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We continue our investigation aimed at spotting small fragments of Set Theory (in this 
paper, sublanguages of Boolean Set Theory) that might be of use in automated proof-
checkers based on the set-theoretic formalism. Here we propose a method that leads to a 
cubic-time satisfiability decision test for the language involving, besides variables intended 
to range over the von Neumann set-universe, the Boolean operator ∪ and the logical 
relators = and �=. It can be seen that the dual language involving the Boolean operator 
∩ and, again, the relators = and �=, also admits a cubic-time satisfiability decision test; 
noticeably, the same algorithm can be used for both languages. Suitable pre-processing 
can reduce richer Boolean languages to the said two fragments, so that the same cubic 
satisfiability test can be used to treat the relators ⊆ and �, and the predicates ‘ = ∅’ 
and ‘Disj( , )’, meaning ‘the argument is empty’ and ‘the arguments are disjoint sets’, 
along with their opposites ‘ �= ∅’ and ‘¬Disj( , )’. Those richer languages are ‘polynomial 
maximal’, in the sense that each language strictly containing either of them and whose 
formulae are conjunctions of literals has an NP-hard satisfiability problem.
A generalized version of the two said satisfiability tests can treat the relator �⊂, though at 
the price of a worsening of the algorithmic complexity (from cubic to quintic time).

© 2023 Elsevier B.V. All rights reserved.

0. Introduction

The field named Computable Set Theory [5] pursued, with long-standing efforts, languages reconciling ease of symbolic 
manipulation with high expressive power, so that an armory of reasoning tools—foremost, satisfiability testers for unquan-
tified fragments of theories concerning sets and classes—could shape a friendly proof-development environment.

Long before the envisaged proof-verifier ÆtnaNova [17] came into being, a foundational quest aimed at carefully drawing 
the frontier between the decidable and the undecidable in set theory sparked interest in the field [15]. The unquantified 
set-theoretic language called Multi-Level Syllogistic (MLS for short) and some extensions of it [11], whose satisfiability 
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Table 1
Complexity of the analyzed fragments: in each row, markers occur in correspondence of the operators/relators of the language. The polynomial-
maximal fragments of BST bear the marker ∗ instead of � (cf. [4] and Remark 3); the symbol � is circled in the two fragments which lie at 
the core of this paper.

∪ ∩ =∅ �=∅ Disj ¬Disj ⊆ � = �= ⊂ �⊂ Complexity Section

©� ©� ©� O(n3) 2

� � � � � � � � O(n3) 3

©� ©� ©� O(n3) 2

� � � � � � � � � O(n3) 3

� � � O(n5) 4.2∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ O(n5) 4.4

� � � O(n5) 4.3∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ O(n5) 4.4

problems were shown to be NP-complete in [7], foreran that quest. In recent years we undertook a related investigation, 
aimed at spotting fragments of MLS endowed with low-degree polynomial-time satisfiability tests, which hence promise 
to be useful in set-based proof technology. In [4], we reported about the complexity taxonomy of all sublanguages of the 
so-called Boolean Set Theory (BST for short); here we treat in detail two core fragments, or ‘theories’, in that taxonomy 
and produce cubic-time tests for their satisfiability problems. Specifically, we will study two languages, consisting of all 
nonempty conjunctions of literals of the two forms

(=) x1 � · · · � xh = y1 � · · · � yk

(�=) u1 � · · · � um �= v1 � · · · � v p,

where h, k, m, p � 1 hold, � stands for a fixed dyadic set operation, and x’s, y’s, u’s, v ’s stand for set variables.∥∥∥∥ By instantiating � as ∪, we obtain the fragment BST(∪,=, �=); by instantiating it as ∩, we obtain the fragment 
BST(∩,=, �=).

The paper is organized as follows. In Section 1, we introduce an equivalence relation ∼ϕ between nonempty subsets of 
the set of variables occurring in a formula ϕ of either fragment and elicit some of its key properties. Then, in Section 2, 
we present our main decidability results together with a cubic-time satisfiability test, stressing the commonalities between 
the two decidable theories. In Section 3, we discuss how to adapt the proposed tests to richer sublanguages of BST , while 
preserving the cubic complexity. Section 4 offers two variants of the satisfiability tests for BST(∪,=, �=) and BST(∩,=, �=): 
those can handle the negated strict inclusion relator �⊂ and have much in common with their counterpart tests just men-
tioned. As regards expressive power, it is shown that one of the new fragments, BST(∪, �⊂, �=), extends BST(∪,=, �=), while 
the other, BST(∩, �⊂, �=), extends BST(∩,=, �=); as regards the algorithmic complexity of the satisfiability tests, they perform 
worse than their counterparts, due to the disjunction implicit in �⊂ (to wit, x �⊂ y ⇐⇒ (x � y ∨ x = y)) which pushes the 
time complexity up from O(n3) to O(n5). Then we draw conclusions.

An orthogonal view of the content of this paper is provided in Table 1, summarizing the complexity results to be 
discussed. In that table:

• The four fragments shown at the top, and the complexity of their satisfiability tester, were briefly discussed in [3], which 
however did not explain the estimated complexity (as will be done here) — actually, the complexity of the tester for the 
third fragment was then overestimated.

• The four fragments shown at the bottom are new, because they do not belong to the BST family: they involve, in 
fact, the strict inclusion relator which, in earlier papers of this series, could at best be emulated via a disjunction. Here, 
instead, they are regarded as primitive constructs and are treated by an entirely ad hoc approach.

A detailed comparison with the results concerning MST (see [6]) would make little sense, because membership is a 
construct available in all fragments of the MST family, but is not expressible in the purely Boolean view underlying this 
work as well as [3].

Although the views underlying this paper and [6] differ from one another, we made an effort to exploit the same 
semantics for the respective languages. This uniformity goal forced us to refer the semantics to a universe of nested sets; in 
the light of Lemma 2 of [3], though, we could have insisted without loss of generality that the elements of the sets assigned 
as values to the variables of a formula must all have the same rank. But then it would be an easy matter to replace the 
elements of such sets by memberless individuals (sometimes called ‘atoms’ or ‘urelements’) — concerning this, also see 
footnote 1 below.
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1. The equivalence relation ∼ϕ and the ∼ϕ -closure operator

Any given formula ϕ of BST(�,=, �=) can be represented by two sets:

�=
ϕ :=

{{{x1, · · · , xh}, {y1, · · · , yk}
} | x1 � · · · � xh = y1 � · · · � yk is in ϕ

}
,

� �=
ϕ :=

{{{u1, · · · , um}, {v1, · · · , v p}} | u1 � · · · � um �= v1 � · · · � v p is in ϕ
}
.

A central role will be played by the following relation ∼ϕ on P+(Vars(ϕ)), where Vars(ϕ) is defined to be the collection 
of all variables occurring in ϕ , and P+(S) := P(S) \ {∅} for any set S . Specifically, ∼ϕ is the intersection—hence the 
inclusion-minimal—of all equivalence relations ∼ on P+(Vars(ϕ)) that satisfy the following closure conditions:

(Cl1) �=
ϕ ⊆ ∼,

(Cl2) if A ∼ B , then A ∪ C ∼ B ∪ C , for all A, B, C ∈ P+(Vars(ϕ)).

