} ∪{k/n | k ∈ n} and the insertion 〈αn, γn〉 : [0, 1] →[0, 1]/n with αn defined by αn(x) = �n · x /n
and γn the inclusion. We can consider for all operators op, their best abstraction op# = αn ◦ op ◦ γ n

× , thus getting a sound 
abstraction.

Note that for all semantic operators, op# is the restriction of op to the abstract domain, with the exception of r ·# x =
αn(r · x) for x ∈ [0, 1]/n . Moreover, for x, y ∈ [0, 1] we have

• αn(0(x)) = 0#(αn(x)), αn(1(x)) = 1#(αn(x));
8
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• αn(r · x) ≤ r ·# αn(x);
• αn(x � y) = αn(x) �# αn(y), αn(x � y) = αn(x) �# αn(y);
• αn(x ⊕ y) ≤ αn(x) ⊕# αn(y), αn(x � y) ≤ αn(x) �# αn(y) since αn(x + y) ≤ αn(x) + αn(y)

i.e., the abstraction is complete for 0, 1, �, �, while it is just sound for the remaining operators.
Also observe that, when moving from [0, 1]/n to [0, 1]/m with m a multiple of n, the abstraction “improves”, i.e., the 

abstract solution gets closer to the concrete one. This immediately follows by noticing that the inclusion of [0, 1]/m into 
[0, 1]/n is a Galois insertion.

For instance, the system in Example 3.6 can be shown to have solution x1 = x2 = 0.2. With abstraction α10 we get 
x1 = x2 = 0.8, with a more precise abstraction α100 we get x1 = x2 = 0.22 and with α1000 we get x1 = x2 = 0.201.

Example 4.6 (abstraction for Łukasiewicz μ-calculus). Observe that when dealing with Łukasiewicz μ-calculus over some prob-
abilistic transition system N = (S, →), we can lift the Galois insertion above to [0, 1]S . Define α→

n : [0, 1]S → [0, 1]S/n by 
letting, α→

n (v) = αn ◦ v for v ∈ [0, 1]S . Then 〈α→
n , γ→

n 〉 : [0, 1]S →[0, 1]S/n (where γ→
n is the inclusion) is a Galois insertion 

and, as in the previous case, we can consider the best abstraction for the operators of the Łukasiewicz μ-calculus.
For instance, consider the system for ϕ′ in Example 3.7. Recall that the exact solution is x2(a) = 0.25. With abstraction 

α10 we get x2(a) = 0.3, with α30 we get a better (over-) approximation, i.e., x2(a) = 0.26̄.

5. Up-to techniques

Up-to techniques have been shown effective in easing the proof of properties of greatest fixpoints. Originally proposed 
for coinductive behavioural equivalences [45,52], they have been later studied in the setting of complete lattices [48,49]. 
Some recent work [7] started the exploration of the relation between up-to techniques and abstract interpretation. Roughly, 
they work in a setting where the semantic function of interest f ∗ : L → L admits a left adjoint f∗ : L → L, the intuition being 
that f ∗ and f∗ are predicate transformers mapping a condition into, respectively, its strongest postcondition and weakest 
precondition. Then complete abstractions for f ∗ and sound up-to functions for f∗ are shown to coincide. This has a natural 
interpretation in our game-theoretic framework, which is discussed in [4, Appendix A].

Here we take another view. We work with general semantic functions and, in § 5.1, we first argue that up-to techniques 
can be naturally interpreted as abstractions where the concretisation is complete (and sound, if the up-to function is a 
closure). Then, in § 5.2 we can smoothly extend up-to techniques from a single fixpoint to systems of fixpoint equations.

5.1. Up-to techniques as abstractions

The general idea of up-to techniques is as follows. Given a monotone function f : L → L one is interested in the greatest 
fixpoint ν f . In general, the aim is to establish whether some given element of the lattice l ∈ L is under the fixpoint, i.e., if 
l � ν f . In turn, since by Tarski’s Theorem, ν f =�{x | x � f (x)}, this amounts to proving that l is under some post-fixpoint 
l′ , i.e., l � l′ � f (l′). For instance, consider the function bisT : Rel(S) → Rel(S) for bisimilarity on a transition system T in 
Example 3.8. Given two states s1, s2 ∈S, proving {(s1, s2)} ⊆ νbisT , i.e., showing the two states bisimilar, amounts to finding 
a post-fixpoint, i.e., a relation R such that R ⊆ bisT (R) (namely, a bisimulation) such that {(s1, s2)} ⊆ R . The use of up-to 
functions is meant to ease this task.

Definition 5.1 (up-to function). Let L be a complete lattice and let f : L → L be a monotone function. A sound up-to function
for f is any monotone function u : L → L such that ν( f ◦ u) � ν f . It is called complete if also the converse inequality 
ν f � ν( f ◦ u) holds.

When u is sound, if l is a post-fixpoint of f ◦ u, i.e., l � f (u(l)) we have l � ν( f ◦ u) � ν f . The idea is that the character-
istics of u should make it easier to prove that l is a postfix-point of f ◦u than proving that it is for f . This is clearly the case 
when u is extensive. In fact by extensiveness of u and monotonicity of f we get f (l) � f (u(l)) and thus obtaining l � f (u(l))
is “easier” than obtaining l � f (l). Note that extensiveness also implies “completeness” of the up-to function: since f � f ◦u
clearly ν f � ν( f ◦ u). We remark that for up-to functions, since the interest is in underapproximating fixpoints, the terms 
soundness and completeness are somehow reversed with respect to their meaning in abstract interpretation.

A common sufficient condition ensuring soundness of up-to functions is compatibility [48].

Definition 5.2 (compatibility). Let L be a complete lattice and let f : L → L be a monotone function. A monotone function 
u : L → L is f -compatible if u ◦ f � f ◦ u.

The soundness of an f -compatible up-to function u can be proved by viewing it as an abstraction. We first consider 
the case in which u is a closure (i.e., extensive and idempotent). Then u(L) is a complete lattice that can be seen as an 
abstract domain in a way that 〈u, i〉 : L → u(L), with i being the inclusion, is a Galois insertion. Moreover f |u(L) can be 
shown to provide an abstraction of both f and f ◦u over L, sound and complete with respect to the inclusion i, seen as the 
9
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concretisation. The formal details are given below. Since we later aim to apply up-to techniques to systems of equations, we 
do not only deal with greatest but also with least fixpoints.

Lemma 5.3 (compatible up-to functions as sound and complete abstractions). Let f : L → L be a monotone function and let u : L → L
be an f -compatible closure. Consider the Galois insertion 〈u, i〉 : L → u(L) where i : u(L) → L is the inclusion. Then

1. f restricts to u(L), i.e., f |u(L) : u(L) → u(L);
2. ν f = i(ν f |u(L)) = ν( f ◦ u). If u is continuous and strict then μ f = i(μ f |u(L)) = μ( f ◦ u).

L u(L)

f

f ◦u
u

i
f |u(L)

When the up-to function is just f -compatible (hence sound), but possibly not a closure, we canonically turn u into an 
f -compatible closure (hence sound and complete) by taking the least closure ū above u.

Definition 5.4 (least upper closure). Let L be a complete lattice and let u : L → L be a monotone function. We let ū : L → L be 
the function defined by ū(x) = μ(ûx) where ûx(y) = u(y) � x.

Lemma 5.5 (properties of ū). Let u : L → L be a monotone function. Then

1. ū is the least closure larger than u;
2. if u is f -compatible then ū is;
3. if u is continuous and strict then ū is.

The least upper closure above a given function has been considered already in [18], with a slightly different construction.
Using Lemmas 5.3 and 5.5, whenever u is a compatible up-to function for f , we have that ū is a sound and complete 

up-to function for f . The soundness of u then immediately follows.

Corollary 5.6 (soundness of compatible up-to functions). Let f : L → L be a monotone function, let u : L → L be an f -compatible 
up-to function and let ū be the least closure above u. Then ν( f ◦ u) � ν( f ◦ ū) = ν f . If u is continuous and strict, then μ( f ◦ u) �
μ( f ◦ ū) = μ f .

In [48] the proof of soundness of a compatible up-to technique u relies on the definition of a function uω defined 
as uω(x) = �{un(x) | n ∈ N}, where un(x) is defined inductively as u0(x) = x and un+1(x) = u(un(x)). The function uω

is extensive but not idempotent in general, and it can be easily seen that uω � ū. The paper [49] shows that for any 
monotone function one can consider the largest compatible up-to function, the so-called companion, which is extensive and 
idempotent. The companion could be used in place of ū for part of the theory. However, we find it convenient to work with 
ū since, as discussed in § 7.2, it plays a key role for the integration of up-to techniques into the verification algorithms. 
Furthermore the companion is usually hard to determine.

5.2. Up-to techniques for systems of equations

Exploiting the view of up-to functions as abstractions, we can easily move from a single equation to systems of equations. 
As in the case of abstractions, a different up-to function is allowed for each equation.

Definition 5.7 (compatible up-to for systems of equations). Let (L, �) be a complete lattice and let E be x =η f (x), a system 
of m equations over L. A compatible tuple of up-to functions for E is an m-tuple of monotone functions u, such that each 
ui : L → L satisfies compatibility (u× ◦ f � f ◦ u×) and ui is continuous and strict for each i ∈ m such that ηi = μ.

We can then generalise Corollary 5.6 to systems of equations.

Theorem 5.8 (up-to for systems). Let (L, �) be a complete lattice and let E be x =η f (x), a system of m equations over L, with solution 
s ∈ Lm. Let u be a compatible tuple of up-to functions for E and let ū = (ū1, . . . , ̄um) be the corresponding tuple of least closures. Let 
s′ and s̄ be the solutions of the systems x =η f (u×(x)) and x =η f (ū×(x)), respectively. Then s′ � s̄ = s. Moreover, if u is extensive 
then s′ = s.

Example 5.9 (μ-calculus up-to (bi)similarity). Consider the problem of model-checking the μ-calculus over some transition 
system with atoms T = (S, →, A).
10
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Assuming that we have an a priori knowledge about the similarity relation � over some of the states in T , then, 
restricting to a suitable fragment of the μ-calculus we can avoid checking the same formula on similar states. This intuition 
can be captured in the form of an up-to technique that we refer to as up-to similarity. It is based on an up-to function 
u� : 2S → 2S defined, for X ∈ 2S , by u�(X) = {s ∈S | ∃s′ ∈ X . s′ � s}.

Function u� is monotone, extensive, and idempotent. It is also continuous and strict.
Moreover, u� is a compatible (and thus sound) up-to function for the μ�-calculus where propositional variables are 

interpreted as atoms. In fact, � is a simulation (the largest one) and the function u� is the associated abstraction as defined 
in Example 4.4, namely u� = �� . Therefore, compatibility u� ◦ f � f ◦ u� corresponds to condition α ◦ �TC ◦ γ ⊆ �T A in 
Example 4.4 which has been already observed to coincide with soundness in the sense of Theorem 4.2 for the operators of 
the μ�-calculus. Concerning propositional variables, in Example 4.4, they were interpreted, in the target transition system, 
by the abstraction of their interpretation in the source transition system. Since here we have a single transition system and 
a single interpretation ρ : Prop → 2S , we must have ρ(p) = u�(ρ(p)), i.e., ρ(p) is upward-closed with respect to �. This 
automatically holds by the fact that � is a simulation.

Similarly, we can define up-to bisimilarity via the up-to function u∼(X) = {s ∈ S | ∃s′ ∈ X . s ∼ s′}. As above, one can 
see that compatibility u∼ ◦ f � f ◦ u∼ holds for the full μ-calculus with propositional variables interpreted as atoms. 
For instance, consider the formula ϕ in Example 3.5 and the transition system in Fig. 1a. Using the up-to function u∼
corresponds to working in the bisimilarity quotient in Fig. 1b. Note, however, that when using a local algorithm (see § 5.2) 
the quotient does not need to be actually computed. Rather, only the bisimilarity over the states explored by the searching 
procedure is possibly exploited.

Example 5.10 (bisimilarity up-to transitivity). Consider the problem of checking bisimilarity on a transition system T = 〈S, →〉. 
A number of well-known sound up-to techniques have been introduced in the literature [50]. As an example, we consider 
the up-to function utr : Rel(S) → Rel(S) performing a single step of transitive closure. It is defined as:

utr(R) = R ◦ R = {(x, y) | ∃ z ∈ S. (x, z) ∈ R ∧ (z, y) ∈ R}.
It is easy to see that utr is monotone and compatible with respect to the function bisT : Rel(S) → Rel(S) of which 

bisimilarity is the greatest fixpoint (see Example 3.8).
Note that utr is neither idempotent nor extensive. The corresponding closure ūtr maps a relation to its (full) transitive 

closure (this is known to be itself a sound up-to technique, a fact that we can also derive from the compatibility of utr and 
Corollary 5.6).

We conclude this section by providing an alternative view on the integration of up-to functions into systems of fixpoint 
equations, without the explicit need for closures nor extensiveness of the up-to functions. Let E be a system of m equations 
of the kind x =η f (x) over a complete lattice L and let u be a compatible tuple of up-to functions for E . By Theorem 5.8
we have that the system E ū with equations x =η f (ū×(x)) has the same solution as E . Now, since ū is a tuple of functions 
obtained as least fixpoints (see Definition 5.4), the system E ū can be “equivalently” written as the system of 2m equations 
that we denote by d(E, u), defined as follows:

y =μ (u×(y)) � x

x =η f (y)

More precisely, we can show the following result.

Theorem 5.11 (preserving solutions with up-to). Let E be a system of m equations of the kind x =η f (x) over a complete lattice L. Let 
u be an m-tuple of up-to functions compatible for E. The solution of the system d(E, u) is sol(d(E, u)) = (sol(E), sol(E)).

6. Solving systems of equations via games

In this section, we first provide a characterisation of the solution of a system of fixpoint equations over a complete lattice 
in terms of a parity game. This generalises a result in [3]. While the original result was limited to continuous lattices, here, 
exploiting the results on abstraction in § 4, we devise a game working for any complete lattice.

Then, we introduce a device that allows to improve the general efficiency of the game by restricting the number of 
possible moves, without any loss of information.

6.1. Game characterization

Parity games [21,61] are two-player zero-sum games of perfect information played on directed graphs. Nodes, also known 
as positions, of the game graph are partitioned into two sets, depending on the player controlling the node. Starting from an 
initial position, the game is played by moving a token from a node to another along one of the outgoing edges, chosen by 
11



P. Baldan, B. König and T. Padoan Information and Computation 301 (2024) 105233
Table 1
The game on the powerset of the basis.

Position Player Moves

(b, i) ∃ X such that b � f i(� X)

X ∀ (b′, j) such that b′ ∈ X j

the player controlling the current position. Thus, a play in the game is a (possibly infinite) path in the graph. Each position 
is labelled by a priority, expressed by a natural number. A finite play is simply won by the player who moved last. Instead, 
the winner of an infinite play is established based on the maximal priority appearing infinitely often along the play. The 
name of parity games originates from the fact that usually the parity of the priority is used to determine such winner. Even 
priorities are associated with one player, while odd ones with the other, then the winner is decided depending on whether 
the maximal priority appearing infinitely often is even or odd. A strategy for a player is a function which assigns to each 
position controlled by that player one of the positions connected by an outgoing edge, that is, a possible move of the player. 
A strategy for a player is winning from a node (or a subset of nodes) if every play starting from such a node is won by that 
player, assuming the player follows the strategy, independently from the moves of the other player. A crucial fact is that, 
for every parity game, there is a unique bipartition of the game positions into those from which one player has a winning 
strategy and those from which the other does (see, e.g., [21]).

We show that the solution of a system of equations over a complete lattice can be characterised using a parity game.