We will in fact prove (see Theorems 1 and 2 below), for any ϕ in BST(�, =, �=), that ϕ is satisfiable if and only if 
{u1, . . . , um} �ϕ {v1, . . . , v p} holds for every literal of the form (�=) in ϕ . We will exploit a useful closure operator to test 
conditions of the form Z1 �ϕ Z2. Specifically, we will prove that the set

∼
Z :=∪{W | W ∼ϕ Z},

called the ∼ϕ -closure of Z (or, more simply, the closure of Z , when the relation ∼ϕ is understood), is the largest set ∼ϕ -

equivalent to Z and then will provide a quadratic algorithm for computing it. Accordingly, a set Z such that ∼
Z = Z will be 

said to be ∼ϕ -closed or just closed.

Lemma 1. Let Z ∈ P+(Vars(ϕ)). Then the closure ∼Z of Z , namely the set ∪ {W | W ∼ϕ Z}, is the largest subset of Vars(ϕ) that is 
∼ϕ -equivalent to Z .

Proof. Let W1, W2 be such that W1 ∼ϕ Z and W2 ∼ϕ Z . By applying (Cl2) twice, we have: W1 ∪ W2 ∼ϕ Z ∪ W2 ∼ϕ Z . In 
view of the finiteness of {W | W ∼ϕ Z}, by induction it follows that(∪{W | W ∼ϕ Z}

)
∼ϕ Z .

Since, for every W ′ such that W ′ ∼ϕ Z , we plainly have W ′ ⊆ ∪{W | W ∼ϕ Z}, we may conclude that ∪{W | W ∼ϕ Z}
is the largest set in P+(Vars(ϕ)) that is ∼ϕ -equivalent to Z . �

The equivalence relation ∼ϕ captures which equalities among terms must be true in every model, if any, of a given 
formula ϕ: this will be shown in Lemma 2.

A set assignment M is any function sending a collection dom(M) of set variables into the von Neumann universe1 V :=∪α∈OnVα of all sets, resulting from the union of the levels Vα := ∪β<α P(Vβ), with α ranging over the class On of all 
ordinal numbers, where P( ) is the powerset operator.

Recursive designation rules attach a value to each compound term and to each literal in BST(�,=, �=) that only involve 
variables belonging to dom(M):

M(σ � τ ) := M σ � M τ ;

M(σ = τ ) :=
{

true if M σ = M τ ,

false otherwise;

M(σ �= τ ) := ¬M(σ = τ ) .

Then we put, for conjunctions of literals 	i :

M(	1 ∧ · · · ∧ 	k) := M	1 ∧ · · · ∧ M	k

when Vars(	i) ⊆ dom(M), for i = 1, . . . , k.

1 Notice that a universe formed by subsets of an infinite collection of individuals (namely, entities devoid of elements that differ from the empty set) 
would also be adequate for the needs of this paper; here V is adopted as the standard interpretation domain in order to have a uniform semantics for the 
languages BST and MST , both treated in this series of papers.
3
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Given a conjunction ϕ and a set assignment M such that Vars(ϕ) ⊆ dom(M), we say that M satisfies ϕ , and write M |= ϕ , 
if Mϕ = true. When M satisfies ϕ , we also say that M is a model of ϕ .

A conjunction ϕ is said to be satisfiable if it has some model, else unsatisfiable.∥∥∥∥∥∥∥∥∥∥∥

For convenience, in what follows we will use the shortening notations
M {x1, . . . , xk} := {M x1, . . . , M xk} ,

�{x1, . . . , xk} := x1 � · · · � xk ,

�{s1, . . . , sk} := s1 � · · · � sk ,

where M represents a set assignment, x1, . . . , xk and s1, . . . , sk denote variables and sets, respectively, and the �’s stand 
for alike symbols/operations ‘∪’ or ‘∩’.

Lemma 2. Let ϕ be any formula in BST(�,=, �=), and let M be any set assignment over Vars(ϕ) satisfying ϕ . Then

Z1 ∼ϕ Z2 =⇒ �M Z1 = �M Z2,

for all Z1, Z2 ∈ P+(Vars(ϕ)).

Proof. In view of the inclusion-minimality of ∼ϕ , it suffices to prove that the equivalence relation ∼M over P+(Vars(ϕ))

defined by

Z1 ∼M Z2
Def.⇐=⇒ �M Z1 = �M Z2

satisfies the closure conditions (Cl1) and (Cl2).
Concerning (Cl1), if {L, R} ∈ �=

ϕ then �ML =�M R; so L ∼M R holds, proving �=
ϕ ⊆ ∼M .

As for (Cl2), let A ∼M B and C ⊆ Vars(ϕ). Then �M A =�M B , and therefore

�M(A ∪ C) = (�M A) � (�MC) = (�M B) � (�MC) =�M(B ∪ C),

from which A ∪ C ∼M B ∪ C follows. �
We next prove the following key property, which will be used in the correctness proof of our fast algorithm presented 

in Section 2.1 for computing ∼ϕ -closures.

Lemma 3. Given a BST(�,=, �=)-formula ϕ , let Z ∈ P+(Vars(ϕ)) be such that

L ⊆ Z ⇐⇒ R ⊆ Z , for every {L, R} ∈ �=
ϕ . (1)

Then, for all W1, W2 ∈ P+(Vars(ϕ)) such that W1 ∼ϕ W2 , we have

W1 ⊆ Z ⇐⇒ W2 ⊆ Z . (2)

Proof. Let ϕ and Z be as in the hypothesis. In view of the ⊆-minimality of ∼ϕ , it suffices to prove that the equivalence 
relation over P+(Vars(ϕ)) defined by

W1 ∼Z W2
Def.⇐=⇒ (

W1 ⊆ Z ⇐⇒ W2 ⊆ Z
)

(3)

satisfies the closure conditions (Cl1) and (Cl2).
As for (Cl1), just from the hypothesis it follows that L ∼Z R , for every {L, R} ∈ �=

ϕ . Concerning (Cl2), let A ∼Z B and 
C ⊆ Vars(ϕ), and assume that A ∪ C ⊆ Z . Then, A ⊆ Z and C ⊆ Z , so that by (3) we have B ∪ C ⊆ Z . Symmetrically, it can 
be shown that B ∪ C ⊆ Z implies A ∪ C ⊆ Z . Hence,

A ∪ C ⊆ Z ⇐⇒ B ∪ C ⊆ Z

holds and, by (3), we readily have A ∪ C ∼Z B ∪ C . The arbitrariness of A, B , and C yields that even the closure condition 
(Cl2) holds for ∼Z .

Finally, from the ⊆-minimality of ∼ϕ , we get ∼ϕ ⊆ ∼Z . Therefore, if W1 ∼ϕ W2, then W1 ∼Z W2, which by (3) implies 
W1 ⊆ Z ⇐⇒ W2 ⊆ Z . �

Further useful properties of the ∼ϕ -closure operator and of the equivalence relation ∼ϕ are reported in the following 
lemma.