Definition 6.1 (powerset game). Let L be a complete lattice with a basis B L . Given a system E of m equations over L of the 
kind x =η f (x), the corresponding powerset game is a parity game, with two players: an existential player ∃ and a universal 
player ∀. It is defined as follows:

• The positions of ∃ are pairs (b, i) where b ∈ B L , i ∈ m. Those of ∀ are tuples of subsets of the basis X = (X1, . . . , Xm) ∈
(2BL )m .

• From position (b, i) the moves of ∃ are E(b, i) = {X | X ∈ (2BL )m ∧ b � f i(� X)}.
• From position X ∈ (2BL )m the moves of ∀ are A(X) = {(b, i) | i ∈ m ∧ b ∈ Xi}.

The game is schematised in Table 1. For a finite play, the winner is the player who moved last. For an infinite play, let h be 
the highest index that occurs infinitely often in a pair (b, i). If ηh = ν then ∃ wins, else ∀ wins.

Note that, differently from what happens for standard parity games, the priority associated with the positions of player 
∃ is not only a number, the index of the equation in the system, but also the indication of the corresponding kind of 
fixpoint (least or greatest). It is the latter information, rather than the parity, which determines the winner of an infinite 
play. An alternative, more in line with the literature on parity games would be to define priorities in a way that their parity 
determines the kind of fixpoint of the associated equation, even for ν and odd for μ. Concretely this would mean giving a 
node (b, i) priority 2i if ηi = ν and priority 2i + 1 if ηi = μ. One could also reduce the number of priorities using the same 
priority for groups of consecutive equations that have the same fixpoint operator. We decided to opt for the first notation 
to be coherent with previous work in [30,3].

The game is meant to be used to decide whether a specified element of the basis of the lattice is below the solution of 
a fixpoint equation of the system. Indeed, as shown in the theorem below, this reduces to determine which player has a 
winning strategy starting from the corresponding position in the game.

Theorem 6.2 (correctness and completeness). Let E be a system of m equations over a complete lattice L of the kind x =η f (x) with 
solution s. For all b ∈ B L and i ∈ m, b � si iff ∃ has a winning strategy from position (b, i).

Interestingly, the correctness and completeness of the game can be proved by exploiting the soundness and completeness 
of the game over continuous lattices from [3] and the results about abstraction in § 4. The game for continuous lattices in [3]
is very similar to the one described in Table 1. Positions of player ∃ are still pairs (b, i) where b is an element of the basis 
and i ∈ m an equation index, while positions of player ∀ are tuples of elements of the lattice l ∈ Lm , the intuition being 
that a position X ∈ (2BL )m of the powerset game corresponds to a position � X ∈ Lm of the game over continuous lattices. 
Moreover the order relation � is replaced by the way-below relation " in the continuous lattice in a way that the condition 
defining the moves for player ∃ translates from b � f i(� X) to b " f i(l), while the condition b′ ∈ X j for ∀-moves becomes 
b′ " l j .

The crucial observation is that the described correspondence between the two games can be interpreted as a Galois 
insertion between L and the powerset lattice of its basis (which is algebraic hence continuous). The Galois connection is 
〈α, γ 〉 : 2BL → L where abstraction α is the join α(X) =� X and concretisation γ takes the lower cone γ (l) = ↓l∩B L . 
Then, a system of equations over a complete lattice L can be “transferred” along such an insertion to a system of equations 
over the powerset of the basis 2BL , in a way that the system in L can be seen as a sound and complete abstraction of the 
one in 2BL .
12
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As discussed later in § 7 (Example 7.1), if we instantiate the game to the setting of standard μ-calculus model-checking, 
we obtain an alternative encoding of μ-calculus into parity games.

Example 6.3. We provide a simple example illustrating the game. Consider the infinite lattice L =N ∪ {ω, ω + 1} (where 
n ≤ ω ≤ ω + 1 for every n ∈N) with basis B L = L. Furthermore let f : L → L be a monotone function with f (n) = n + 1 for 
n ∈N and f (ω) = ω, f (ω + 1) = ω + 1. Hence μ f = ω.

We set b = ω and attempt to show via the game that b ≤ μ f , by exhibiting a winning strategy for ∃. Note that since we 
are dealing with a μ-equation, in order to win ∃ must ensure that ∀ eventually has no moves left. Since there is only one 
fixpoint equation, we omit the indices. Starting with b = ω, ∃ plays X =N , which is a valid move since ω ≤ f (� X) = f (ω). 
Now ∀ has to pick some n ∈ X . In the next move, ∃ can play X = {n − 1}, which means that ∀ picks n − 1. Hence we obtain 
a descending chain, leading to 1, which can be covered by ∃ by choosing X = ∅, since 1 ≤ f (�∅) = f (0). Now ∀ has no 
moves left and ∃ wins. Observe that in every position n ∈N , ∃ could have also played the set X = {m ∈N | m ≤ n − 1} with 
the same outcome.

Instead, if we start from b = ω + 1 �≤ μ f , then ∃ has no winning strategy since she has to play a set X that contains 
ω+1. Then player ∀ can reply by choosing ω+1 and the game will continue forever. This is won by ∀ since we are dealing 
with a μ-equation.

6.2. Selections

For a practical use of the game it can be useful to observe that the set of moves of the existential player can be suitably 
restricted without affecting the completeness of the game. The idea is formalised by introducing a notion of selection, 
similarly to what has been done in [3]. The intuition is very simple: in the game for continuous lattices in [3], player ∃ in 
position (b, i) has to play a tuple l ∈ Lm such that f i(l) is (way-)above the basis element b. Clearly, when l is a move for 
player ∃, then, by monotonicity of f j , every l′ such that l � l′ is also a move for ∃. However, since from position l player ∀
performs a move (b′, j) such that b′ is (way-)below l j , taking a smaller l reduces the possible moves of player ∀ and thus 
is a preferable choice for player ∃. On the basis of the above considerations, the idea behind selections is to restrict to a 
subset of moves for player ∃ which are the most favourable, without altering the winner of the game.

In order to apply the same idea to the powerset game, with the aim of suitably ordering the moves of player ∃ which 
are tuples of sets, we introduce the so-called Hoare preorder [1]. Given a lattice L, the Hoare preorder �H on 2BL , defined by 
letting, for X, Y ∈ 2BL , X �H Y if ∀x ∈ X . ∃y ∈ Y . x � y. Observe that �H is not antisymmetric in general, e.g., if we consider 
the lattice Nω of natural numbers extended with a top element ω, then {1, 3} �H {2, 3} �H {1, 3}. We write ≡H for the 
corresponding equivalence, i.e., X ≡H Y when X �H Y �H X .

The moves of player ∃, which are tuples in (2BL )m , can be ordered by the pointwise extension of �H , denoted �∧
H , 

defined by X �∧
H Y when Xi �H Yi for all i ∈ m. Note that the set of moves E(b, i), from a position (b, i), is always upward-

closed w.r.t. �∧
H . In fact, since X �H Y implies � X �� Y , given X �∧

H Y such that X ∈ E(b, i), then by monotonicity of f i
it holds that b � f i(� X) � f i(�Y ), hence Y ∈ E(b, i).

Now, the crucial observation is that, given two moves for ∃, say X, Y ∈ (2BL )m , if X �∧
H Y then we can safely ignore Y

without affecting the winner of the game. This fact, formalised in Theorem 6.5, justifies the notion of selection.

Definition 6.4 (selection). Let E be a system of m equations over a complete lattice L, with basis B L . A selection for E is a 
function σ : (B L × m) → 2(2BL )m

such that, for all b ∈ B L and i ∈ m, it holds ↑H σ(b, i) = E(b, i), where ↑H is the upward-
closure with respect to �∧

H .

Observe that requiring the set E(b, i) of moves of ∃ from position (b, i) to be the upward-closure of σ(b, i) with respect 
to �∧

H is equivalent to requiring that σ(b, i) ⊆ E(b, i) and for each X ∈ E(b, i) there exists Y ∈ σ(b, i) such that Y �∧
H X . 

Since E(b, i) is upward-closed wrt. �∧
H , selections always exist.

The crucial fact is that Theorem 6.2 continues to hold, even if we restrict the moves of player ∃ to those prescribed by a 
selection.

Theorem 6.5 (game with selections). Let E be a system of m equations over a complete lattice L of the kind x =η f (x) with solution s, 
and let σ be a selection for E. For all b ∈ B L and i ∈ m, b � si iff ∃ has a winning strategy from position (b, i) in the game restricted to 
the selection σ .

Example 6.6. Selections are of great importance for pruning the state space of the game, in many cases avoiding the expo-
nential blow-up suggested by the game rules, where ∃ can play any tuple of subsets of the basis.

As an example, consider a game played on a formula of the μ-calculus as defined in Example 3.5. Assuming that variables 
are x1, . . . , xm and we have a standard encoding of fixpoint operators into an equation system, the remaining relevant 
operators are �, �, conjunction and disjunction.

Remember that we are working with unlabelled transition systems T = (ST , →T ), where the lattice corresponds to 2ST

and basis elements (positions of ∃) are the singleton sets {s}, s ∈ ST .
13
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Assume for simplicity that the equation system has been flattened, with one equation for each operator. Hence for the 
�-operator we have a semantic equation xi =ηi �x j and we define the corresponding selection

σ({s}, i) = {(∅, . . . ,∅, {t}︸︷︷︸
pos. j

,∅, . . . ,∅) | s →T t}.

After this move by ∃, the player ∀ is forced to take the chosen singleton {t}.
Instead, for the �-operator we have a semantic equation xi =ηi �x j and we define the corresponding selection

σ({s}, i) = {(∅, . . . ,∅, {t | s →T t}︸ ︷︷ ︸
pos. j

,∅, . . . ,∅)}.

After this move by ∃, the player ∀ can choose any singleton {t} such that s →T t .
In the case of conjunction the equation becomes xi =ηi x j ∩ xk with the selection function is defined as

σ({s}, i) = {(∅, . . . ,∅, {s}︸︷︷︸
pos. j

,∅, . . . ,∅, {s}︸︷︷︸
pos. k

,∅, . . . ,∅)}

and ∃ is forced to play this tuple.
In the case of disjunction the equation becomes xi =ηi x j ∪ xk . The selection function is defined as

σ({s}, i) = {(∅, . . . ,∅, {s}︸︷︷︸
pos. j

,∅, . . . ,∅), (∅, . . . ,∅, {s}︸︷︷︸
pos. k

,∅, . . . ,∅)}

and ∃ can play either the first or second tuple.
Hence there is no blowup in the intermediate steps and this results in a game similar and comparable in size to the 

standard parity game obtained by encoding a μ-calculus formula (cf. [10]).

Remark 6.7. Observe that whenever L satisfies the infinite distributive law (i.e., ∀l ∈ L. ∀X ⊆ L. l �� X =�{l � x | x ∈ X}), 
and the basis B L comprises only completely join-irreducible elements, then X �H Y is the same as � X �� Y (while, in 
general, it would only hold that X �H Y implies � X �� Y .)

The assumptions above are satisfied, in particular, when L is a powerset 2X and the basis consists of the singletons 
B L = {{x} | x ∈ X} (see Example 7.1 on the μ-calculus). In this case �H is simply subset inclusion.

Interestingly enough, even if for general lattices �H and the preorder based on suprema differ, the latter can safely 
replace the former whenever the system of equations contains only ν-equations (this is the special case explored in [4]).

The rest of the section is devoted to singling out situations in which there is an optimal choice for selections, which 
restricts the moves of player ∃ as much as possible. This is made rigorous by introducing an order on selections.

Definition 6.8 (order on selections). Let E be a system of m equations of the kind x =η f (x), over a complete lattice L, with 
basis B L . Given two selections σ , σ ′ , we write σ ⊆H σ ′ if for all b ∈ B L , i ∈ m, and X ∈ σ(b, i), there exists Y ∈ σ ′(b, i) such 
that X ⊆∧ Y .

Unfortunately the existence of a minimal selection w.r.t. ⊆H is not always guaranteed. We will see that under the 
assumption that the lattice has no infinite ascending or descending chains, not only a minimal, but even a least selection is 
guaranteed to exist. Such selection is the one producing both the fewest and the smallest moves. We start proving a result 
which guarantees that every move in the least selection is finite.

Lemma 6.9 (finite moves). Let E be a system of m equations over a complete lattice L without infinite ascending chains. For every 
position (b, i) ∈ B L × m and move X ∈ E(b, i), there exists a finite move Y ∈ E(b, i) such that Y ⊆∧ X .

Proposition 6.10 (least selection). Let E be a system of m equations over a complete lattice L with finite height. Then, there exists a 
unique selection σ such that σ ⊆H σ ′ for all selections σ ′ .

Intuitively, the least selection is obtained by progressively refining the set of all possible moves E(b, i). First, by 
Lemma 6.9 we can safely restrict only to finite moves, whose upward-closure w.r.t. �∧

H is again E(b, i), since ⊆∧ im-
plies �∧

H . Then, we restrict to only the moves X whose downward-closure ↓X is minimal w.r.t. ⊆∧ , which exist because 
we assumed also the absence of infinite descending chains (hence ↓X is finite). The upward-closure w.r.t. �∧

H is preserved 
after this reduction for the same reason of the previous step, observing that ↓X ≡H X . Finally, in each component of each 
remaining move it is enough to consider only the maximal elements w.r.t. �, in fact the upward-closure w.r.t. �∧ is again 
H
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preserved. Note that the maximal elements exist because the moves are now all finite. From the steps above we can deduce 
that the resulting selection is the only minimal one w.r.t. ⊆H , hence the least.

Example 6.11. Consider the powerset game that we presented in Example 6.3 for the lattice L =N ∪ {ω, ω + 1}, with basis 
B L = L, and the function f (n) = n + 1 for n ∈N , f (ω) = ω, f (ω + 1) = ω + 1. In the example the moves played by ∃ were 
as follows: {n − 1} from position n ∈N , N from position ω, and {ω + 1} from position ω + 1. There we also mentioned 
that, from n ∈N , ∃ could have equivalently played the set {m ∈N | m ≤ n − 1}. We now show that both kinds of moves 
correspond to a selection, however none of them is minimal w.r.t. the order ⊆H . Indeed, in this case L has infinite height 
and there is actually no least selection. Let σ be the first selection, defined as σ(n) = {{n − 1}} for n ∈ N , σ(ω) = {N}
and σ(ω + 1) = {{ω + 1}}.2 The other selection σ ′ is defined as σ ′(n) = {{m ∈ N | m ≤ n − 1}} for n ∈ N , σ ′(ω) = {N}
and σ ′(ω + 1) = {{ω + 1}}. It is easy to see that both σ and σ ′ are valid selections, i.e., ↑H σ(b) = ↑H σ ′(b) = E(b) for all 
b ∈ B L . Moreover, the two selections differ only on natural numbers n ∈N , and, in particular, the unique X ∈ σ(n) is always 
included in the unique X ′ ∈ σ ′(n), hence σ ⊆H σ ′ . However, σ is not minimal since there exist smaller selections, infinitely 
many in fact. For instance, take σ ′′ defined as σ except for σ ′′(ω) = {2N} the set of even numbers. Clearly σ ′′ is still a 
valid selection and σ ′′ ⊆H σ , and there are even smaller ones, however none of them is minimal w.r.t. ⊆H .

7. Local algorithm for solving the game

The game characterisation is exploited for developing an algorithm for solving the game and thus the associated veri-
fication problem. The algorithm has a “local flavour”, i.e., it tries to identify the winner of the game at a specific position 
limiting as much as possible the exploration of the system. We first present the local algorithm and then discuss how it can 
take advantage of the up-to techniques for systems of equations that we devised in § 5.2.

Local algorithms, also referred to as lazy, on-the-fly, or global caching, have in practical cases proved to be a successful 
and efficient way to solve the corresponding problems. Indeed, also for the solution of parity games, even though their global 
counterparts have generally lower theoretical runtime upper bounds, local techniques have shown to be especially useful in 
practical use cases, which usually admit small solutions, where local algorithms are able to achieve faster runtime with less 
computation. This has also been demonstrated by the implementations of local procedures in tools such as PGSolver [23,24]
(https://github .com /tcsprojects /pgsolver), a community toolsuite of choice for the solution of parity games.

The algorithm presented herein extends the one that was introduced in [4] to the general case of a system of equations. 
This gives us a technique for determining whether a lattice element is below a component of the solution. The idea con-
sists in computing only the information needed for the local problem of interest, along the lines of other local algorithms 
developed for bisimilarity [33] and for μ-calculus model checking [57]. In particular, our algorithm arises as a natural gen-
eralisation of the one in [57] to the setting of powerset games (see Definition 6.1). The algorithm shares also some common 
ideas with the parity game solving techniques presented in past works [60,25] based on global and local, respectively, strat-
egy improvement. All three solving procedures use the underlying discrete graph structure and nodes priorities to evaluate 
plays and strategies in a parity game, which is implicitly or explicitly reformulated (called a finite cycle-domination game
in [60]) so that even infinite plays can be treated as finite objects. In particular, the algorithms in [60,25] use such valuations 
to construct and iteratively improve players’ strategies, in the case of [25] limited to the locally explored part of the game 
graph. On the other hand, our algorithm does not really record nor explicitly state strategies for the players, although some 
relevant parts of them can be extracted from the current computed local information, and are in truth used to prove the 
correctness of the method. Recently, in [40], the use of local algorithms for the solution of symbolic general parity games 
has also been explored. The cited local algorithms and aforementioned tools already provide a solid, and possibly faster, 
apparatus for the solution of general parity games. However, our aim is not just to solve the parity game associated with a 
system of fixpoint equations, but also support the use of abstraction and up-to techniques (as explained later). To do this, 
the inherent properties of the powerset game and setting must also be exploited. Thus, we resorted to a new local algorithm 
with such capability. Nevertheless, it is worth mentioning that the algorithm presented below is still applicable to general 
parity games, as it will be clear from its description and the adopted notation.

We start by fixing some conventions and notation which will be useful for describing the algorithm.

Notation For the rest of the section, L denotes a complete lattice, with a basis B L , and E is a system of m fixpoint equations 
over L of the kind x =η f (x), with solution s ∈ Lm .

A generic player, that can be either ∃ or ∀, is usually represented by the upper case letter P . The opponent of player P
is denoted by P , i.e., ∀ = ∃, ∃ = ∀. The set of all positions of the game is denoted by Pos = Pos∃ ∪ Pos∀ , where Pos∃ = B L ×m, 
ranged over by (b, i) is the set of positions controlled by ∃, and Pos∀ = (2BL )m , ranged over by X is the set of positions 
controlled by ∀. A generic position is usually denoted by the upper case letter C and we write P(C) for the player controlling 
the position C .

Given a position C ∈ Pos, the possible moves for player P(C) are indicated by M(C) ⊆ Pos. In particular, if C ∈ Pos∃ then 
M(C) ⊆ Pos∀ , otherwise M(C) ⊆ Pos∃ . A function i : Pos → (m ∪ {0}) maps every position to a priority, which, for positions 

2 We recall that since there is only one equation, we omit indices and tuples. The explicit definition would have been σ(n, 1) ={({n + 1})}, etc.
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(b, i) of player ∃ is the index i (with 1 ≤ i ≤ m), while it is 0 for positions of ∀. With this notation, the winning condition 
can be expressed as follows:

• A finite play is won by the player who moved last.
• An infinite play, seen as a sequence of positions (C1, C2, . . .), is won by player ∃ (resp. ∀) if there exists a priority h ∈ m

such that ηh = ν (resp. μ), the set { j | i(C j) = h} is infinite and the set { j | i(C j) > h} is finite.

Note that the largest index which occurs infinitely often cannot be 0 since only positions of player ∀ have priority 0 and 
players alternate during the game. Hence the highest priority will always be a priority of player ∃. Hence this condition 
strongly resembles the parity condition [21] which requires that the highest priority that occurs infinitely often must be 
even. The difference can be explained by the fact that in our system of equations least and greatest fixpoints (μ, ν) need 
not alternate.

7.1. The algorithm

We propose an algorithm which given an element of the basis b ∈ B L and some index i ∈ m, checks whether b is below 
the solution of the i-th fixpoint equation of the system, i.e., b � si . According to Theorem 6.2, this corresponds to establish 
which of the players has a winning strategy in the powerset game starting from the position (b, i). The procedure roughly 
consists in a depth-first exploration of the tree of plays arising as unfolding of the game graph starting from the initial 
position (b, i). The algorithm optimises the search by making assumptions on particular subtrees, which are thus pruned. 
Assumptions can be later confirmed or invalidated, and thus withdrawn. The algorithm is split into three different functions 
(see Fig. 3).

• Function Explore explores the tree of plays of the game, trying different moves from each node in order to determine 
the player who has a winning strategy from such a node.

• Function Backtrack allows to backtrack from a node after the algorithm has established who was the winner from it, 
propagating the information backwards.

• Sometimes the algorithm makes erroneous assumptions when pruning the search in some position and this leads it to 
incorrectly designate a player as the winner from that position. However, the algorithm is able to detect this fact and 
correct its decisions. The correction is performed by the function Forget.

7.1.1. Data structures
The algorithm uses the following data structures:

• The counter k, i.e., an m-tuple of natural numbers, which associates each non-zero priority with the number of times 
the priority has been encountered in the play since a higher priority was last encountered (the current position is not 
included). After any move, the counter is updated taking into account the priority of the current position. More precisely, 
the update of a counter k when moving from a position with priority i, denoted next(k, i), is defined as follows: 
next(k, i) j = 0 for all j < i, next(k, i)i = ki + 1, and next(k, i) j = k j for all j > i. Note that, in particular, next(k, 0) = k, 
i.e., moves from a position with priority 0, which are the moves of ∀, do not change k. We also define two total orders 
<∃ and <∀ on counters, that intuitively measure how good the current advancement of the game is for the two players. 
We let k <∃ k′ when the largest i where ki �= k′

i is the index of a greatest fixpoint equation and ki < k′
i , or it is the index 

of a least fixpoint and ki > k′
i . The other order <∀ is the inverse of <∃ , that is k <∀ k′ iff k′ <∃ k. For each player P , we 

write k ≤P k′ for k <P k′ or k = k′ . Notice that the update function next is monotone on the counter, that is, given a 
priority i, for every player P , if k ≤P k′ , then next(k, i) ≤P next(k′, i).

• The playlist ρ , i.e., a list of the positions encountered from the initial position to the current node (empty if the current 
node is the initial position), each with the corresponding counter k and the indication of the alternative moves which 
have not been explored (exploration is performed depth-first). Thus, ρ is a list of triples (C, k, π), where C is a position, 
k is a counter and π ⊆ Pos is the set of the unexplored moves from that position.

• The assumptions for players ∃ and ∀, i.e., a pair of finite sets  = (∃, ∀). A position C is assumed to be winning 
for some player when it is encountered for the second time in the current playlist ρ . This reveals the presence of 
a loop in the game graph which can be unfolded into an infinite play. Position C is assumed to be winning for the 
player who would win such an infinite play. In detail, if k is the current counter and k′ is the counter of the previous 
occurrence of C , then the winner P is the player such that k′ <P k. In fact, this ensures that the highest priority in 
the loop is the index of a least fixpoint if P = ∀ and of a greatest fixpoint if P = ∃. The assumption is stored with the 
corresponding counter, i.e., P contains pairs of the kind (C, k). Since other possible paths branching from the loop are 
possibly unexplored, assumptions can still be falsified afterwards.

• The decisions for player ∃ and ∀, i.e., a pair of finite sets � = (�∃, �∀). Intuitively, a decision for a player P is a 
position C of the game such that we established that P has a winning strategy from C . The decision is stored with 
the corresponding counter, i.e., �P contains pairs of the kind (C, k). When a new decision is added, we also record its 
justification, i.e., the assumptions and decisions we relied on for deriving the new decision, if any.
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function Explore(C , k, ρ , , �)
if M(C) = ∅ then

�P(C)
:= �P(C) ∪ {(C, k)};

Backtrack(P(C), C , ρ , , �);
else if there is (C, k′) ∈ �P such that k′ ≤P k then

Backtrack(P , C , ρ , , �);
else if there is (C, k′, π) ∈ ρ then

let P such that k′ <P k;
P := P ∪ {(C, k′)};
Backtrack(P , C , ρ , , �);

else
pick C ′ ∈ M(C);
k′ := next(k, i(C));
π := (M(C) � {C ′}) × {k′};
Explore(C ′ , k′ , ((C, k, π) :: ρ), , �);

end if
end function

function Backtrack(P , C , ρ , , �)
if ρ = [] then

P ;
else if ρ = ((C ′, k′, π) :: t) then

if P(C ′) �= P and π �= ∅ then
pick (C ′′, k′′) ∈ π ;
π ′ := π � {(C ′′, k′′)};
Explore(C ′′ , k′′ , ((C ′, k′, π ′) :: t), , �);

else
if P(C ′) = P then

�P := �P ∪ {(C ′, k′)} justified by C ;
else

�P := �P ∪ {(C ′, k′)} justified by M(C ′);
end if
P := P � {(C ′, k′)};
if there is (C ′, k′) ∈ P then

�P := Forget(�P , P , (C ′, k′));
P := P � {(C ′, k′)};

end if
Backtrack(P , C ′ , t , , �);

end if
end if

end function

Fig. 3. The general local algorithm.

7.1.2. The function Explore

For checking whether b � si for b ∈ B L and i ∈ m, we call the function Explore((b, i), 0, [], (∅, ∅), (∅, ∅)), where 0
is the everywhere-zero counter. This returns the (only) player P having a winning strategy from position (b, i), and, by 
Theorem 6.2, P = ∃ if and only if b � si . (Here we use the fact that parity games are determined [21], i.e., either ∃ or ∀ has 
a winning strategy.)

Given the current position C , the corresponding counter k, the playlist ρ describing the path that led to C , and the sets 
of assumptions  and decisions �, function Explore(C , k, ρ , , �) checks if one of the following three conditions holds, 
each one corresponding to a different if branch.

• If M(C) = ∅, then the controller P(C) of position C cannot move and its opponent P(C) wins. Therefore, a new decision 
for the current position is added for the opponent, and we backtrack. A decision of this kind, with empty justification 
is called a truth.

• If there is already a decision for a player P for the current position C , that is, (C, k′) ∈ �P and k′ ≤P k, then we can 
reuse that information to assert that P would win from the current position as well. The requirement k′ ≤P k intuitively 
ensures that we arrived to the current position C with a play that is at least as good for P as the play which lead to 
the previous decision (C, k′).
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• If the current position C was already encountered in the play, i.e., (C, k′, π) ∈ ρ for some k′ and π , then C becomes an 
assumption for the player P for which the counter got strictly better, that is, k′ <P k. Then we backtrack.

• If none of the conditions above holds, the exploration continues from C . A move C ′ ∈ M(C) is chosen to be explored. 
The playlist is thus extended by adding (C, k, π) where π records the remaining moves to be explored. The counter k
is updated according to the priority of the now past position C .

7.1.3. The function Backtrack

Function Backtrack(P , C , ρ , , �) is used to backtrack from a position C , reached via the playlist ρ , after assuming or 
deciding that player P would win from such position.

• If ρ = [] we are back at the root, the position from where the computation started, and the exploration is concluded. 
The algorithm decides that player P is the winner from such a position.

• Otherwise, the head (C ′, k, π) of the playlist ρ is popped and the status of position C ′ is investigated.
– If C ′ is controlled by the opponent of P (P(C ′) �= P ) and there are still unexplored moves (π �= ∅), we must explore 

such moves before deciding the winner from C ′ . Then, a new move is extracted from π and explored.
– If instead the controller of C ′ is P (P(C ′) = P ) then P wins also from C ′ . Hence C ′ is inserted in �P , justified by the 

move C from where we backtracked. Similarly, if the controller of C ′ is the opponent of P (P(C ′) �= P ), we already 
explored all possible moves from C ′ (π = ∅) and all turn out to be winning for P , again we decide that P wins from 
C ′ , which is inserted in �P , justified by all possible moves from C ′ . Since we decided that P would win from C ′
we can now continue to backtrack. However, before backtracking we must discard all assumptions for the opponent 
of P in conflict with the newly taken decision, and this must be propagated to the decisions depending on such 
assumptions. This is done by the invocation Forget(�P , P , (C ′, k′)).

In general the choice of moves to explore, performed by the action “pick” in the pseudocode, is random. However, by the 
results in § 6.1, we can restrict the moves of player ∃ to a selection. Furthermore, it is usually convenient to give priority 
to moves which are immediately reducible to valid decisions or assumptions for the player who is moving. A practical way 
to do this is to check if there is a decision for a position C ′ , with a valid counter with respect to the current one, such that 
either the current position C = (b, i), C ′ = (b′, i) and b � b′ , or C = X , C ′ = X ′ and X ′ ⊆ X . Then, the move to pick is the 
one justifying such decision, which by those features is guaranteed to be a move also from the current position C .

7.1.4. The function Forget

The function Forget is not given explicitly. The precise definition of the property that function Forget must satisfy in 
order to ensure the correctness of the algorithm is quite technical (it can be found in the appendix provided as extra mate-
rial). Intuitively, when an assumption in P fails and is withdrawn, then we must remove from �P at least all the decisions 
depending on such an assumption. It is possible that decisions taken on the basis of the deleted assumption remain valid 
because they could be justified by other decisions or assumptions, possibly introduced later. Different sound realisations 
of Forget are then possible (see [57]) and, experimentally, it can be seen that those removing only the set of decisions 
depending on the falsified assumption can be practically inefficient. A simpler sound implementation, which, at least in the 
setting of the μ-calculus, as reported in [57] resulted to be the most efficient, is based on a temporal criterion: when an 
assumption fails, the function deletes all decisions which have been taken after the position corresponding to the failed 
assumption was initially encountered. It can be implemented by associating timestamps with decisions and assumptions, 
and avoiding the complex management of justifications. Note that the timestamp assigned to an assumption is not based 
on when the assumption is added, but rather on when the previous occurrence of the same position was initially explored. 
Then, Forget will remove all decisions with timestamps more recent than that of the failed assumption. This is sound 
because justification dependence clearly implies time dependence.

Example 7.1 (model-checking μ-calculus). Consider the transition system T = (S, →) in Fig. 1a and the μ-calculus formula 
ϕ = μx2.((νx1.(p ∧�x1)) ∨�x2) discussed in Example 3.5. As already discussed, the formula ϕ interpreted over T leads to 
the system E in Fig. 1d over the lattice 2S .

Suppose that we want to verify whether the state a ∈ S satisfies the formula ϕ . This requires to determine the winner 
of the powerset game from position (a, 2), which can be done by invoking Explore((a, 2), 0, [], (∅, ∅), (∅, ∅)). A compu-
tation performed by the algorithm is schematised in Fig. 4. Observe that we consider only moves from the least selection 
which exists by Proposition 6.10, since the lattice 2S is finite. Since the choice of moves is non-deterministic, other search 
sequences are possible. In the diagram, positions of player ∃ are represented as diamonds, while those of ∀ are represented 
as boxes, the counters associated with the positions are on their righthand side.