Lemma 4. Let Z , Z1, Z2 ∈ P+(Vars(ϕ)). Then
4
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(a) Z ⊆ ∼
Z and Z ∼ϕ

∼
Z ; [Extensivity]

(b)
∼
Z = ∼∼

Z ; [Idempotency]
(c) if Z1 ∼ϕ

∼
Z 2 , then Z1 ⊆ ∼

Z 2;

(d) Z1 ∼ϕ Z2 if and only if ∼Z 1 = ∼
Z 2; [Representativity]

(e) if Z1 ⊆ Z2 , then ∼Z 1 ⊆ ∼
Z 2; [Monotonicity]

(f) Z1 ⊆ ∼
Z 2 if and only if ∼Z 1 ⊆ ∼

Z 2;
(g) if Z1 ⊆ Z or Z2 ⊆ Z holds and Z1 ∼ϕ Z2 , then Z ∼ϕ Z ∪ Z1 ∪ Z2 .

Proof. Property (a) follows directly from Lemma 1.

Concerning (b): the transitivity of ∼ϕ yields 
∼∼
Z ∼ϕ Z so that, by the definition of ∼

Z , 
∼∼
Z ⊆ ∼

Z holds. By (a) we have ∼
Z ⊆ ∼∼

Z , 

therefore ∼
Z = ∼∼

Z .

As for (c), if Z1 ∼ϕ
∼
Z 2, then Z1 ⊆ ∼∼

Z 2 = ∼
Z 2.

Concerning (d), if Z1 ∼ϕ Z2, then the transitivity of ∼ϕ yields ∼
Z 1 ∼ϕ

∼
Z 2. Thus, by (c), we get ∼

Z 1 = ∼
Z 2. Conversely if 

∼
Z 1 = ∼

Z 2, then ∼
Z 1 ∼ϕ

∼
Z 2, thus by transitivity Z1 ∼ϕ Z2 holds.

Regarding (e), let Z1 ⊆ Z2. Since by (a) Z2 ⊆ ∼
Z 2 and Z1 ∼ϕ

∼
Z 1 hold, by (Cl2) we have

∼
Z 2 = Z1 ∪ (

∼
Z 2 \ Z1) ∼ϕ

∼
Z 1 ∪ (

∼
Z 2 \ Z1) = ∼

Z 1 ∪ ∼
Z 2 .

Thus, by (c), we get the inclusion ∼
Z 1 ∪ ∼

Z 2 ⊆ ∼
Z 2, and therefore ∼

Z 1 ⊆ ∼
Z 2.

Concerning (f), if Z1 ⊆ ∼
Z 2, then by (e) and (b) we have ∼

Z 1 ⊆ ∼∼
Z 2 = ∼

Z 2. Conversely, if ∼
Z 1 ⊆ ∼

Z 2, then by (a) we have 
Z1 ⊆ ∼

Z 1 ⊆ ∼
Z 2.

Finally, as for (g), suppose that we have Z1 ∼ϕ Z2 and either Z1 ⊆ Z or Z2 ⊆ Z holds. By (Cl2), we have Z ∪ Z1 ∼ϕ Z ∪ Z2. 
But {Z ∪ Z1, Z ∪ Z2} = {Z , Z ∪ Z1 ∪ Z2}, hence Z ∼ϕ Z ∪ Z1 ∪ Z2 follows. �

Notice that the properties of the closure operator ∼
in Lemmas 1 and 4 depend solely on the closure condition (Cl2).

2. Satisfiability in BST(∪,=, �=) and in BST(∩,=, �=)

Below we will present a necessary condition that also suffices to ensure that a given formula in either BST(∪,=, �=) or 
BST(∩,=, �=) is satisfiable. Noticeably, this condition is essentially the same for both languages, so that the same algorithm 
can be used to test formulae of either language for satisfiability.

Theorem 1. Let ϕ be a BST(∪, =, �=)-formula. Then ϕ is satisfiable if and only if L �ϕ R (namely ∼L �= ∼
R) holds for every literal of the 

form ∪L �= ∪R in ϕ .

Proof. (Necessity.) Let M be a model for ϕ . By way of contradiction, assume that there exists a literal ∪L �= ∪R such that 
L ∼ϕ R . Then by Lemma 2 we would have ∪ ML = ∪ M R , a contradiction. Therefore for all literals ∪L �= ∪R we must 
have L �ϕ R , completing the necessity part of the proof.

(Sufficiency.) Next, let us assume that, for each {L, R} ∈ �
�=
ϕ , we have L �ϕ R . We will construct a set assignment M that 

satisfies ϕ .
Let us assign a nonempty set b ∼

V
to each ∼

V such that V ∈ ∪�
�=
ϕ in such a way that the b ∼

V
’s are pairwise distinct.2 Then 

we define the set assignment M over Vars(ϕ) by putting, for each x ∈ Vars(ϕ),

Mx := {b∼
V

| x /∈ ∼
V and V ∈∪� �=

ϕ },
so that we have

∪MU := {b∼
V

| U �
∼
V and V ∈∪� �=

ϕ }, (4)

for every U ⊆ Vars(ϕ).
We first show that ∪ ML = ∪ M R holds whenever {L, R} ∈ �=

ϕ . Thus, let {L, R} ∈ �=
ϕ and let b ∼

V
∈ ∪ ML, for some 

V ∈ �
�=
ϕ such that L � ∼

V . Then ∼L �
∼
V , by Lemma 4(f). Since {L, R} ∈ �=

ϕ , then by (Cl1) we have L ∼ϕ R , so that, by (d) and

(f) of Lemma 4, R � ∼
V follows. Hence b ∼

V
∈ ∪ M R , and by the arbitrariness of b ∼

V
we have ∪ ML ⊆ ∪ M R .

2 For definiteness, such b ∼
V

’s can be drawn from the collection {{∅}, {{∅}}, {{{∅}}}, . . .} of Zermelo’s non-zero numerals. (Incidentally, this shows that 
each variable occurring in a satisfiable formula could be interpreted as a set of non-zero numerals). Alternatively—in a semantics devoid of nested sets (see 
footnote 1)—, the entities b ∼ could be drawn from a collection of individuals.
V
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Analogously one can prove ∪ M R ⊆ ∪ ML, so ∪ ML = ∪ M R holds, as we intended to show.
Next we prove that ∪ ML �= ∪ M R holds, whenever {L, R} ∈ �

�=
ϕ . Thus, let {L, R} ∈ �

�=
ϕ , so that by our assumption we 

have L �ϕ R . Hence, by Lemma 4(d), ∼
L �= ∼

R . W.l.o.g., let us assume that ∼
L �

∼
R . Since R ⊆ ∼

R (by Lemma 4(a)) and plainly 
R ∈ ∪�

�=
ϕ , then b∼

R
/∈ ∪ M R , by (4). On the other hand, by Lemma 4(f), L � ∼

R , hence b∼
R

∈ ∪ ML, again by (4), and therefore 
∪ ML �= ∪ M R , concluding the proof of the theorem. �
Example 1. As will turn out, the BST(∪,=, �=)-formula

x = y ∪ z ∧ z ∪ w = k ∪ h ∧ x ∪ w �= y ∪ z, (†)

is satisfiable and a satisfying model can be constructed by our technique.
Let L := {x, w} and R := {y, z}. By Theorem 1, the above formula is satisfiable if and only if ∼