Recall that the second equation is x2 =μ x1 ∪ �T x2. Then, from the initial position (a, 2), with counter (0, 0), there 
are four available moves in the least selection, i.e., ({a}, ∅), (∅, {a}), (∅, {b}) and (∅, {c}), represented by the four outgoing 
edges from position (a, 2) in the diagram, all four will have counter (0, 1) = next((0, 0), 2). Indeed, it is easy to see that 
a ∈ {a} ∪ �T ∅ = ∅ ∪ �T {a} = ∅ ∪ �T {b} = {a} ⊆ ∅ ∪ �T {c} = {a, c}. Suppose that the algorithm chooses to explore the move 
(∅, {b}), as highlighted by the bold arrow. Even though not shown in the diagram, the other moves are stored in the set of 
unexplored moves π associated with the position (a, 2) in the playlist ρ . The search proceeds in this way along the moves
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(a,2) (0,0)

({a},∅) (∅, {a}) (∅, {b}) (∅, {c}) (0,1)

(b,2) (0,1)

(∅, {d}) ({b},∅) (∅, {e}) (0,2)

(b,1) (0,2)

({d, e},∅) (1,2)

(d,1) (e,1) (1,2)

({d},∅) ({e},∅) (2,2)

(d,1) (e,1) (2,2)

Fig. 4. An execution of the local algorithm.

(a,2)
∃� (∅, {b}) ∀� (b,2)

∃� ({b},∅)
∀� (b,1)

∃� ({d, e},∅)
∀� (d,1)

∃� ({d},∅)
∀�

until position (d, 1) occurs again, with counter (2, 2). Since the counter associated with the first occurrence of (d, 1) was 
(1, 2) and (1, 2) <∃ (2, 2), then the pair position and counter ((d, 1), (1, 2)) is added as an assumption for player ∃ and 
the algorithm starts backtracking. While backtracking it generates a decision for ∃, which is (({d}, ∅), (2, 2)) justified by the 
only possible move (d, 1) of player ∀. When it comes back to the first occurrence of (d, 1), since it is a position controlled 
by ∃, the procedure transforms the assumption ((d, 1), (1, 2)) into a decision for ∃ justified by the move ({d}, ∅). Then, it 
backtracks to position ({d, e}, ∅), which is controlled by player ∀ and there is still an unexplored move (e, 1). Therefore, the 
algorithm starts exploring again from (e, 1), and does so similarly to the previous branch of (d, 1). After making decisions for 
those positions as well, the algorithm resumes backtracking from ({d, e}, ∅), since all possible moves have been explored, 
making decisions for player ∃ along the way back. This goes on up until the initial position is reached again. The last 
invocation Backtrack(∃, (a,2), [], , �) terminates since ρ = [], and returns player ∃. Indeed, ∃ wins starting from position 
(a, 2) since the state a satisfies the formula ϕ .

7.1.5. Correctness
We show that, when the lattice is finite, the algorithm terminates. Moreover, when it terminates (which could happen 

also on infinite lattices), it provides a correct answer.
Termination on finite lattices can be proved by observing that the set of positions (which are either elements of the 

basis or tuples of sets of elements of the basis) is finite. The length of playlists is bounded by the number of positions, 
since, whenever a position repeats in a playlist, it necessarily becomes an assumption and backtracking starts. Finally, one 
can observe that it is not possible to cycle indefinitely between two positions and thus termination immediately follows.

Lemma 7.2 (termination). Given a powerset game on a finite lattice, any call Explore(C0 , 0, [], (∅, ∅), (∅, ∅)) terminates with an 
invocation of Backtrack(P , C0 , [], (∅, ∅), �) for some player P and a set �.

The proof of correctness is long and technical. The underlying idea is to prove that, at any invocation of Explore(·, ·, 
ρ , , �) and Backtrack(·, ·, ρ , , �), the justifications for the decisions �P , can be interpreted as a winning strategy 
for player P from the positions C ∈ �P , in a modified game where P immediately wins on the assumptions P . Since at 
termination, the set of assumptions is empty, the modified game coincides with the original one and thus we conclude.
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Theorem 7.3 (correctness). Given a powerset game, if a call Explore(C , 0, [], (∅, ∅), (∅, ∅)) returns a player P , then P wins the game 
from C.

Notice that it is unnecessary to prove the converse implication, that is, if P wins the game from C , then the call
Explore(C , 0, [], (∅, ∅), (∅, ∅)) returns P . Indeed, since the game can never result in a draw, this is equivalent to show that 
if the call Explore(C , 0, [], (∅, ∅), (∅, ∅)) returns P , then P wins the game from C . And this already holds by Theorem 7.3.

7.2. Using up-to techniques in the algorithm

In the literature about bisimilarity checking, up-to techniques have been fruitfully integrated with local checking algo-
rithms for speeding up the computation (see, e.g., [33]). Here we show that a similar idea can be exploited in our local 
algorithm for general systems of fixpoint equations.

By relying on Theorem 5.11 we can derive an algorithm that exploits the up-to function u. It is obtained by instantiating 
the general algorithm discussed before to the system d(E, u) (see § 5.2) and suitably restricting the moves considered in the 
exploration. Roughly, the idea is to allow the use of the up-to function only when it leads immediately to an assumption 
or a decision. This is in some sense similar to what is done for bisimilarity checking in [33], where the up-to function is 
used only to enlarge the set of states which are considered bisimilar. More precisely, when the exploration is in a position 
(b, i) corresponding to one of the added equations yi =μ ui(yi) � xi , according to the definition of the game, a possible 
move would be any 2m-tuple of sets (Y , X) such that b � ui(� Yi) �� Xi . First of all, since only the i-th and (m + i)-th 
components Yi and Xi play a role and we can restrict to minimal moves (see § 6.2), we can assume X j = Y j = ∅ for j �= i. 
Moreover, for Xi and Yi , we only allow two types of moves:

1. Xi = {b} and Yi = ∅, which means that we keep the focus on element b and just jump to the “original” equation 
xi =ηi f (yi), or

2. Xi = ∅ and Yi is a set of positions which would immediately become assumptions when explored or for which previous 
decisions can be used.

At the level of the pseudocode, this only means that the action “pick” needs to be refined. Instead of simply choosing 
randomly a move in M(C), in some cases it has to perform a constrained choice. This is made precise below.

Definition 7.4 (up-to algorithm). Let E be a system of m fixpoint equations over the complete lattice L and let u be a 
compatible tuple of up-to functions for E . The up-to algorithm for E based on u is just the algorithm in Fig. 3 applied to 
the system d(E, u), where, in function Explore(C , k, ρ , , �), when C = (b, i) with i ∈ m, the action “pick” can select only 
moves C ′ = (Y , X) such that Y j = X j = ∅ for j �= i and complying with either of the following conditions

1. Yi = ∅ and Xi = {b} or
2. Xi = ∅ and for all b′ ∈ Yi it holds

(a) ((b′, i), k′) ∈ �∃ with k′ ≤∃ next(k, i) or
(b) ((b′, i), k′, π) ∈ ρ with k′ <∃ next(k, i).

Condition (1) has been already clarified above. Condition (2) is a formal translation of the fact that Yi can contain only 
positions for which there are decisions that can be used (case (2a)) or that will immediately become assumptions (Case 2b)).

Clearly the modification does not affect termination on finite lattices (in fact, we just restrict the possible moves of a 
procedure which is known to be terminating). We next show that the up-to algorithm is also correct.

Theorem 7.5 (correctness with up-to). Let E be a system of m equations of the kind x =η f (x) over a complete lattice L. Let u be a 
compatible m-tuple of up-to functions for E. Then the up-to algorithm associated with the system d(E, u) as given in Definition 7.4 is 
correct, i.e., if a call Explore(C , 0, [], (∅, ∅), (∅, ∅)) returns a player P , then P wins the game from C.

The proof, reported in the appendix, is based on the observation that any winning strategy for player ∃ in the game 
associated with the original system E can be replicated in the game associated with the modified system d(E, u), even 
when the moves are restricted as in Definition 7.4. This is done by choosing always moves corresponding to case (1) in 
Definition 7.4. Then strategies in the constrained game for d(E, u) are also valid in the unconstrained game. We conclude 
since, by Theorem 5.11, we know that winning positions for player ∃ are the same in the game for E and in the game for 
d(E, u).

Further optimizations of the up-to algorithm are possible. E.g., we can exploit the fact that a variable yi has the same 
solution of the corresponding xi in the system d(E, u). Intuitively, decisions and assumptions for positions associated with 
a variable yi could be used as decisions and assumptions for the corresponding positions of variable xi , and the other way 
around.
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Example 7.6 (model-checking μ-calculus up-to bisimilarity). In Example 7.1 we showed how the algorithm would solve 
a model-checking problem by exploring the corresponding fixpoint game. Suppose that here we want to use up-to 
bisimilarity as an up-to technique to answer the same question, that is, whether the state a ∈ S satisfies the formula 
ϕ = μx2.((νx1.(p ∧ �x1)) ∨�x2). In Example 5.9 we presented the up-to function u∼ : 2S → 2S corresponding to up-to 
bisimilarity defined as u∼(X) = {s ∈ S | s ∼T s′ ∧ s′ ∈ X}. In order to apply the procedure described above, first we need 
to build the system d(E, (u∼, u∼)), which is

y1 =μ u∼(y1)∪ x1 x1 =ν {b,d, e} ∩�T y1

y2 =μ u∼(y2)∪ x2 x2 =μ y1 ∪�T y2

Then, to check whether the state a satisfies the formula ϕ we invoke the function Explore((a, 4), 0, [], (∅, ∅), (∅, ∅)), 
where the index 4 corresponds to variable x2 in the system d(E, (u∼, u∼)). Then, the algorithm behaves in similar fashion 
to what was described in Example 7.1. However, this time the exploration of position (d, 1) with counter (0, 0, 1, 2) is 
pruned by using the up-to function. Recalling that position (b, 1) occurred in the past, hence it is included in the playlist, 
with counter (0, 0, 0, 2), we have that condition (2) of Definition 7.4 holds for the move ({b}, ∅, ∅, ∅) since d ∼ b, hence 
d ∈ u∼({b}) ∪ ∅, and (0, 0, 0, 2) <∃ next((0, 0, 1, 2), 1) = (1, 0, 1, 2). This leads to making an assumption for (b, 1) and then 
backtracking. The same happens when exploring the other branch, that is position (e, 1), since also e ∼ b. Similarly to what 
happened in the previous example, the last invocation Backtrack(∃, (a, 4), [], , �) returns player ∃. Indeed, ∃ wins starting 
from position (a, 4) since the state a satisfies the formula ϕ .

8. Conclusions

We proposed a general framework for dealing with abstraction in the solution of systems of fixpoint equations over 
complete lattices, mixing least and greatest fixpoints. We showed how up-to techniques, a classical tool used in coinductive 
settings, can be seen as a special form of abstraction and generalise to systems of fixpoint equations. Relying on the ap-
proximation theory, we provided a characterisation of the solution of systems of fixpoint equations over complete lattices in 
terms of a suitable parity game, generalising [3] that was restricted to continuous lattices. The game-theoretical character-
isation of the solution of systems of fixpoint equations is exploited to derive a local algorithm for determining the winner 
of the game at a specific position, thus solving the corresponding verification problem. We also showed how to integrate 
up-to techniques in the algorithm.

We showed how the local algorithm for μ-calculus model checking in [57] can be adapted in our setting for solving 
arbitrary fixpoint equation systems. This works properly essentially for two reasons. Firstly, the fact that the set of moves 
is partially ordered allows one to skip the exploration of some positions of the game (as formalised by the notion of 
minimal selections) and this properly integrates with the local nature of the algorithm. In fact, we developed a prototype 
implementation of the algorithm [22] which relies on a symbolic representation of the set of moves to be explored, based on 
the so-called symbolic moves introduced in [3]. The information gained during the execution of the local algorithm is further 
utilised to progressively prune the symbolic moves, thus influencing how the remaining part of the game is explored. 
Secondly, the moves introduced in the game by the use of up-to techniques have a special status since they should be used 
only when they are conclusive, that is, they immediately determine a winner for the current position. The local algorithm 
in § 7.1 can be naturally adapted to embody this constraint.

As mentioned in the introduction, a number of other local approaches have been proposed for the solution of parity 
games and it would be interesting to investigate whether also these approaches can be adapted to our setting and determine 
those which are most effective. In particular, an in-depth comparison with the local algorithms for general parity games 
proposed in [25] and recently in [40] appears to be interesting. This is out of the scope of the current paper, but from 
an initial analysis it can be seen that those procedures and ours do similar things in different ways. More specifically, our 
method uses the currently obtained partial knowledge of the game graph to conjecture the winner in some of the explored 
positions. These conjectures can be later falsified by further exploring the game graph. Indeed, they are upheld only by 
the cyclic plays and the corresponding dominating priorities identified up to the current partial exploration of the game. 
Such information implicitly induces strategies for both players, which however are not guaranteed to still be winning for 
the same player and positions after other possible moves of the opponent are explored. The approach in [25] also exploits 
the graph structure and priorities to establish winning positions and strategies for both players in a subset of the game 
graph. The explored subset allows to determine positions which are winning with certainty only under certain conditions, 
i.e., when the opposing player has no choices other than those already inspected. The procedure then iteratively expands 
such knowledge by further exploring the game graph, up to the point where the initially requested position is assigned 
to the winning set of one of the players. In particular, in the symmetric version of the algorithm, each expansion phase 
starts from one of the unexplored nodes controlled by the player who, under the current strategies, would lose from the 
position initially requested, and stops when it loops back to previously encountered nodes. This matches the process of 
exploration in our algorithm, which, as mentioned above, could lead to falsify the current conjectures. However, in our 
case such conjectures are explicitly recorded and re-used, especially when integrating up-to techniques, while in [25] only 
the guaranteed winning positions seem to be recorded. Also the approach in [40] focuses on identifying smaller sets of 
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positions where the winner can be established with certainty using the partial knowledge. While exploring the game graph 
it builds subsets, therein called dominions, of nodes where one player has a winning strategy that forces every play starting 
from any of those positions to remain inside that subset. These sets are further restricted to safe nodes whose winner can 
be definitively decided despite the partial knowledge. At the same time, dominions are also expanded using so-called safe 
attractors, i.e., sets of nodes from where a player can safely force plays to reach a specified desired position, for instance 
in one of that player’s dominions, taking into account the possible current lack of knowledge. In a sense, the difference 
between our algorithm and those in [25,40] lies in the kind of approximation, over- or under-, of the winning positions 
that the algorithms perform based on their partial local knowledge of the game. It is worth noting that both mentioned 
local algorithms, applied to the setting of systems of fixpoint equations, appear to be compatible with the integration of the 
symbolic representation of moves and of up-to techniques, as described before. Even so, the effectiveness of the latter may 
vary w.r.t. our case, because of the differences explained above. Nevertheless, this requires a more thorough investigation, 
and so it remains open as a future research direction.

Inspired by [9,7,32,33], we also adapted the algorithm to allow the use of up-to techniques. Here, as in the mentioned 
works, up-to techniques are used to enhance the ability of proving properties, as opposed to disproving them. In our setting 
this essentially corresponds to an increment of the possible existential player moves, as described in § 7.2. On the other 
hand, it could be interesting to find ways to use the up-to functions also in the opposite manner, in our case as a tool for 
the universal player for generating assumptions and decisions. However, a straightforward adaptation of the device utilised 
for the existential player appears to be unfeasible.

The notion of progress measures that has been studied in [3] can be adapted to the game for arbitrary complete (rather 
than just continuous) lattices, introduced in this paper. A natural question is whether the local algorithm arises as an 
instance of the single equation algorithm instantiated with the progress measure fixpoint equation.

With respect to the applications, we believe that our case study on abstractions respectively simulations for μ-calculus 
model-checking can also be generalised to modal respectively mixed transition systems [53,20,39] or to abstraction for the 
full μ-calculus as studied in [29] by combining both under- and over-approximations. Furthermore, we plan to further 
study over-approximations for fixpoint equations over the reals, closely connected to probabilistic logics. In particular, we 
will investigate under which circumstances one can obtain guarantees to be close to the exact solution or to compute the 
exact solution directly. Another interesting area is the use of up-to techniques for behavioural metrics [8].