L �= ∼
R . Since ∼

L =
{x, y, z, w, k, h} while ∼

R = {x, y, z}, they indeed are different, which shows that the above formula is satisfiable.
In order to find a set assignment satisfying (†), we can follow the proof of Theorem 1. Let a, b be any two different sets, 

for example a = {{∅}} and b = {∅, {∅}}. Assign a and b to ∼L and ∼R , respectively. By the procedure discussed within the proof 
of Theorem 1, we obtain the following set assignment M:

Mx = M y = Mz := ∅, M w = Mh = Mk = {b}.
To see that M duly models (†), observe that:

Mx = ∅ = M y ∪ Mz ,

Mz ∪ M w = {b} = Mh ∪ Mk ,

Mx ∪ M w = {b} �= ∅ = M y ∪ Mz . �

The following result, analogous to Theorem 1, is proved by means of an argument dual to the one used above:

Theorem 2. Let ϕ be a BST(∩,=, �=)-formula. Then ϕ is satisfiable if and only if L �ϕ R (namely ∼L �= ∼
R) holds for every literal of the 

form ∩ L �= ∩ R in ϕ .

2.1. A cubic-time satisfiability test for BST(∪,=, �=) and for BST(∩,=, �=)

Theorems 1 and 2 imply that any BST(�,=, �=)-formula ϕ , where � ∈ {∪, ∩}, is satisfiable if and only if ∼L �= ∼
R holds for 

every literal �L �=�R in ϕ . Hence, they yield straight decision procedures for both of the theories BST(�,=, �=).
The next step will then be to provide a quadratic algorithm for computing the closure ∼

Z of any input Z ∈ P+(Vars(ϕ)), 
namely, the largest set in P+(Vars(ϕ)) which is ∼ϕ -equivalent to Z .

In Algorithm 1 below, we provide a high-level specification of the function Closure, intended to compute the closure ∼
Z

of any given Z ∈ P+(Vars(ϕ)), for a BST(�,=, �=)-formula ϕ . After proving its correctness, we will illustrate a lower-level 
implementation whose time complexity is quadratic (as opposed to the cubic-time complexity which would ensue from a 
naive implementation).

Algorithm 1 Satisfiability tester.

Require: A BST(�,=, �=)-formula ϕ represented by the sets of pairs �=
ϕ and � �=

ϕ .
Ensure: Is ϕ satisfiable ?

1: for each {L, R} in � �=
ϕ do

2: if Closure(L,�=
ϕ ) = Closure(R ,�=

ϕ ) then
3: return false;
4: return true;

1: function Closure(Z ,�=
ϕ )

Input: a set Z and the set �=
ϕ

Output: the ∼ϕ -closure Z of Z
2: Z ← Z ;
3: while there exists {L, R} ∈ �=

ϕ such that L ⊆Z ⇐⇒ R �Z do
4: Z ←Z ∪ L ∪ R;
5: returnZ;

We can now prove quite easily the correctness of the function Closure.
6
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Lemma 5. The function Closure computes closures correctly.

Proof. Given a BST(�,=, �=)-formula ϕ , with input a set Z ⊆ Vars(ϕ) and the collection �=
ϕ , the while-loop of the function

Closure plainly terminates within a number k � |�=
ϕ | of iterations. Let Zi be the value of the variable Z after i iterations, 

so that Z0 = Z . Preliminarily, we prove by induction on i = 0, 1, . . . , k that Zi ∼ϕ Z and Z ⊆Zi .
The base case i = 0 is trivial.
Next, let {L, R} ∈ �=

ϕ be the pair selected by the while-loop during its i-th iteration, with i � 1. Hence, we have:

L ∼ϕ R, L ⊆Zi−1 ⇐⇒ R �Zi−1, and Zi =Zi−1 ∪ L ∪ R.

Thus, by inductive hypothesis and Lemma 4(g), we have

Z ∼ϕ Zi−1 ∼ϕ Zi−1 ∪ L ∪ R =Zi and Zi =Zi−1 ∪ L ∪ R,

from which Z ∼ϕ Zi and Z ⊆Zi follow. Hence, by induction, we have Z ∼ϕ Z f and Z ⊆Z f, where Z f :=Zk is the final 
value of the variable Z returned by the execution of Closure(Z , �=

ϕ ).

In addition, the terminating condition for the while-loop yields that L ⊆Z f ⇐⇒ R ⊆Z f , for all {L, R} ∈ �=
ϕ . Thus, from 

Lemma 3 it follows that

W1 ⊆Z f ⇐⇒ W2 ⊆Z f, (5)

for all W1, W2 ∈ P+(Vars(ϕ)) such that W1 ∼ϕ W2.

In order to prove that Z f = ∼
Z , we observe that, since Z ∼ϕ

∼
Z and Z ⊆ Z f , by (5) we have ∼

Z ⊆ Z f . Moreover, by 

Lemma 4(a),(d) and since Z ∼ϕ Z f, we readily get Z f ⊆ ∼Z f = ∼
Z . The latter inclusion, together with the previously estab-

lished one ∼
Z ⊆ Z f , implies Z f = ∼

Z , i.e., Z f is the closure of Z , proving that the call to Closure(Z , �=
ϕ ) computes the 

closure ∼
Z of Z correctly. �

Theorems 1 and 2, together with Lemma 5 and Lemma 4(d), readily yield that Algorithm 1 is a valid satisfiability test 
for formulae in the languages BST(∪,=, �=) and BST(∩,=, �=).

2.1.1. A quadratic implementation of the function Closure

Next, we provide a quadratic implementation of the function Closure, which, for a given BST(�,=, �=)-formula ϕ , takes 
as input the collection �=

ϕ and a set Z ∈ P+(Vars(ϕ)) of which one wants to compute the closure ∼
Z . As internal data 

structures, the function Closure uses: a doubly linked list Ripe of sets of the form (L ∪ R) \Z, where {L, R} ∈ �=
ϕ and 

Z is the internal variable whose value will converge to ∼
Z at termination; a doubly linked list Unripe of pairs of form 〈

(L \Z), (R \Z)
〉
, with {L, R} ∈ �=

ϕ ; and an array Aux of m lists of pointers to nodes either in Ripe or in Unripe, where m is 
the number of the distinct variables x1, . . . , xm in ϕ , intended to support fast retrieval of nodes in the lists Ripe and Unripe.

We will express the complexity of the main procedure in Algorithm 1 and of our efficient implementation of the function
Closure in terms of the four quantities m, n, p, q, where m := |Vars(ϕ)| is the number of distinct set variables in ϕ , n := |ϕ|
is the size of ϕ (intended as the total number of symbol occurrences in ϕ), p := |�=

ϕ | is the number of literals of the form 
(=) in ϕ , and q := |� �=

ϕ | is the number of literals of the form ( �=) in ϕ . Plainly, we have m, p, q � n.
Much as in [6], we can index the variables in Vars(ϕ) from 1 to m = |Vars(ϕ)|, so that every subset A of Vars(ϕ) can 

be represented as a Boolean array of size m such that any set variable xi belongs to A if and only if A[i] = 1. In fact, it 
is possible to build such an index and initialize accordingly all the arrays corresponding to the collections of set variables 
present in ∪�=

ϕ ∪∪�
�=
ϕ in O(m(p +q) +n) time, even starting from a formula ϕ in plain text, yet to be parsed. Specifically, 

for each literal 	 in ϕ of the form �L = �R or �L �= �R , we let πL and πR be pointers to the sets L and R , respectively. 
Then, while parsing the formula ϕ , we construct the collection of pairs

� := {〈x,πA〉 | x ∈ A ∈∪�=
ϕ ∪∪� �=

ϕ

}
and sort it in O(n) time, according to the first components, using the lexicographic sorting algorithm of strings of varying 
length as described in [1, Algorithm 3.2 (pp. 80–84)].

Having sorted �, we can easily collect the m � n distinct variables of ϕ and index them using the integers 1, . . . , m. By 
means of such an indexing, in O(m(p + q)) time (where p = |�=

ϕ | and q = |� �=
ϕ |) we can represent as an m-bit array each 

set of variables in ∪�=
ϕ ∪∪�

�=
ϕ , and accordingly represent �=

ϕ and � �=
ϕ as lists of pairs of m-bit arrays. Such preliminary 

encoding phase can be carried out in O(m(p + q) + n) time.
We make use of the auxiliary functions Add(List,S) and Remove(List,Ptr) to add S to List (S can be either a set or a 

pair of sets) and to remove the node pointed to by Ptr from List, respectively. Since the two lists we use, namely Ripe and
7
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1: function Closure(Z ,�=
ϕ )

2: Z ← Z ;
3: for each {L, R} ∈ �=

ϕ do
4: if L ∪ R �Z then
5: if L ⊆Z or R ⊆Z then Ptr ← Add(Ripe, (L ∪ R) \Z);
6: � Ptr is a pointer to the node just added to the list Ripe �
7: else Ptr ← Add(Unripe, 

〈
(L \Z), (R \Z)

〉
);

8: for each index i such that xi ∈ L ∪ R do Add(Aux[i], Ptr);
9: while Ripe is not empty do

10: S ← Extract(Ripe); � Extracts the first set in Ripe

11: for each index i such that xi ∈ S do
12: Z ←Z ∪ {xi};
13: for each pointer Ptr in Aux[i] do
14: if Ptr is in Ripe then � Ptr points to the set Ptr.Data

15: Ptr.Data ← Ptr.Data \ {xi};
16: if Ptr.Data = ∅ then Remove(Ripe, Ptr);
17: else � Ptr points to the pair Ptr.Data in the list Unripe

18: LPtr ← Ptr.Data.Left ← Ptr.Data.Left \ {xi};
19: RPtr ← Ptr.Data.Right ← Ptr.Data.Right \ {xi};
20: if LPtr = ∅ or RPtr = ∅ then
21: Remove(Unripe, Ptr);
22: if LPtr �= ∅ then Add(Ripe, LPtr)
23: else if RPtr �= ∅ then Add(Ripe, RPtr)
24: Remove(Aux[i], Ptr);
25: returnZ;

Unripe, are maintained as doubly linked lists, both operations can be performed in O(1) time. The function Add returns 
also a pointer to the newly inserted node. Finally, we use the function Extract(List) to access in O(1) time the pointer to 
the first node of List while removing it.

The function Closure comprises two phases: an initialization phase, lines 2–8, and a computation phase, lines 9–25.
For each m-bit array, we maintain a counter of its bits set to 1, so that emptiness tests can be performed in O(1) time. 

Plainly, unions, set differences, and inclusion tests of sets represented as m-bit arrays can easily be performed in O(m) time. 
Also, membership tests and the operations of singleton addition and singleton removal can be performed in O(1) time.

Thus, the initialization phase of the function Closure (lines 2–8) can be performed in O(mp) time.
At the end of the initialization phase and at each subsequent step, the lists Ripe and Unripe contain only sets disjoint 

from Z, and each of them has length at most p = |�=
ϕ |. Specifically, the list Ripe contains the set (L ∪ R) \ Z, for all 

{L, R} ∈ �=
ϕ such that L ∪ R �Z but either L ⊆Z or R ⊆Z holds. Instead, the list Unripe contains the pair 〈L \Z, R \Z〉, 

for all {L, R} ∈ �=
ϕ such that L �Z and R �Z both hold.

In view of the assignments at lines 15, 18, and 19, the disjointness property from Z of the sets (L ∪ R) \Z in Ripe and 
the sets L \Z and R \Z such that {L \Z, R \Z} is in Unripe is maintained at each iteration of the while-loop at lines 9–24. 
Hence, at each extraction of a set S from the list Ripe at line 10, none of the set variables in S has already been selected 
and processed by the for-loop 11–24. Therefore, each set variable in Vars(ϕ) is processed by the for-loop at lines 11–24 at 
most once, yielding that, in the overall, the for-loop 11–24 is executed at most m times, which amounts to a total O(mp)

time, since each execution of the for-loop 11–24, say relative to a set variable xi , is dominated by the time taken by the 
internal for-loop 13–24, which is O(p). Indeed, (i) at the end of the initialization phase, the list Aux[i] contains at most p
pointers to nodes in the lists Ripe and Unripe; (ii) once a pointer in the list Aux[i] is processed, it is then removed (line 24), 
so that it will never be processed again; and (iii) each line of the for-loop 13–24 can be executed in constant time.

Since each extraction at line 10 takes O(1) time and, as observed, the list Ripe has length at most p at the end of the 
initialization phase, it follows that the while-loop at lines 9–24 takes O(mp) time.

Thus, the overall complexity of the function Closure is O(mp) time. Since m, p � n, we have also that the function
Closure takes quadratic time O(n2) in the size n of the formula ϕ being tested for satisfiability.

Finally, our satisfiability tester (Algorithm 1) checks at most q pairs {L, R} ∈ �
�=
ϕ in O(mpq) time, by computing the 

closures ∼L and ∼R by means of calls to the function Closure and comparing them. By taking into account also the preliminary 
encoding phase, which has a O(m(p + q) + n)-time complexity, the overall complexity of Algorithm 1 is O(mpq + n), which 
is O(n3) since m, p, q � n.

Concerning the space complexity of our satisfiability tester, it is immediate to check that all data structures used in 
Algorithm 1 and in the function Closure require O(mp) space, namely O(n2) space since m, p � n.

Summarizing, we have proved the following result:

Theorem 3. The satisfiability decision problem for the language BST(∪,=, �=), as well as for BST(∩,=, �=), can be solved in cubic 
time and quadratic space.
8
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Remark 1. It is not hard to see that our satisfiability tester (Algorithm 1) and its auxiliary function Closure can be refined 
in order that an explicit set assignment modeling the input conjunction ϕ is returned when ϕ is satisfiable.