Several authors have shown that systems of fixpoint equations can be suitably transformed while keeping the solution 
unchanged. This is discussed, e.g., for (parametrised) Boolean equation systems in [43,28]. The transformation can be used 
to simplify the system, possibly leading to a form in which the solution is immediate. This is surely an interesting direction 
to explore also for systems of equations over general lattices, as it could allow to bring the system to a shape in which the 
solution via the parity game becomes more efficient.
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Appendix A. Proofs for Section 4 (Approximation for systems of fixpoint equations)

Lemma A.1 (concretisation for single fixpoints). Let γ : A → C be a monotone function.

1. If

fC ◦ γ � γ ◦ f A (A.1)

then μ fC � γ (μ f A); if, in addition, γ is co-continuous and co-strict ν fC � γ (ν f A).
2. If

γ ◦ f A � fC ◦ γ (A.2)

then γ (ν f A) � ν fC ; if, in addition, γ is continuous and strict then γ (μ f A) � μ fC .

Proof. We focus on the soundness results since the completeness results follow by duality.
For least fixpoint, we prove that for all ordinals β we have f β

C (⊥C ) ≤ γ ( f β

A (⊥A)), whence the thesis, since μ fC = f β
C (⊥C )

and μ f A = f β

A (⊥A) for some ordinal β (just take the largest of the ordinals needed to reach the two fixpoints).
We proceed by transfinite induction:
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• (β = 0) We have f 0
C (⊥C ) =⊥C � γ ( f 0

A(⊥A)), as desired.
• (β → β + 1) Observe that

f β+1
C (⊥C ) = fC ( f β

C (⊥C ))

� fC (γ ( f β
C (⊥C ))) [by ind. hyp. and monotonicity of fC ]

≤ γ ( f A( f β

A (⊥A))) [by (A.1)]

= γ ( f β+1
A (⊥A))

• (β limit ordinal) In this case

f β
C (⊥C ) =�

β ′<β

f β ′
C (⊥C )

��
β ′<β

γ ( f β ′
A (⊥A)) [by ind. hyp.]

� γ (�
β ′<β

f β ′
A (⊥A)) [by properties of joins]

= γ ( f β

A (⊥A))

For greatest fixpoints, we prove that for all ordinals β we have f β
C (�C ) ≤ γ ( f β

A (�A)), again by transfinite induction.

• (β = 0) We have f 0
C (�C ) = �C = γ (�A) = γ ( f 0

A(�A)), since γ is assumed to be co-strict, hence we have the desired 
inequality.

• (β → β + 1) Observe that

f β+1
C (�C ) = fC ( f β

C (�C ))

� fC (γ ( f β

A (�A))) [by ind. hyp. and monotonicity of fC ]

� γ ( f A( f β

A (�A))) [by (A.1)]

= γ ( f β+1
A (�A))

• (β limit ordinal) In this case

f β
C (�C ) = �

β ′<β

f β ′
C (�C ))

� �

β ′<β

γ ( f β ′
A (�A)) [by ind. hyp.]

= γ (
�

β ′<β

f β ′
A (�A)) [since γ is co-continuous]

= γ ( f β

A (�A)) �
We can get analogous results for abstractions, by duality.

Lemma A.2 (abstraction for single fixpoints). Let α : C → A be an abstraction function.

1. If

α ◦ fC ≤ f A ◦ α (A.3)

then α(ν fC ) ≤ ν f A ; if, in addition, α is continuous and strict α(μ fC ) ≤ μ f A .
2. If

f A ◦ α ≤ α ◦ fC (A.4)

then μ f A ≤ α(μ fC ); if, in addition, α is co-continuous and co-strict then ν f A ≤ α(ν fC ).

Lemma A.3 (Galois insertions). Let fC : C → C and f A : A → A be monotone functions and let 〈α, γ 〉 : C → A be a Galois insertion.
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1. Assume soundness for α i.e., (A.3) (equivalent to soundness for γ , i.e., (A.1)), and completeness for both α and β , i.e., (A.4), (A.2). 
Then

α(η fC ) = η f A for η ∈ {μ,ν} ν fC = γ (ν f A) μ fC � γ (μ f A)

2. Assume

fC = γ ◦ f A ◦ α (A.5)

then α(η fC ) = η f A and η fC = γ (η f A) for η ∈ {μ, ν}.

Proof. 1. Just using Lemma A.1 and Lemma A.2, we obtain

(a) α(μ fC ) = μ f A (b) ν fC = γ (ν f A) (c) α(μ fC ) ≤ μ f A (d) μ fC � γ (μ f A)

From (b), applying α, we obtain α(ν fC ) = α(γ (ν f A) = ν f A , and we are done.
2. In this case, from the assumption fC = γ ◦ f A ◦α one can easily deduce the soundness and completeness conditions for 

α and γ , i.e., (A.3), (A.4), (A.1), (A.2). Therefore, by the previous point we get all desired inequalities but γ (μ f A) � μ fC . 
For this observe that

γ (μ f A) = γ (α(μ fC )) [since μ f A = α(μ fC )]

= γ (α( fC (μ fC ))) [since μ fC is a fixpoint of fC ]

= γ (α(γ ( f A(α(μ fC ))))) [since fC = γ ◦ f A ◦ α]

= γ ( f A(α(μ fC ))) [since α ◦ γ = idA]

= fC (μ fC ) [since fC = γ ◦ f A ◦ α]

= μ fC [since μ fC is a fixpoint of fC ] �
Theorem 4.1 (sound concretisation for systems). Let (C, �) and (A, ≤) be complete lattices, let EC of the kind x =η f C (x) and E A of 
the kind x =η f A(x) be systems of m equations over C and A, with solutions sC ∈ Cm and sA ∈ Am, respectively. Let γ be an m-tuple 
of monotone functions, with γi : A → C for i ∈ m. If γ satisfies f C ◦ γ × � γ × ◦ f A with γi co-continuous and co-strict for each i ∈ m
such that ηi = ν , then sC � γ ×(sA).

Proof. We proceed by induction on m. The case m = 0 is trivial.
For the inductive case, consider systems with m + 1 equations. Recall that, in order to solve the system, the last variable 

xm+1 is considered as a fixed parameter x and the system of m equations that arises from dropping the last equation is 
recursively solved. This produces an m-tuple t z

1,m(x) = sol(Ez[xm+1 := x]) parametric on x, for z ∈ {A, C}. For all a ∈ A, by 
inductive hypothesis applied to the systems E A [xm+1 := a] and EC [xm+1 := γm+1(a)] we obtain

tC
1,m(γm+1(a)) � γ 1,m

×(t A
1,m(a)) (A.6)

Inserting the parametric solution into the last equation, we get an equation in a single variable

a =ηm f A
m+1(t

A
1,m(a),a).

This equation can be solved by taking the corresponding fixpoint, i.e., if we define f A(a) = f A
m+1(t

A
1,m(a), a), then sA

m+1 =
ηm+1 f A . In the same way, sC

m+1 = ηm+1 fC where fC (c) = f C
m+1(t

C
1,m(c), c).

Observe that fC ◦ γm+1 � γm+1 ◦ f A . In fact

fC (γm+1(a)) =
= f C

m+1(t
C
1,m(γm+1(a)), γm+1(a))) [definition of fC ]

� f C
m+1(γ 1,m

×(t A
1,m(a)), γm+1(a))) [by (A.6)]

� f C
m+1(γ

×(t A
1,m(a),a)) [application of γ ]

� γm+1( f A
m+1(t

A
1,m(a),a)) [hypothesis f C ◦ γ × � γ × ◦ f A]

= γm+1( f A(a)) [definition of f A]

Therefore, recalling that when ηm+1 = μ we are assuming co-continuity and co-strictness for γm+1, we can apply 
Lemma A.1(1) and deduce that
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sC
m+1 = ηm+1 fC � γm+1(ηm+1 f A) = γm+1(sA

m+1) (A.7)

Finally, recall that the first m components of the solutions are sz
1,m = tz

1,m(sz
m+1) for z ∈ {C, A}. Therefore, exploiting (A.6), 

we have

sC
1,m =
= tC

1,m(sC
m+1)

� tC
1,m(γm+1(sA

m+1)) [by (A.7)]

� γ 1,m
×(t A

1,m(sA
m+1)) [by (A.6)]

= γ 1,m
×(sA

1,m)

This concludes the inductive step. �
Everything can be dually formulated in terms of abstraction functions.

Theorem A.4 (sound abstraction for systems). Let (C, �) and (A, ≤) be complete lattices and let EC of the kind x =η f C (x) and E A of 
the kind x =η f A(x) be systems of m equations over C and A, with solutions sC ∈ Cm and sA ∈ Am, respectively. Let α be an m-tuple 
of monotone functions, with αi : C → A for i ∈ m. If α satisfies

α× ◦ f C ≤ f A ◦ α×

with αi continuous and strict for each i ∈ m such that ηi = μ, then α×(sC ) ≤ sA .

Proof. This follows from Lemma 4.1 by duality. �
Theorem 4.2 (abstraction via Galois connections). Let (C, �) and (A, ≤) be complete lattices, let EC of the kind x =η f C (x) and E A

of the kind x =η f A(x) be systems of m equations over C and A, with solutions sC ∈ Cm and sA ∈ Am, respectively. Let α and γ be 
m-tuples of monotone functions, with 〈αi, γi〉 : C → A a Galois connection for each i ∈ m.

1. Soundness: If γ satisfies f C ◦ γ × � γ × ◦ f A or equivalently α satisfies α× ◦ f C ≤ f A ◦ α× , then α×(sC ) ≤ sA (equivalent to 
sC � γ ×(sA)).

2. Completeness (for abstraction): If α satisfies f A ◦ α× ≤ α× ◦ f C with αi co-continuous and co-strict for each i ∈ m such that 
ηi = ν , then sA ≤ α×(sC ).

3. Completeness (for concretisation): If γ satisfies γ × ◦ f A � f C ◦ γ × with γi continuous and strict for each i ∈ m such that 
ηi = μ, then γ ×(sA) � sC .

Proof. Due to Theorems 4.1 and A.4 (and the fact that we can apply the theorems to lattices with reversed order), the only 
thing to prove is that the conditions α× ◦ f C ≤ f A ◦ α× and f C ◦ γ × � γ × ◦ f A are equivalent. If we assume α× ◦ f C ≤
f A ◦ α× , by definition of Galois connection, we get f C � γ × ◦ f A ◦ α× . Now, post-composing with γ × and exploiting the 
fact that α× ◦ γ × � id× we obtain

f C ◦ γ × � γ × ◦ f A ◦ α× ◦ γ × � γ ◦ f A

as desired.
The converse implication is analogous. �
For Galois insertions, we make explicit a very special case where we get rid of all the (co-)continuity and (co-)strictness 

requirements, and get soundness and completeness both for the abstraction and the concretisation.

Lemma A.5 (Galois insertions for systems). Let (C, �) and (A, ≤) be complete lattices, let EC of the kind x =η f C (x) and E A of the 
kind x =η f A(x) be systems of m equations over C and A, with solutions sC ∈ Cm and sA ∈ Am, respectively. Let α and γ be m-tuples 
of abstraction and concretisation functions, with 〈αi, γi〉 : C → A a Galois insertion for each i ∈ m. If

f C = γ × ◦ f A ◦ α (A.8)

then α×(sC ) = sA and sC = γ ×(sA).
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Appendix B. Proofs for Section 5 (Up-to techniques)

Lemma 5.3 (compatible up-to functions as sound and complete abstractions). Let f : L → L be a monotone function and let u : L → L
be an f -compatible closure. Consider the Galois insertion 〈u, i〉 : L → u(L) where i : u(L) → L is the inclusion. Then

1. f restricts to u(L), i.e., f |u(L) : u(L) → u(L);
2. ν f = i(ν f |u(L)) = ν( f ◦ u). If u is continuous and strict then μ f = i(μ f |u(L)) = μ( f ◦ u).

L u(L)

f

f ◦u
u

i
f |u(L)

Proof. 1. We have that for all l ∈ u(L), the f -image f (l) ∈ u(L). Let l ∈ u(L), i.e., l = u(l′) for some l′ ∈ L. Observe that

f (l) � u( f (l)) [by extensiveness]

� f (u(l)) [by compatibility]

= f (u(u(l′)))

= f (u(l′)) [by idempotency]

= f (l)

Hence f (l) = u( f (l)), which means that f (l) ∈ u(L).
2. We first prove that ν f = ν f |u(L) . Consider

L u(L)

f

α=u

γ=i

f |u(L)

Note that for all l ∈ u(L), we have f (γ (l)) = f (l) = γ ( f |u(L)(l)), i.e., γ satisfies soundness (A.1) and completeness (A.2)
in Lemma A.1. Therefore, ν f = γ (ν f |u(L)) = η f |u(L) , as desired.

Next we prove that ν( f ◦ u) = ν f |u(L) Consider

L u(L)

f ◦u

α=u

γ=i

f |u(L)

Again, for all l ∈ u(L), we have f ◦ u(γ (l)) = f (u(l)) = f (l) = γ ( f |u(L)(l)), i.e., γ satisfies soundness (A.1) and complete-
ness (A.2) in Lemma A.1. Therefore, ν( f ◦ u) = γ (ν f |u(L)) = ν f |u(L) , as desired.

Finally, if u is continuous and strict then also γ = i is so: First, since ⊥ = u(⊥) ∈ u(L) and hence the inclusion i maps 
⊥ to ⊥. Second, since u is continuous, directed suprema in both lattices coincide: let D ⊆ u(L), then � D =�{u(d) |
d ∈ D} = u(� D) ∈ u(L). Hence i preserves directed suprema.
Hence we get the previous results also for least fixpoints. �

Lemma 5.5 (properties of ū). Let u : L → L be a monotone function. Then

1. ū is the least closure larger than u;
2. if u is f -compatible then ū is;
3. if u is continuous and strict then ū is.

Proof. 1. We first observe that ū is a closure. For extensiveness, just observe that ûx(y) = u(y) � x $ x for all y ∈ L and 
thus obviously ū(x) = μ(ûx) $ x.
In order to show that ū is idempotent, note that, by extensiveness, ū � ū ◦ ū. Hence to conclude, we just need to prove 
the converse inequality ū ◦ ū � ū. For all x ∈ L, we have ū(ū(x)) = μ(ûū(x)) = ûγ

ū(x) for some ordinal γ . We prove, by 
transfinite induction that for all α, that ûα

ū(x) � ū(x).

(α = 0) We have that û0 =⊥ � ū(x).
ū(x)
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(α → α + 1) We have that

ûα+1
ū(x) = ûū(x)(ûα

ū(x))

= u(ûα
ū(x)) � ū(x) [by def. ûū(x) ]

� u(ū(x)) � ū(x) [by ind. hyp.]

� ûx(ū(x)) � ū(x) [since u � ûx]

= ū(x) � ū(x) [since ûx(ū(x)) = ū(x)]

= ū(x)

(α limit) We have that

ûα
ū(x) =�

β<α

ûβ

ū(x)

��
β<α

ū(x) [by ind. hyp.]

= ū(x)

Moreover, ū is larger than u, i.e., u � ū. In fact,

ū(x) = ûx(ū(x)) [since ū(x) is a fixpoint of ûx]

= u(ū(x)) � x [by def. of ûx]

$ u(x) � x [since ū is extensive]

$ u(x)

Finally, let v any closure such that u � v . We show that for all x ∈ L, ûα
x � v(x), whence ū(x) � v(x), as desired.

(α = 0) We have that û0
ū(x) =⊥ � v(x).

(α → α + 1) We have that

ûα+1
ū(x) = ûx(ûα

x )

= u(ûα
x ) � x [by def. ûx ]

� u(v(x)) � x [by ind. hyp.]

� v(v(x)) � x [since u � v]

= v(x) � x [by idempotency of v]

= v(x) [by extensiveness of v]

(α limit) We have that

ûα
x =�

β<α

ûβ
x

��
β<α

v(x) [by ind. hyp.]