3. Extensions of BST(∪,=, �=) and BST(∩,=, �=)

Let us begin by recalling here two notions, called existential expressibility and O( f )-expressibility (stemming from [4]
and from [3]), through which one can reduce, in constant or O( f ) time, a set-theoretic formula of a richer language to an 
equisatisfiable formula belonging to a smaller language. Those notions rely on techniques for replacing formulae that involve 
operators or relators not belonging to the smaller language with convenient surrogates, only comprising operators of the 
smaller language.

If the target (smaller) language has a decidable satisfiability problem, also the source (larger) language does, because a 
satisfiability-preserving preprocessing transforms every instance of the latter problem into an instance of the former. We 
must also insist on fast reduction techniques—this is why O( f ) enters into play—, because the algorithmic complexity of 
the preprocessing phase should not overwhelm the cost of the satisfiability test.

Most of our reductions are based on the following notion of ‘context-free’ expressibility:

Definition 1 (Existential expressibility). A formula ψ(�x) is said to be existentially expressible in a theory T if there exists a 
T -formula ( �x, �z ) such that

|= ψ ⇐⇒ (∃�z )  ,

where �x and �z stand for disjoint tuples of set variables. �

We also devised a more general notion of ‘context-sensitive’ expressibility, embodying complexity-related information.

Definition 2 (O( f )-expressibility). Let T1 and T2 be any theories and f : N →N be a given map. A collection C of formulae 
is O( f )-expressible from T1 into T2 (or O( f )-expressible in T1, when T1 = T2) if a map computable in O

(
f (|ϕ ∧ ψ |)) time〈

ϕ( �y ),ψ( �x )
〉 �→ �

ψ
ϕ ( �x, �y, �z ) (6)

from T1 × C into T2 exists, where no variable in �z occurs in either �x or �y, such that the following two conditions are 
satisfied for all ϕ in T1 and ψ in C:

(a) if ϕ ∧ �
ψ
ϕ is satisfiable, so is ϕ ∧ ψ ,

(b) |= (
ϕ ∧ ψ

) −→ ( ∃�z ) �ψ
ϕ . �

Remark 2. An immediate consequence of conditions (a) and (b) in Definition 2 is that the conjunctions ϕ ∧ ψ and ϕ ∧ �
ψ
ϕ

are equisatisfiable, for all ϕ in T1 and ψ in C. �

Regarding the languages BST(∪,=, �=) and BST(∩,=, �=), we have:

(a) the literal x = ∅ is O(n)-expressible in BST(∪,=, �=);
(b) the literal x = ∅ is O(n)-expressible in BST(∩,=)3;
(c) the literal x ⊆ y is existentially expressible in BST(∪,=) and in BST(∩,=);
(d) the literal x � y is existentially expressible in BST(∪, �=) and in BST(∩, �=);
(e) the literal Disj(x, y) is existentially expressible in BST(∩,=∅) and therefore, by (b), it is O(n)-expressible in BST(∩,=);
(f) the literal ¬Disj(x, y) is existentially expressible in BST(⊆, �=); therefore, by (c), it is existentially expressible in both of 

BST(∪, =, �=) and BST(∩, =, �=).

Wrapping up, we have that (a), (c), (d), and (f) ensure that any BST(∪, =∅, �=∅, ¬Disj, ⊆, �, =, �=)-formula can be 
reduced in linear time to an equisatisfiable BST(∪,=, �=)-formula. Similarly (b), (c), (d), and (e), (f) ensure that any BST(∩, =
∅, �=∅, Disj, ¬Disj, ⊆, �, =, �=)-formula can be reduced in linear time to an equisatisfiable BST(∩,=, �=)-formula. Therefore:

Lemma 6. The satisfiability decision problem for either one of the languages BST(∪, =∅, �=∅, ¬Disj, ⊆, �, =, �=), BST(∩, =∅, �=∅,

Disj, ¬Disj, ⊆, �, =, �=) can be solved in cubic time.

3 The proofs of (a) and of (c)–(f) appear in [4, Appendix A]; the proof of (b), which is new, is provided further on in this section (see Lemma 8).
9
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Remark 3. In [4] it is also proved that

BST(∪,=∅, �=∅,¬Disj,⊆,�,=, �=) and BST(∩,=∅, �=∅,Disj,¬Disj,⊆,�,=, �=)

are polynomial-maximal; that is, every language that consists of all conjunctions of literals involving a selection from the 
set { ∪ , ∩ , \ } ∪ { =∅, �=∅, Disj( , ), ¬Disj( , ), ⊆ , � , = , �= }
of operators/relators, and strictly contains either one of the said two languages, has an NP-hard satisfiability decision prob-
lem. �

We close this section with a highlight of the reduction technique based on O( f )-expressibility, by proving that the literal 
x =∅ is O(n)-expressible in BST(∩,=), albeit not existentially expressible in BST(∩,=, �=).

Lemma 7. The literal x =∅ is not existentially expressible in BST(∩,=, �=).

Proof. Assume by way of contradiction that x = ∅ is existentially expressible in BST(∩,=, �=), so that there exists a 
BST(∩,=, �=)-formula (x, �z), where the variable x does not occur in �z, such that

|= x =∅ ⇐⇒ (∃�z )  . (7)

Let M be the set assignment over { x } such that Mx = ∅, so that M |= x = ∅. Then, by (7), we also have |= ( ∃�z ) , and 
so M can be extended over the variables �z in such a way that M |= . Let c be any set not belonging to ∪v∈Vars() M v , and 
consider the set assignment M ′ over Vars() such that

M ′v = M v ∪ {c}, for every v ∈ Vars().

We claim that M ′ |= . Indeed, for each V ∈ P+(Vars()), we have M ′ ∩ V = ∩ M ′V = (∩ M V ) ∪ { c } and so

M ′ |=∩ L =∩ R ⇐⇒ M |=∩ L =∩ R ,

for all L, R ∈ P+(Vars()).
Thus, since M |=  and  is a conjunction of literals of the forms

∩ L =∩ R and ∩ L �=∩ R ,

with L, R ∈ P+(Vars()), it readily follows that M ′ |=  as well, and so M ′ |= ( ∃�z ) .
On the other hand, since M ′x = { c }, we have M ′ �|= x = ∅, and therefore, by (7), we must also have M ′ �|= ( ∃�z ) , which 

is a contradiction. Hence, our claim follows. �
Lemma 8. The literal x =∅ is O(n)-expressible from BST(∩,=) into BST(∩,=).

Proof. Consider the mapping

〈ϕ, x = ∅〉 �→ (
x ∩∩Vars(ϕ)

) = x, (8)

defined for all ϕ ∈ BST(∩,=), which can be plainly computed in time O(|ϕ|). We show that conditions (a) and (b) of 
Definition 2 are satisfied. Thus, let ϕ be any conjunction in BST(∩,=).

Concerning condition (a), let M be any model for ϕ ∧ (
x ∩ ∩Vars(ϕ)

) = x. Then we have Mx = Mx ∩ M y, namely 
Mx ⊆ M y, for all y ∈ Vars(ϕ). Put

M ′v := M v \ Mx,

for every v ∈ Vars(ϕ) ∪ {x}. Plainly M ′x = Mx \ Mx = ∅, so that M ′ |= x = ∅. Having shown that M ′ satisfies the literal x = ∅, 
next we prove that it also satisfies all the literals of ϕ . Consider any literal ∩ L = ∩ R in ϕ . Since ∩v∈L M v = ∩v∈R M v , 
we readily have:

∩M ′L = ∩
v∈L

M ′v = ∩
v∈L

(M v \ Mx) = ( ∩
v∈L

M v
)\ Mx = ( ∩

v∈R
M v

)\ Mx = ∩
v∈R

(M v \ Mx) = ∩
v∈R

M ′v =∩M ′R,

proving that M ′ models correctly every literal of ϕ . Hence, M ′ |= ϕ ∧ ψ , and so ϕ ∧ ψ is satisfiable.
Next, as for (b), it is enough to prove that any model M for ϕ ∧ x = ∅ is also a model for the literal 

(
x ∩∩Vars(ϕ)

) = x. 
But this follows at once, since Mx = ∅ and so

M
(
x ∩∩Vars(ϕ)

) = Mx ∩ M ∩Vars(ϕ) = ∅ = Mx.

Whence the claim follows. �

10
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4. Satisfiability in BST(∪, �⊂, �=) and in its dual BST(∩, �⊂, �=)

In this section we address the satisfiability problem for the theories BST(∪, �⊂, �=) and BST(∩, �⊂, �=) that consist of all 
the conjunctions of literals of the two forms

(�⊂) x1 � · · · � xh �⊂ y1 � · · · � yk

(�=) u1 � · · · � um �= v1 � · · · � v p,

where h, k, m, p � 1, � is a fixed dyadic set operation, and the x’s, y’s, u’s, and v ’s are set variables. Specifically, by instanti-
ating � as ∪ we obtain BST(∪, �⊂, �=), while by instantiating � as ∩ we obtain BST(∩, �⊂, �=).

On the one hand, in view of the equivalences

x = y ⇐⇒ x �⊂ x ∪ y ∧ y �⊂ x

x = y ⇐⇒ x ∩ y �⊂ x ∧ y �⊂ x,

the theories BST(∪, �⊂, �=) and BST(∩, �⊂, �=) can be regarded as extensions of BST(∪,=, �=) and of BST(∩,=, �=), respec-
tively. On the other hand, the relation x �⊂ y, which amounts to x � y ∨ x = y, embodies a disjunction; we will prove 
that, notwithstanding, both of the theories BST(∪, �⊂, �=) and BST(∩, �⊂, �=) admit a deterministic polynomial-time decision 
procedure, albeit of a degree greater than cubic, as was the degree for BST(∪,=, �=) and BST(∩,=, �=).

4.1. The equivalence relation �ϕ and the �ϕ -closure operator for BST(∪, �⊂, �=)-conjunctions

We suitably tailor to BST(∪, �⊂, �=) the equivalence relation ∼ϕ and related closure operator introduced in Section 1 in 
connection with the satisfiability problem for BST(∪,=, �=) and BST(∩,=, �=), thus obtaining a new equivalence relation 
�ϕ and its related closure operator � .

Any conjunction ϕ of BST(∪, �⊂, �=) can be conveniently represented by the following two sets of ordered and unordered 
pairs, respectively,

� �⊂
ϕ :=

{〈{x1, · · · , xh} , {y1, · · · , yk}
〉 | x1 ∪ · · · ∪ xh �⊂ y1 ∪ · · · ∪ yk is in ϕ

}
,

� �=
ϕ :=

{{{u1, · · · , um}, {v1, · · · , v p}} | u1 ∪ · · · ∪ um �= v1 ∪ · · · ∪ v p is in ϕ
}
,

where 〈X, Y 〉 stands for the ordered pair of the sets X and Y and the doubleton {X, Y } represents the unordered pair of X
and Y .

The set � �⊂
ϕ must consist of ordered pairs, since the relation x1 ∪ · · · ∪ xh �⊂ y1 ∪ · · · ∪ yk is asymmetrical. On the other 

hand, the symmetry of the relation u1 ∪ · · · ∪ um �= v1 ∪ · · · ∪ v p allows us to use unordered pairs in � �=
ϕ .

We denote by dom(�
�⊂
ϕ ) the collection of all the first components of the ordered pairs in � �⊂

ϕ . We will also be interested 
in the field of � �⊂

ϕ , namely the collection of all the sets of variables that appear as first or second component in any ordered 
pair in � �⊂

ϕ . By representing ordered pairs 〈X, Y 〉 à la Kuratowski, namely by putting 〈X, Y 〉 := {{X}, {X, Y }}, it is easy to 
check that the field of � �⊂

ϕ is equal to the set ∪∪�
�⊂
ϕ , which to ease the notation will be written as ��

�⊂
ϕ in the rest of 

the paper. Similarly, the field of � �=
ϕ is just equal to the set ∪�

�=
ϕ .

For any conjunction ϕ in BST(∪, �⊂, �=), we define an equivalence relation �ϕ intended to capture all the equalities ∪L = ∪R , with L, R ∈ P+(Vars(ϕ)), entailed by the subconjunction of all the literals of type (�⊂) in ϕ (in fact, it will turn 
out that ϕ is satisfiable if and only if L ��ϕ R for every literal ∪L �= ∪R of type (�=) in ϕ).

Specifically, �ϕ is the smallest equivalence relation � on P+(Vars(ϕ)) satisfying the following two closure conditions:

(Cl1�) if 〈L, R〉 ∈ �
�⊂
ϕ and L ⊆ V � R , for some V ∈ P+(Vars(ϕ)), then L � R;

(Cl2) if A � B , then A ∪ C � B ∪ C for all A, B, C ∈ P+(Vars(ϕ)).
In analogy with Section 1, we also define a closure operator �

on P+(Vars(ϕ)) associated with the relation �ϕ by 
putting

�
Z :=∪{W | W �ϕ Z}

for every Z ∈ P+(Vars(ϕ)).
As already remarked at the end of Section 1, the properties of the closure operator ∼ in Lemmas 1 and 4 depend solely 

on condition (Cl2). Since the equivalence relation �ϕ shares the same second closure condition (Cl2) with the relation ∼ϕ

defined in Section 1, the closure operator �
enjoys the same properties listed in Lemmas 1 and 4. For convenience, we 

collect them in the following lemma, adapted to �ϕ and � :

Lemma 9. Let Z , Z1, Z2 ∈ P+(Vars(ϕ)). Then
11
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(a) Z ⊆ �
Z and Z �ϕ

�
Z ;

(b)
�
Z = ��

Z ;
(c) if Z1 �ϕ

�
Z 2 , then Z1 ⊆ �

Z 2;
(d) Z1 �ϕ Z2 if and only if 

�
Z 1 = �

Z 2;
(e) if Z1 ⊆ Z2 , then 

�
Z 1 ⊆ �

Z 2;
(f) Z1 ⊆ �

Z 2 if and only if 
�
Z 1 ⊆ �

Z 2;
(g) if Z1 ⊆ Z or Z2 ⊆ Z holds and Z1 �ϕ Z2 , then Z �ϕ Z ∪ Z1 ∪ Z2;
(h) the �ϕ -closure 

�
Z of Z is the largest subset of Vars(ϕ) that is �ϕ -equivalent to Z .