= v(x)

2. Observe that for all x ∈ L, we have ū( f (x)) = ûγ
f (x) for some ordinal γ . Hence also here we proceed by transfinite 

induction, showing that for all α

ûα
f (x) � f (ū(x))

(α = 0) We have that û0 =⊥ � f (ū(x)).
f (x)
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(α → α + 1) We have that

ûα+1
f (x) = û f (x)(ûα

f (x))

� û f (x)( f (ū(x)) [by ind. hyp.]

= u( f (ū(x))) � f (x) [by def. of û f (x)]

� f (u(ū(x))) � f (x) [by compatibility of f ]

� f (u(ū(x)) � x) [by general properties of �]

= f (ûx(ū(x)))) [by def. of ûx]

= f (ū(x)) [since û(x) is a fixpoint]

(α limit) We have that

ûα
f (x) =�

β<α

ûβ

f (x)

��
β<α

f (ū(x)) [by ind. hyp.]

= f (ū(x))

3. Assume that u is continuous and strict. Then ûx is continuous for all x ∈ L. In fact, for each directed set D ⊆ L we have

ûx(� D) = u(� D) � x

=�{u(d) | d ∈ D}) � x

=�{u(d) � x | d ∈ D})
=�{ûx(d) | d ∈ D})

Now, we can show that ū is continuous. Let D ⊆ L be a directed set. We have to prove that ū(� D) =�d∈D ū(d). It is 
sufficient to prove that ū(� D) ��d∈D ū(d), as the other inequality follows by monotonicity and general properties of �. As usual, we recall that ū(� D) = ûγ

� D for some γ and thus show, by transfinite induction on α that

ûα� D ��
d∈D

ū(d).

(α = 0) We have that û0� D =⊥ ��d∈D ū(d).

(α → α + 1) We have that

ûα+1� D = û� D(ûα� D)

� û� D(�
d∈D

ū(d)) [by ind. hyp.]

=�
d∈D

û� D(ū(d)) [by continuity of û� D ]

=�
d∈D

(u(ū(d)) �� D) [by def. of û� D ]

��
d∈D

(ûd(ū(d)) �� D) [since u � ûd]

=�
d∈D

(ū(d) �� D) [since û(d) is a fixpoint]

=�
d∈D

(ū(d) � d)

=�
d∈D

ū(d) [by extensiveness of ū]
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(α limit) We have that

ûα� D =�
β<α

ûβ� D

��
β<α
�
d∈D

ū(d) [by ind. hyp.]

=�
d∈D

ū(d)

Furthermore, ū is strict since û⊥(⊥) = u(⊥) �⊥ =⊥ �⊥ =⊥, and thus ū(⊥) = μ(û⊥) =⊥. �
Theorem 5.8 (up-to for systems). Let (L, �) be a complete lattice and let E be x =η f (x), a system of m equations over L, with solution 
s ∈ Lm. Let u be a compatible tuple of up-to functions for E and let ū = (ū1, . . . , ̄um) be the corresponding tuple of least closures. Let 
s′ and s̄ be the solutions of the systems x =η f (u×(x)) and x =η f (ū×(x)), respectively. Then s′ � s̄ = s. Moreover, if u is extensive 
then s′ = s.

Proof. Immediate extension to systems of the proofs of the Lemma 5.3 and Corollary 5.6, exploiting Theorem 4.1. �
Theorem 5.11 (preserving solutions with up-to). Let E be a system of m equations of the kind x =η f (x) over a complete lattice L. Let 
u be an m-tuple of up-to functions compatible for E. The solution of the system d(E, u) is sol(d(E, u)) = (sol(E), sol(E)).

Proof. We proceed by induction on the length m of the original system. The base case is vacuously true since, for m = 0, 
both systems have empty solution. Then, for m > 0, assume that the property holds for systems of size m − 1. By definition 
of solution we have that the solution of xm is

sol2m(d(E, u)) = ηm(λx. fm(sol1,m(d(E, u)[xm := x])))
and the parametric solution of ym is the function s′ : Lm → L

s′(x′) = solm(d(E, u)[x := x′]) = μ(λy. um(y) � x′m).

Observe that since s′(x′) depends only on x′m , we can define the parametric solution of ym using just a function s : L → L
instead of s′

s(x) = μ(λy. um(y) � x).

Substituting the parametric solution of ym in the solution of xm we obtain

sol2m(d(E, u)) = ηm(λx. fm(sol1,m−1(d(E, u)[xm := x][ym := s(x)]), s(x))).

Let h(x) = fm(sol1,m−1(d(E, u)[xm := x][ym := s(x)]), s(x)) and gx(y) = um(y) � x, so that sol2m(d(E, u)) = ηm(h) and s(x) =
μ(gx). Clearly h and g are both monotone (hence s as well). The former because the solutions of a system (see [3]) and f
are monotone, the latter because both um and the supremum are. Also notice that s is an extensive function, i.e., x � s(x) for 
all x. In fact, since s computes a (least) fixpoint we have that s(x) = um(s(x)) � x, and clearly x � um(s(x)) � x by definition 
of supremum. Furthermore, we can prove that s is compatible (with respect to h, i.e., s(h(x)) � h(s(x)) for all x), continuous, 
and strict, whenever um satisfies those conditions, respectively. First, if um is continuous, then so is g in both variables, 
since � is continuous. Then, since s(x) is the least fixpoint of gx , it is immediate that s is continuous as well. Recalling 
that s(x) = gα

x (⊥) for some ordinal α, both remaining properties can be proved by transfinite induction on gα
x (⊥) for 

every α. First we show that for all x, gα
h(x)(⊥) � h(s(x)) for every ordinal α (hence s(h(x)) � h(s(x))). For α = 0, we have 

g0
h(x)(⊥) = ⊥ � h(s(x)). For a successor ordinal α = β + 1, we have gβ+1

h(x) (⊥) = gh(x)(gβ

h(x)(⊥)), and by inductive hypothesis 
we know that gβ

h(x)(⊥) � h(s(x)). Then

gh(x)(gβ

h(x)(⊥))

� [since g is monotone]

gh(x)(h(s(x)))

= [by definition of g]

um(h(s(x))) � h(x)

= [by definition of h]
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um( fm(sol1,m−1(d(E, u)[xm := s(x)][ym := s2(x)]), s2(x))) � h(x)

� [by compatibility of u]

fm(u×(sol1,m−1(d(E, u)[xm := s(x)][ym := s2(x)]), s2(x))) � h(x)

Observe that um(s(z)) � s(z) = gz(s(z)) = um(s(z)) � z for all z. A similar reasoning applies to the other solutions as well, 
obtaining that

ui(soli(d(E, u)[xm := s(x)][ym := s2(x)])) � soli(d(E, u)[xm := s(x)][ym := s2(x)])
for all i ∈ m − 1. Therefore we have

fm(prdu(sol1,m−1(d(E, u)[xm := s(x)][ym := s2(x)]), s2(x))) � h(x)

� [since fm is monotone]

fm(sol1,m−1(d(E, u)[xm := s(x)][ym := s2(x)]), s2(x)) � h(x)

= [by definition of h]

h(s(x)) � h(x)

� [since h is monotone]

h(s(x) � x)

= [since s is extensive]

h(s(x))

And so we established that gβ+1
h(x) (⊥) � h(s(x)). For α limit ordinal, by inductive hypothesis we immediately have that 

gα
h(x)(⊥) = �

β<α
gβ

h(x)(⊥) � �h(s(x)) = h(s(x)). Now we show that gα⊥(⊥) = ⊥ for every ordinal α. For α = 0, we have 

g0⊥(⊥) = ⊥. For α = β + 1, by inductive hypothesis we have that gβ+1
⊥ (⊥) = g⊥(gβ

⊥(⊥)) = g⊥(⊥). And in turn, g⊥(⊥) =
um(⊥) �⊥ =⊥, since um is strict. For α limit ordinal, by inductive hypothesis we obtain that gα⊥(⊥) = �

β<α
gβ
⊥(⊥) =�⊥ =

⊥. Now we have two different cases depending on ηm .

• ηm = ν
In this case sol2m(d(E, u)) = hα(�) for some ordinal α. Here we show that actually s(hα(�)) = hα(�) for every or-
dinal α. Since as we mentioned above s is extensive, we just need to prove that s(hα(�)) � hα(�) for every ordinal 
α. We proceed by transfinite induction on α. For α = 0, we have s(h0(�)) � � = h0(�). If α is a successor ordinal 
β + 1, assuming the property holds for β , we show that s(hβ+1(�)) � hβ+1(�). Since h is monotone, by inductive 
hypothesis we have that h(s(hβ(�))) � h(hβ(�)) = hβ+1(�). Recalling that s(h(x)) � h(s(x)) for all x, we also have that 
s(hβ+1(�)) = s(h(hβ(�))) � h(s(hβ(�))). When α is a limit ordinal we have that hα(�) = �

β<α

hβ(�). Since s is mono-

tone, we have that s(hα(�)) = s(
�

β<α

hβ(�)) � �
β<α

s(hβ(�)). And since by inductive hypothesis s(hβ(�)) � hβ(�) for all 

β < α, we conclude also that 
�

β<α

s(hβ(�)) � �
β<α

hβ(�).

• ηm = μ
In this case sol2m(d(E, u)) = hα(⊥) for some ordinal α. Recall also that since ηm = μ, by hypothesis we know that um
is continuous and strict. In such case, as shown above, s is continuous and strict as well. Again, we already know that 
s is extensive, so we just prove by transfinite induction that s(hα(⊥)) � hα(⊥) for every ordinal α. For α = 0, we have 
s(h0(⊥)) = s(⊥) =⊥, since s is strict. If α is a successor ordinal β +1, assuming the property holds for β , we show that 
s(hβ+1(⊥)) � hβ+1(⊥). Since h is monotone, by inductive hypothesis we have that h(s(hβ(⊥))) � h(hβ(⊥)) = hβ+1(⊥). 
Recalling that s(h(x)) � h(s(x)) for all x, we also have that s(hβ+1(⊥)) = s(h(hβ(⊥))) � h(s(hβ(⊥))). When α is a limit 
ordinal we have that hα(⊥) = �

β<α
hβ(⊥). Since s is continuous, we have that s(hα(⊥)) = s(�

β<α
hβ(⊥)) = �

β<α
s(hβ(⊥)). 

And since by inductive hypothesis s(hβ(⊥)) � hβ(⊥) for all β < α, we conclude also that �
β<α

s(hβ(⊥)) � �
β<α

hβ(⊥).

So in both cases we have s(hα(�)) = hα(�) or s(hα(⊥)) = hα(⊥)), respectively, for every ordinal α. Consider the function 
h′(x) = fm(sol1,m−1(d(E, u)[xm := x][ym := x]), x). The previous fact implies that actually ηm(h′) = ηm(h) = sol2m(d(E, u)). 
Furthermore, for the same reason we have that s(sol2m(d(E, u))) = sol2m(d(E, u)). Since sol2m(d(E, u)) is the solution of 
xm and by definition of solution s(sol2m(d(E, u))) = solm(d(E, u)) is that of ym , this means that xm and ym have the same 
solution in d(E, u). So we can rewrite the solutions of xm and ym as ηm(h′), that is
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sol2m(d(E, u)) = solm(d(E, u)) = ηm(λx. fm(sol1,m−1(d(E, u)[xm := x][ym := x]), x)).

Now, observe that the system d(E, u)[xm := x][ym := x] is actually d(E[xm := x], u1,m−1). Therefore, since E[xm := x] has size 
m − 1, by inductive hypothesis we know that

sol1,m−1(d(E, u)[xm := x][ym := x]) = solm,2m−2(d(E, u)[xm := x][ym := x])
= sol(E[xm := x]).

Thus, substituting these solutions in those of xm and ym above, we obtain

sol2m(d(E, u)) = solm(d(E, u)) = ηm(λx. fm(sol(E[xm := x]), x))

which is also the definition of the solution of xm in E . Which means that sol2m(d(E, u)) = solm(d(E, u)) = solm(E). Then, the 
remaining solutions are

(sol1,m−1(d(E, u)), solm+1,2m−1(d(E, u)))

= sol(d(E, u)[xm := sol2m(d(E, u))][ym := solm(d(E, u))]) [by definition of solution]

= sol(d(E, u)[xm := solm(E)][ym := solm(E)])
= (sol(E[xm := solm(E)]), sol(E[xm := solm(E)])) [by inductive hypothesis]

= (sol1,m−1(E), sol1,m−1(E)) [by definition of solution]

This and the previous fact allow us to conclude that

sol(d(E, u)) = (sol1,m−1(E), solm(E), sol1,m−1(E), solm(E))

that is indeed sol(d(E, u)) = (sol(E), sol(E)). �
Appendix C. Proofs for Section 6 (Solving systems of equations via games)

Theorem 6.2 (correctness and completeness). Let E be a system of m equations over a complete lattice L of the kind x =η f (x) with 
solution s. For all b ∈ B L and i ∈ m, b � si iff ∃ has a winning strategy from position (b, i).

Proof. Define 〈α, γ 〉 : 2BL → L, by letting α(X) = � X for X ∈ 2BL and γ (l) = ↓l∩B L for l ∈ L. It is immediate to see 
that this is a Galois insertion: for all X ∈ 2BL we have X ⊆ γ (α(X)) = (↓� X) ∩ B L and, for l ∈ L we have l = α(γ (l)) =�(↓l∩B L).

Below we abuse the notation and write ↓ and � for the m-tuples where each function is ↓ and � applied componen-
twise, respectively.

((2B L )m,⊆) Lm

f C=↓ f �

α=� _

γ=↓ _∩BL

f

Define a “concrete” system x =η f C (x) where f C = γ × ◦ f ◦ α× : (2BL )m → (2BL )m . Then we can use Lemma A.5 to 
deduce that, if we denote by S C the solution of the concrete system and by s the solution of the original system, we have 
S C =↓s∩Bm

L .
Now, (2BL , ⊆) is an algebraic, hence continuous lattice. Therefore, by [3, Theorem 4.8], the lattice game for the “concrete” 

system on (2BL )m is sound and complete.
It is immediate to realise that, if we fix as basis for 2BL the set of singletons, this corresponds exactly to what we called 

here the powerset game. In fact, the game aims to show that {b} ⊆ SC
i = ↓si , for some b ∈ B L and i ∈ m, and this amounts 

to b � si . Positions of ∃ are pairs ({b}, i) where b ∈ B L and i ∈ m, and she has to play some tuples X ∈ (2BL )m such that 
{b} ⊆ f C

i (X) = ↓ fC (� X) which amounts to b � fC (� X). Positions of ∀ are tuples X ∈ (2BL )m and he chooses some j ∈ m
and b′ ∈ X j . This is exactly the powerset game, hence we conclude. �
Theorem 6.5 (game with selections). Let E be a system of m equations over a complete lattice L of the kind x =η f (x) with solution s, 
and let σ be a selection for E. For all b ∈ B L and i ∈ m, b � si iff ∃ has a winning strategy from position (b, i) in the game restricted to 
the selection σ .
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Proof. First, observe that if b �� si then by Theorem 6.2 we know that ∃ has no winning strategy from position (b, i) in the 
original, unrestricted, game, while ∀ would have one. Thus, since the restriction does not apply to the moves of ∀, such a 
winning strategy for ∀ is still a valid winning strategy also in the game restricted to the selection, and so, ∃ cannot have 
one.

Now, let b � si , hence by Theorem 6.2 ∃ has a winning strategy t from position (b, i) in the original game. We show 
that ∃ has a winning strategy in the game restricted to the selection σ , starting from every position (b′, i) such that b′ � b
(hence also from b itself) independently from the moves of ∀. In the original unrestricted game, ∃ from position (b, i) would 
play X = t(b, i) according to the winning strategy t . Since b′ � b, we know that X ∈ E(b, i) ⊆ E(b′, i), and thus by definition 
of selection there must exist Y ∈ σ(b′, i) such that Y �∧

H X . Now, we have two cases depending on X . If all components 
of X are empty, then also Y must be so, which means that player ∀ has no possible move and ∃ wins. Otherwise, for 
every move (b′′, j) of ∀, such that b′′ ∈ Y j �H X j , there must exist b′′′ ∈ X j such that b′′ � b′′′ . In the original game, this 
means that (b′′′, j) ∈ A(t(b, i)), and since ∃ is supposed to win playing according to t , then t must be a winning strategy 
also from position (b′′′, j). Having reached a situation analogous to the initial one, it is easy to see that the same reasoning 
can be repeated indefinitely, until ∃ wins or we obtain a pair of infinite plays, one in the original game and the other in the 
restricted game, such as the following

(b0, i0) → X0 → (b1, i1) → X1 → (b2, i2) → X2 → . . .

(b′
0, i0) → Y 0 → (b′

1, i1) → Y 1 → (b′
2, i2) → Y 2 → . . .

where (b0, i0) = (b, i), b′
0 = b′ , and for all k we have b′

k � bk and Xk = t(bk, ik) $∧
H Y k ∈ σ(b′

k, ik). Clearly the first play above 
is a play in the original unrestricted game where ∃ plays according to the strategy t , hence it must be won by ∃. The second 
play, instead, is clearly a play in the game restricted to the selection σ . Moreover, all the indices ik appearing along the two 
plays are the same, and so we can conclude that also the second play is won by ∃. �
Lemma 6.9 (finite moves). Let E be a system of m equations over a complete lattice L without infinite ascending chains. For every 
position (b, i) ∈ B L × m and move X ∈ E(b, i), there exists a finite move Y ∈ E(b, i) such that Y ⊆∧ X .

Proof. We prove a slightly stronger property, that is, for every set X ⊆ L there exists a finite subset Y ⊆ X such that � Y =� X . This immediately implies that for every position (b, i) ∈ B L × m and move X ∈ E(b, i), there must be a tuple 
(Y1, . . . , Ym) such that each Y j is a finite subset of X j and � Y j =� X j , hence Y ∈ E(b, i) and Y ⊆∧ X .

First, given X ⊆ L, observe that the set D = {� Y | Y ⊆ X ∧ Y finite} of the suprema of the finite subsets of X is directed. 
Moreover, � X =� D . In fact, X ⊆ D since for each x ∈ X , x =�{x}. Hence � X �� D . Conversely, � D �� X since for 
all d ∈ D , d =� Y for some Y ⊆ X and thus d =� Y �� X .

Now, take any d ∈ D . Then, either d = � D or d �� D . In the latter case there must be d′ ∈ D such that d′ �� d, 
and since D is directed, there must also be d′′ ∈ D such that d � d � d′ � d′′ . Since this argument can be repeated until a 
d̂ =� D is found, we can conclude that such a d̂ must be eventually found, otherwise we would obtain an infinite ascending 
chain d1 � d2 � . . ., contradicting the fact that L does not include any such chain. Finally, since every element of D is the 
supremum of some finite subset of X , there must be a finite Y ⊆ X whose supremum is � Y = d̂ =� D =� X . �
Proposition 6.10 (least selection). Let E be a system of m equations over a complete lattice L with finite height. Then, there exists a 
unique selection σ such that σ ⊆H σ ′ for all selections σ ′ .

Proof. Consider the function σ defined as follows. For every position (b, i) ∈ B L × m

σ(b, i) = {max X | finite X ∈ E(b, i) ∧ ∀Y ∈ E(b, i). ↓Y ⊆∧ ↓X ⇒↓Y =↓X}
i.e., the tuples of maximals w.r.t. � of finite moves, whose downward-closure w.r.t. � is minimal w.r.t. pointwise subset 
inclusion. Observe that we write max X to denote the tuple (M1, . . . , Mm) where each M j = {x ∈ X j | ∀x′ ∈ X j . x �� x′}. This 
is well-defined whenever, as required above, X is finite. We show that (i) σ is a selection, i.e., ↑H σ(b, i) = E(b, i), and (ii) 
for every selection σ ′ it holds σ ⊆H σ ′ and σ ′ ⊆H σ ⇒ σ ′ = σ .

(i). We have to show that ↑H σ(b, i) = E(b, i). First, it is easy to see that σ(b, i) ⊆ E(b, i), since clearly σ(b, i) ⊆ {max X |
finite X ∈ E(b, i)} and for every finite move X ∈ E(b, i) we have that �max X =� X , hence max X ∈ E(b, i) as well. Thus 
↑H σ(b, i) ⊆↑H E(b, i) = E(b, i) because the set of possible moves is upward-closed. In order to prove the converse inclusion, 
for every X ∈ E(b, i) we show that there exists Y ∈ σ(b, i) such that Y �∧

H X , thus X ∈ ↑H σ(b, i). By Lemma 6.9 we know 
that there exists a finite move X ′ ∈ E(b, i) such that X ′ ⊆∧ X , hence X ′ �∧

H X . Moreover, since X ′ is finite and L has 
no infinite descending chain (hence ↓X ′ is finite), there must exist a finite move X ′′ ∈ E(b, i), possibly X ′ itself, whose 
downward-closure ↓X ′′ is included in ↓X ′ and it is minimal w.r.t. ⊆∧ . Let Y = max X ′′ . Then, we have that Y ∈ σ(b, i) and 
Y �∧

H X ′ , since Y ⊆∧ ↓X ′′ ⊆∧ ↓X ′ ≡H X ′ . Now we can immediately conclude by transitivity that Y �∧
H X , since we already 

know that X ′ �∧ X .
H
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(ii). We first show that σ ⊆H σ ′ , i.e., for every selection σ ′ and every move X ∈ σ(b, i), there exists Y ∈ σ ′(b, i) such 
that X ⊆∧ Y . Note that since σ ′ is a selection, given X ∈ σ(b, i) ⊆ E(b, i) there must exist Y ∈ σ ′(b, i) such that Y �∧

H X . 
This implies that ↓Y ⊆∧ ↓X , since ↓Y ≡H Y �∧

H X ≡H ↓X and, by definition of �∧
H , ↓Y �∧

H ↓X implies ↓Y ⊆∧ ↓X . But 
then, by definition of σ , we must have ↓Y =↓X , and so we can conclude that X = max X = max Y ⊆∧ Y .

Now, assuming that σ ′ ⊆H σ , we prove that σ ′ = σ . First, observe that combining this assumption with what we just 
proved above, we have that σ ⊆H σ ′ ⊆H σ . Which means that for every X ∈ σ(b, i) there exist Y ∈ σ ′(b, i) and X ′ ∈ σ(b, i)
such that X ⊆∧ Y ⊆∧ X ′ . This immediately implies that ↓X ⊆∧ ↓Y ⊆∧ ↓X ′ , which, in turn, by definition of σ , means that 
↓X = ↓X ′ and thus X = max X = max X ′ = X ′ . Recalling that X ⊆∧ Y ⊆∧ X ′ , we deduce X = Y . And so we have that 
σ(b, i) ⊆ σ ′(b, i). We next prove the other inclusion σ ′(b, i) ⊆ σ(b, i). For every Y ∈ σ ′(b, i), since Y ∈ E(b, i) = ↑H σ(b, i), 
there must exist X ∈ σ(b, i) such that X �∧

H Y . Moreover, since σ ′ ⊆H σ , there must also be X ′ ∈ σ(b, i) such that X �∧
H

Y ⊆∧ X ′ . Then, by definition of �H , we have that ↓X ⊆∧ ↓Y ⊆∧ ↓X ′ . From this, reasoning as before, we obtain that 
X = X ′ = max X . Therefore, using the previous facts, we deduce that max X �∧

H Y ⊆∧ max X . Being all elements in each 
(max X) j incomparable, by definition of �∧

H we must have Y = max X = X . And so we conclude that σ ′(b, i) ⊆ σ(b, i). �
Appendix D. Proof for Section 7 (Local algorithm for solving the game)

Definition D.1 (sound forget). Whenever function Forget(�P , P , (C, k)) is invoked, it returns �′
P ⊆ �P such that for every 

decision (C ′, k′) ∈ �′
P , for every position C ′′ justifying that decision, there exists (C ′′, k′′) ∈ �′

P such that k′′ ≤P next(k′, i(C ′))
or there exists (C ′′, k′′) ∈ P � {(C, k)} such that k′′ <P next(k′, i(C ′)).

Lemma D.2 (assumptions and plays). Given a powerset game, whenever functions Explore(·, ·, ρ , , �) and Backtrack(·, ·, ρ , , �)

are invoked, for every player P , for all (C, k) ∈ P it holds (C, k, π) ∈ ρ for some π .

Proof. Easily proved by an inspection of the code. Initially, on the call Explore(C0, 0, [], (∅, ∅), (∅, ∅)), the property vac-
uously holds since both ∃ and ∀ are empty. Now, the only way that could make the property fail is by adding new 
assumptions or backtracking, hence shortening the playlist ρ . The only position in the code where new assumptions are 
added is in the function Explore. A new assumption (C, k′) is added only if (C, k′, π) ∈ ρ , for some π , thus the property 
still holds. On the other hand, the only place where the backtracking really happens, that is, ρ is effectively shorten, is 
at the end of the backtracking function, when Backtrack(P , C ′ , t , , �) is invoked. More precisely, the head (C ′, k′, π) is 
removed from the playlist ρ . However, before the aforementioned invocation, (C ′, k′) was already removed from P and 
from P , if it were in P . And so again the property still holds. �
Lemma 7.2 (termination). Given a powerset game on a finite lattice, any call Explore(C0 , 0, [], (∅, ∅), (∅, ∅)) terminates with an 
invocation of Backtrack(P , C0 , [], (∅, ∅), �) for some player P and a set �.

Proof. Consider the sequence σ of invocations to functions Explore and Backtrack in the order they happen, originating 
from a call Explore(C0, 0, [], (∅, ∅), (∅, ∅)). Let τ be the subsequence of σ obtained removing all calls to Backtrack. We 
show that such sequence is finite. First, since the lattice is finite, hence Pos is finite, the set of playlists ρ in the invocations 
in τ is also finite. Actually, this is not true in general for any set of playlists, but it holds for the set of lists we obtain during 
any computation. Indeed, this can be seen inductively, showing that every playlist ρ has length bounded by |Pos|. At the 
beginning we have the empty list [] which is clearly bounded by |Pos|. Then, by inspecting the code it can be seen that the 
only function which increases the size of ρ is Explore, and it happens only if the current position C , with counter k, is not 
already contained in ρ with a counter k′ such that k′ <P k for some player P . But whenever a position C already in ρ is 
encountered again it must be with a counter strictly larger for one of the players. The only case where this could possibly 
fail is when the subsequence of ρ between the two occurrences of C contains only positions with priority 0. But, as already 
mentioned, this cannot happen because players alternate during the game and only ∀ has positions with priority 0. Thus, 
every time a position recurs, the playlist is not extended any more. So, the size of the playlist is necessarily bounded by 
the size of Pos. Furthermore, the set of playlists of length bounded by |Pos| is finite because every π in them is bounded 
as well, since π ⊆ Pos, and the same happens for the counters k since they are computed starting from 0 and increased at 
most by 1 in some component only when the list is extended. Therefore, τ must contain only a finite number of different 
playlists ρ , possibly with repetitions. Now, in order to show that τ is finite, we define a partial order ≤ over the playlists 
in τ as follows, ∀ρ, ρ ′, ρ ′′, C, k, π, π ′:

• ρ ′ρ ≤ ρ
• if π � π ′ , then ρ ′′((C, k, π) :: ρ) ≤ ρ ′((C, k, π ′) :: ρ).

It is easy to see that such order is reflexive, antisymmetric, and transitive. Since the set of playlists in τ is finite, so is the 
corresponding poset with the given partial order. By an inspection of the code it can be seen that for every two playlists 
ρ, ρ ′ in consecutive invocations of Explore in τ , we have that ρ ′ < ρ , since:
33



P. Baldan, B. König and T. Padoan Information and Computation 301 (2024) 105233
• function Explore extends the playlist ρ until function Backtrack is invoked
• function Backtrack shortens the playlist ρ until it is empty or function Explore is invoked, after shortening the set of 

unexplored moves π in ρ .

So the playlists in τ form a strictly descending chain in a finite poset, thus τ must be finite. And this immediately proves 
that σ is finite as well, because otherwise from a certain point on we would have infinitely many calls to Backtrack only, 
which would shorten the playlist infinitely many times. And so we can conclude that any computation originating from a 
call Explore(C0, 0, [], (∅, ∅), (∅, ∅)) must terminate. Finally, since the only instruction returning a value (hence terminating 
the execution) is in the function Backtrack and it is reached only when ρ = [], then Backtrack(P , C , [], , �) must have 
been invoked on some P , C , , �. Furthermore, C = C0 because ρ = [] is the list of positions from the initial position C0 to 
the current node C .

We immediately conclude that  = (∅, ∅) by exploiting Lemma D.2. �
Lemma D.3 (backtracking position). Given a powerset game, whenever function Backtrack(P , C , ρ , , �) is invoked, it holds (C, k) ∈
�P ∪ P for some k.

Proof. Immediate by inspecting the invocations of Backtrack in the code. �
Lemma D.4 (uncontrolled decisions). Given a powerset game, whenever functions Explore(·, ·, ·, , �) and Backtrack(·, ·, ·, , �)

are invoked, for every player P , for all (C, k) ∈ �P , if P(C) �= P , then for all C ′ ∈ M(C) it holds (C ′, k′) ∈ �P ∪ P for some k′ .

Proof. By inspecting the code it is easy to see that every time we add a new decision (C, k) for a player P that is not the 
owner of C , either:

• M(C) = ∅, thus the property vacuously holds, or
• the procedure already explored all possible moves M(C) and they all became decisions or assumptions for P , since we 

are in the case where P(C) �= P and π = ∅.

Furthermore, such a decision (C, k) is justified by M(C). Therefore, if one of those moves were to be deleted from the 
assumptions or decisions of P at some point, the function Forget would delete (C, k) as well. �

For the next results we make use of powerset games suitably modified for a set of assumptions for a player. For a set S
of decisions or assumptions we denote by C(S) its first projection, that is, the set of positions appearing as first component 
in the elements of S .

Definition D.5 (game with assumptions). Given a powerset game G and a player P , the corresponding game with assumptions 
P is a parity game G(P ) obtained from G where for all C ∈ Pos, if C ∈ C(P ), then P(C) = P and M(C) = ∅, otherwise 
they are the same as in G .

Notice that when the set of assumptions is empty P = ∅, the modified game is the same of the original one.
Then, we define a kind of strategies based on decisions and assumptions for a player, which fit the modified games 

above. Such strategies are history-free partial strategies. Indeed they only prescribe moves from decisions.

Definition D.6 (strategy with assumptions). Let G be a powerset game. Given a player P , a strategy with assumptions P from 
decisions �P for P is a function sP : C(�P ∪ P ) → 2C(�P ∪P ) where for all C ∈ C(P ), sP (C) = ∅, and for all C ∈ C(�P ) �
C(P ), sP (C) is the set of positions, possibly empty, justifying the decision (C, min≤P {k | (C, k) ∈ �P }). Given a position 
C ∈ C(�P ), we denote by dP (C) = min≤P {k | (C, k) ∈ �P } the counter that was associated with C .

We say that the strategy sP is winning when it is winning in the modified game G(P ), that is, every play in G(P )

following sP starting from a position in C(�P ) is won by player P .

The definition above is well given since by Lemmas D.3 and D.4 we know that when we add a new decision justified 
by some other, those are already included in the decisions or assumptions for the same player. Moreover, notice that the 
minimum of {k | (C, k) ∈ �P } is guaranteed to be in the set itself because ≤P is a total order and the set is always finite 
and never empty since C ∈ C(�P ).

In the modified game G(P ), given the strategy sP with assumptions P from decisions �P , for each position C ∈ C(�P )

we can build a tree including all the plays starting from C where player P follows the strategy sP .

Definition D.7 (tree of plays). Let G be a powerset game. Given a player P and the strategy sP with assumptions P from 
decisions �P , for each position C ∈ C(�P ), the tree of the plays following sP starting from C is the tree τ C

sP
rooted in C , where 

every node C ′ in it has successors sP (C ′).
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Such trees can contain both finite and infinite paths. Finite complete paths terminate in assumptions or truths, infinite 
ones contain only decisions. By construction and definition of strategy with assumptions every node is either a decision or 
an assumption for P . More precisely, every inner node is a position in C(�P ), and every leaf corresponds to either a truth 
in �P or an assumption in P . It is easy to see that a tree τ C

sP
includes all the possible plays from C following sP since the 

successors of inner nodes owned by the opponent are all the possible moves from those positions (decisions controlled by 
the opponent are justified by all the possible opponent’s moves, Lemma D.4).

The trees defined above are all we need to show that a strategy with assumptions is winning. Indeed, it is enough to 
show that every complete path in each of those trees corresponds to a play won by the player. To this end, first we observe 
some key properties of the paths in the trees.

Lemma D.8 (priorities in strategy paths). Given a powerset game, whenever functions Explore(·, ·, ·, , �) and Backtrack(·, ·, ·, , 
�) are invoked, for every player P , given the strategy sP with assumptions P from decisions �P , for all Ĉ ∈ C(�P ), the tree of plays 
τ Ĉ

sP
satisfies the following properties

1. for every pair of inner nodes C, C ′ in τ Ĉ
sP

such that C ′ is a successor of C , it holds dP (C ′) ≤P next(dP (C), i(C))

2. for every non-empty inner path C1, . . . , Cn in τ Ĉ
sP

, if dP (C1) <P next(dP (Cn), i(Cn)), then P = ∃ iff ηh = ν , where h is the highest 
priority occurring along the path.

Proof. We prove the two properties separately.

1. Observe that we must have C ′ ∈ sP (C) by definition of τ Ĉ
sP

. This means that there exists a decision (C, dP (C)) ∈ �P

justified by the position C ′ . Then (C, dP (C)) must have been added by a call to Backtrack. By inspecting the code it is 
easy to see that we were backtracking either after adding a new decision (C ′, next(dP (C), i(C))) or because there was 
already a decision (C ′, k′) such that k′ ≤P next(dP (C), i(C)). Since dP (C ′) = min≤P {k | (C ′, k) ∈ �P }, in both cases we 
can immediately conclude that dP (C ′) ≤P next(dP (C), i(C)).

2. We assume that dP (C1) <P next(dP (Cn), i(Cn)) and P = ∃, and we prove that ηh = ν , where h is the highest prior-
ity occurring along the path. A dual reasoning holds for P = ∀. Let next j be a function that computes the counter 
after a subsequence of positions C1, . . . , C j in the path C1, . . . , Cn , for j ∈ n. The function is inductively defined by 
next j(k) = next(next j−1(k), i(C j)) for all j ∈ n, and next0(k) = k. The inductive computation just repeatedly applies the 
function next for each position encountered along the sequence starting from a given counter k. We observe that 
the function satisfies the property d∃(C j) ≤∃ next j−1(d∃(C1)) for all j ∈ n. We show this by induction on j. Clearly 
it holds for j = 1, since by definition next0(d∃(C1)) = d∃(C1). Then, assuming it holds for j, we prove it for j + 1. 
Since we know that next is monotone with respect to the input counter, by inductive hypothesis we obtain that 
next(d∃(C j), i(C j)) ≤P next(next j−1(d∃(C1)), i(C j)) = next j(d∃(C1)), where the last equality holds by definition of next j . 
Furthermore, we know that d∃(C j+1) ≤∃ next(d∃(C j), i(C j)) by (a) above, since C j+1 is a successor of C j . And so we 
can immediately deduce that indeed d∃(C j+1) ≤∃ next j(d∃(C1)). From this and the initial assumptions we have that 
d∃(C1) <∃ next(d∃(Cn), i(Cn)) ≤∃ nextn(d∃(C1)), where the last inequality holds by definition of nextn and monotonicity 
of next. Observe that since nextn just recursively applies the function next on the positions C1, . . . , Cn , the final result 
and the initial counter d∃(C1) can only differ on priorities among those of the positions C1, . . . , Cn and lower ones 
(which could have been zeroed). Therefore, the highest priority on which d∃(C1) and nextn(d∃(C1)) do not coincide 
must be the highest priority h appearing along the path. Furthermore, we must have d∃(C1)h < nextn(d∃(C1))h , because 
values can only increase or become zero, when a higher priority is encountered (and its value increased), but this would 
contradict the fact that h is the highest. Now we can easily conclude since by hypothesis d∃(C1) <∃ nextn(d∃(C1)), and 
so by definition of the order <∃ we must have that ηh = ν . �

We observe that winning strategies with assumptions are preserved by a sound function Forget after removing an 
assumption and the related decisions.

Lemma D.9 (strategies and forget). Given a powerset game, whenever Forget(�P , P , (C, k)) is invoked, returning �′
P , if the strategy 

with assumptions P from decisions �P is winning in the modified game with assumptions P , then the strategy with assumptions 
P � {(C, k)} from decisions �′

P is winning in the modified game with assumptions P � {(C, k)}.

Proof. It follows immediately from Definitions D.1 and D.6. �
Lemma D.10 (winning strategy from decisions). Given a powerset game, whenever functions Explore(·, ·, ·, , �) and Backtrack(·, 
·, ·, , �) are invoked, for every player P , the strategy with assumptions P from decisions �P is winning in the modified game with 
assumptions P .
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Proof. We prove this by induction on the sequence of functions calls. Initially, on the first call Explore(C , 0, [], (∅, ∅), 
(∅, ∅)), the property vacuously holds since �∃ = �∀ = ∅. Now, assuming that the property holds when a function is called, 
we show that it holds also on every invocation performed by such function.

Assume that the property holds when Explore(C , k, ρ , , �) is called. The only invocation where the property could 
possibly fail is Backtrack(P(C), C , ρ , , �) after (C, k) has been added to the decisions for P(C), when M(C) = ∅. However 
we can immediately see that P(C) wins from C since the opponent P(C) cannot move (the strategy is always winning from 
C ). On all the other calls the property is preserved since all decisions are unchanged and no assumption has been removed.

Assume that the property holds when Backtrack(P , C , ρ , , �) is called. There are only two invocations to check. 
Clearly the property is preserved on the first one, i.e., Explore(C ′′ , k′′ , ρ , , �), since all decisions and assumptions are 
unchanged. The second case is instead more complex. This is when the function Backtrack(P , C ′ , t , , �) is invoked. Let 
us analyse the strategy for one player at a time. First, consider the opponent P . Even though the assumption (C ′, k′) might 
have been removed from P , all decisions in �P depending on such assumption have been removed as well via the function
Forget(�P , P , (C ′, k′)). Let �′

P
be the remaining decisions. By Lemma D.9 we know that the strategy with assumptions 

P � {(C ′, k′)} from decisions �′
P

is winning as long as the strategy with assumptions P from decisions �P was winning. 
Then by inductive hypothesis the property still holds for P . Now we need to prove the property for player P as well. That 
is, the strategy sP with assumptions P � {(C ′, k′)} from decisions �P ∪ {(C ′, k′)} is winning in the modified game with 
assumptions P � {(C ′, k′)}. To do this we just need to show that for every position Ĉ ∈ C(�P ∪ {(C ′, k′)}), every complete 
path in the tree of plays τ Ĉ

sP
is a play won by P . First, recall that every finite complete path in τ Ĉ

sP
terminates in a position 

of an assumption or a truth. In both cases such a finite play is always won by P since in the modified game assumptions 
and truths correspond to positions owned by the opponent with no available moves. By inductive hypothesis we know that 
the strategy s′P with assumptions P from decisions �P was winning in the modified game with assumptions P . Notice 
that the two strategies can only differ on the position C ′ of the new decision (C ′, k′). It may be that s′P was not defined 
on C ′ , if there was no decision or assumption for such position before now. Anyway, this means that if C ′ never occurs 
along the path, then the play must be won by P since sP and s′P coincide on all the positions in the path and s′P was 
winning by inductive hypothesis. Therefore we just need to check those paths containing C ′ . If C ′ appears just finitely many 
times along the path, consider the subpath starting from the successor C ′′ of the last occurrence of C ′ . Such subpath does 
not contain C ′ and it is still infinite. Recalling that all positions in infinite paths must come from decisions and C ′′ �= C ′ , 
then the subpath must be one of the complete paths in the tree of plays τ C ′′

s′P
. Thus, by inductive hypothesis the subpath, 

as well as the initial one, must be a play won by P . Otherwise, C ′ appears infinitely many times along the path. Consider 
every subpath between two consecutive occurrences of C ′ , including only the first one. In such subpath let C ′′ �= C ′ be the 
last position, which is the predecessor of the second occurrence of C ′ . Observe that no decision (C ′, k) could have been 
added after exploring (C ′, k′) and before now, because we would necessarily have either k <P k′ or k <P k′ , thus satisfying 
the condition of the third if branch of function Explore, in which case the exploration would have stopped and (C ′, k)

would have never been added as a decision. Furthermore, any decision (C ′, k) added before exploring (C ′, k′) must be such 
that k′ < k, because otherwise the exploration would have stopped satisfying the second if branch of function Explore

and (C ′, k′) would have never been added as a decision. Therefore we must have dP (C ′) = k′ and, if C ′ ∈ C(�P ) � C(P )

hence s′P is defined on C ′ , dP (C ′) <P d′
P (C ′) since d′

P (C ′) is the minimum k among the decisions for C ′ added before 
(C ′, k′). Moreover, in the latter case, by Lemma D.8(a) we obtain that dP (C ′) <P d′

P (C ′) ≤P next(dP (C ′′), i(C ′′)) since C ′
succeeds C ′′ . If instead C ′ /∈ C(�P ) �C(P ), then we must have that (C ′, k′) ∈ P , since C ′ ∈ sP (C ′′) = s′P (C ′′) ⊆ C(�P ∪P )

and C ′ ∈ C(�P ∪ {(C ′, k′)}) � C(P � {(C ′, k′)}) because sP (C ′) �= ∅. In fact, by inspecting the code it can be seen that C ′
must have been added as an assumption after exploring C ′′ , which then became a decision (C ′′, dP (C ′′)), and it must have 
held k′ <P next(dP (C ′′), i(C ′′)) as required by the third if branch in the function Explore. Thus, in both cases we have 
k′ = dP (C ′) <P next(dP (C ′′), i(C ′′)). And so by Lemma D.8(b) we know that P = ∃ iff ηh = ν , where h is the highest priority 
appearing along the subpath. For now assume P = ∃. Since this holds for all subpaths between two consecutive occurrences 
of C ′ , and there are infinitely many of them, which sequenced form the initial infinite path, then there must exist a priority 
h such that ηh = ν and it is the highest priority appearing infinitely many times along the complete path. A dual reasoning 
holds for P = ∀. Recalling that an infinite play is won by player ∃ (resp. ∀) if the highest priority h ∈ m appearing infinitely 
often is such that ηh = ν (resp. μ), we deduce that the path is won by P , whoever P is. And so we conclude that sP is 
indeed winning in the modified game with assumptions P � {(C ′, k′)}. �

Now we can finally present the correctness result.

Theorem 7.3 (correctness). Given a powerset game, if a call Explore(C , 0, [], (∅, ∅), (∅, ∅)) returns a player P , then P wins the game 
from C.

Proof. Assume that the call Explore(C , 0, [], (∅, ∅), (∅, ∅)) returns some player P . Since the only instruction returning a 
value is in the function Backtrack and it is reached only when ρ = [], then Backtrack(P , C ′ , [], , �) must have been 
invoked for some  and �. Furthermore, C ′ = C because ρ = [] is the list of positions from the initial one C to the current 
node C ′ . Also, by Lemma D.2 we have that P = ∅. Thus, by Lemma D.3 we have that (C, k) ∈ �P for some counter k. 
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And so by Lemma D.10 we can immediately conclude that P wins the game from C , since the modified game with no 
assumptions coincides with the original one. �
Theorem 7.5 (correctness with up-to). Let E be a system of m equations of the kind x =η f (x) over a complete lattice L. Let u be a 
compatible m-tuple of up-to functions for E. Then the up-to algorithm associated with the system d(E, u) as given in Definition 7.4 is 
correct, i.e., if a call Explore(C , 0, [], (∅, ∅), (∅, ∅)) returns a player P , then P wins the game from C.

Proof. Let G be the powerset game associated with the initial system E , Gu be the one associated with the modified system 
d(E, u), and G ′

u be the game obtained from Gu by restricting the moves of player ∃ from positions associated with variables 
yi to only those satisfying either condition (1) or (2). Observe that the moves from every position controlled by player ∃ of 
G are included in the moves from the corresponding position in G ′

u since they satisfy condition (1), since in E there are no 
up-to functions. Therefore, every winning strategy for ∃ in G can be easily converted into a winning strategy for the same 
player in G ′

u . So the winning positions of player ∃ in G are necessarily included in those of G ′
u . Furthermore, the same 

clearly happens between G ′
u and Gu since the moves of ∃ in G ′

u are defined as a restriction of those in Gu . Then, calling 
W∃(G) the set of winning positions of player ∃ in the corresponding G , we have that W∃(G) ⊆ W∃(G ′

u) ⊆ W∃(Gu) = W∃(G), 
where the last equality holds by Theorem 5.11. Since in our case every position not winning for ∃ is necessarily winning for 
∀, this means that even if we restrict certain moves of player ∃, thus playing in the game G ′

u , we still have the same exact 
winning positions for both players. �
Data availability

No data was used for the research described in the article.

References

[1] Samson Abramsky, Achim Jung, Domain theory, in: Samson Abramsky, Dov Gabbay, Thomas Stephen Edward Maibaum (Eds.), Handbook of Logic in 
Computer Science, Oxford University Press, 1994, pp. 1–168.

[2] André Arnold, Damian Niwinski, Pawel Parys, A quasi-polynomial black-box algorithm for fixed point evaluation, in: Proc. of CSL’21, in: LIPIcs, vol. 183, 
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 9:1–9:23.

[3] Paolo Baldan, Barbara König, Christina Mika-Michalski, Tommaso Padoan, Fixpoint games on continuous lattices, in: Stephanie Weirich (Ed.), Proc. of 
POPL’19, vol. 3, ACM, 2019, pp. 26:1–26:29.

[4] Paolo Baldan, Barbara König, Tommaso Padoan, Abstraction, up-to techniques and games for systems of fixpoint equations, in: Proc. of CONCUR’20, in: 
LIPIcs, vol. 171, Schloss Dagstuhl – Leibniz Center for Informatics, 2020, pp. 25:1–25:20.

[5] Gourinath Banda, John P. Gallagher, Constraint-based abstract semantics for temporal logic: a direct approach to design and implementation, in: 
Edmund M. Clarke, Andrei Voronkov (Eds.), LPAR 2010, in: Lecture Notes in Computer Science, vol. 6355, Springer, 2010, pp. 27–45.

[6] Andrea Bianco, Luca de Alfaro, Model checking of probabalistic and nondeterministic systems, in: Proc. of FSTTCS’95, in: Lecture Notes in Computer 
Science, vol. 1026, Springer, 1995, pp. 499–513.

[7] Filippo Bonchi, Pierre Ganty, Roberto Giacobazzi, Dusko Pavlovic, Sound up-to techniques and complete abstract domains, in: Proc. of LICS’18, ACM, 
2018, pp. 175–184.
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