Towards the discovery of a necessary and sufficient condition for the satisfiability of BST(∪, �⊂, �=)-formulae ϕ , we begin 
by showing that A �ϕ B is a sufficient condition for the equality ∪A = ∪B to be entailed by ϕ .

Lemma 10. Let ϕ be any formula of BST(∪, �⊂, �=), and let A, B ∈ P+(Vars(ϕ)) be any pair of �ϕ -equivalent sets. Then the equality ∪A = ∪B is satisfied by every model of ϕ .

Proof. Let M be any model for ϕ . In view of the inclusion-minimality of �ϕ , it is sufficient to prove that the equivalence 
relation �M over P+(Vars(ϕ)) defined by

X �M Y
Def.⇐=⇒ M∪X = M∪Y

satisfies both closure conditions (Cl1�) and (Cl2).
Concerning (Cl1�), let 〈L, R〉 ∈ �

�⊂
ϕ and let C ∈ P+(Vars(ϕ)) be any superset of L such that C �M R . We need to prove 

that L �M R holds. From the very definition of �M and since L ⊆ C , we have M∪L ⊆ M∪C = M∪R . In addition, since ∪L �⊂ ∪R belongs to ϕ , then M∪L �⊂ M∪R . Together with M∪L ⊆ M∪R , the latter relation readily yields M∪L = M∪R , 
and therefore L �M R holds.

Concerning (Cl2), we can reason exactly as in the proof of Lemma 2.
Thus, if A �ϕ B , then A �M B and therefore M∪A = M∪B , proving that M satisfies the equality ∪A = ∪B . �
The following theorem suggests a satisfiability test for BST(∪, �⊂, �=)-formulae, analogous to the one in Theorem 1 for 

BST(∪,=, �=)-formulae.

Theorem 4. Let ϕ be a BST(∪, �⊂, �=)-formula. Then ϕ is satisfiable if and only if L ��ϕ R (namely 
�
L �= �

R) holds for every literal of 
type ∪L �= ∪R in ϕ .

Proof. The necessity part of the proof is an immediate consequence of the preceding lemma.
As for the sufficiency part of the proof, let us assume that for each literal ∪L �= ∪R in ϕ we have L ��ϕ R . We will use 

such an assumption to construct a set assignment 
�
M that satisfies ϕ .

Let us assign a nonempty set b�
V to each 

�
V such that V ∈ P+(Vars(ϕ)), where the b�

V ’s are assumed to be pairwise 
distinct. Then we define the set assignment 

�
M over Vars(ϕ) by putting, for each x ∈ Vars(ϕ),

�
Mx := {b�

V | x /∈ �
V and V ∈ P+(Vars(ϕ))}, (9)

so that we have

�
M∪U := {b�

V | U �
�
V and V ∈ P+(Vars(ϕ))}

for every U ∈ P+(Vars(ϕ)).
We claim that the assignment 

�
M satisfies ϕ .

We begin by proving that 
�
M satisfies all the literals in ϕ of type (�⊂). Thus, let ∪L �⊂ ∪R be in ϕ . Either L �ϕ R or 

L ��ϕ R holds. We prove that if L �ϕ R then 
�
M∪L = �

M∪R , whereas if L ��ϕ R then 
�
M∪L �

�
M∪R , so that in any case 

�
M ∪L �⊂ �

M ∪R holds.
Assume first that L �ϕ R holds, and let b�

V ∈ �
M ∪L, for some V ∈ P+(Vars(ϕ)) such that L �

�
V . Then R �

�
V , since 

otherwise by Lemma 9(f) we would have L ⊆ �
L = �

R ⊆ �
V , a contradiction. Hence, b�

V ∈ �
M ∪R , so that 

�
M ∪L ⊆ �

M ∪R . 
Analogously, it can be proved that the reverse inclusion 

�
M ∪R ⊆ �

M ∪L must hold, and therefore we have 
�
M ∪L = �

M ∪R , 
which yields 

�
M ∪L �⊂ �

M ∪R .
On the other hand, if L ��ϕ R , then L �

�
R , otherwise (Cl1�) would yield L �ϕ R . Hence b�

R ∈ �
M ∪L. In addition, since 

R ⊆ �
R (by Lemma 9(a)) then b�

R /∈ �
M ∪R . Thus, 

�
M ∪L �⊂ �

M ∪R holds, namely 
�
M satisfies the literal ∪L �⊂ ∪R .

Next, we prove that the assignment 
�
M satisfies also the remaining literals of type (�=) in ϕ . Thus, let ∪L �= ∪R be in 

ϕ . Then, just by hypothesis, it holds that L ��ϕ R , and so 
�
L �= �

R . Hence, either 
�
L �

�
R or 

�
R �

�
L , so that by Lemma 9(f)
12
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either L �
�
R or R �

�
L holds. If L �

�
R , then b�

R ∈ �
M ∪L \ �

M ∪R , whereas if R �
�
L then b�

L ∈ �
M ∪R \ �

M ∪L. In any case, 
�
M ∪L �= �

M ∪R , proving that 
�
M satisfies the literal ∪L �= ∪R .

In conclusion, the assignment 
�
M satisfies all the literals of ϕ , proving that ϕ is satisfiable, and in turn completing the 

proof of the lemma. �
Remark 4. In the light of (9), a by-product of the proof of the sufficiency part of Theorem 4 is that any satisfiable 
BST(∪, �⊂, �=)-formula ϕ admits a model 

�
M such that |�M x| < 2|Vars(ϕ)| , for every x ∈ Vars(ϕ).

However, notice that the proof of Theorem 4 requires the existence of b�
V only for those sets of variables V ⊆ Vars(ϕ)

that occur in literals of type (�=) or as right-hand sides of literals of type (�⊂). Thus, by letting Pϕ be the collection of all 
such sets V , we could safely replace the definition (9) by the following one:

�
M x := {b�

V | x /∈ �
V and V ∈Pϕ},

for x ∈ Vars(ϕ).
As a result, we obtain that any satisfiable BST(∪, �⊂, �=)-formula ϕ admits a model 

�
M such that the size of each set 

�
M x

is linearly bounded in the size of ϕ , rather than merely exponentially bounded in the size of Vars(ϕ). �

Theorem 4 states that in order to check the satisfiability of any BST(∪, �⊂, �=)-formula ϕ we need to verify that each 
unordered pair {L, R} in � �=

ϕ is formed by sets of variables L and R that are not �ϕ -equivalent. An immediate implementa-
tion of such a check would require one to compute the whole relation �ϕ . However, since the field of �ϕ is the collection 
P+(Vars(ϕ)), whose size is exponential, such an approach would take exponential time.

The next section presents a polynomial satisfiability test for BST(∪, �⊂, �=)-formulae.

4.2. A satisfiability test for BST(∪, �⊂, �=)

Rather than computing the whole equivalence relation �ϕ , a more efficient strategy will take advantage of property (d)
in Lemma 9, which states that

Z1 �ϕ Z2 ⇐⇒ �
Z 1 = �

Z 2

for any two sets Z1, Z2 ∈ P+(Vars(ϕ)). However, to avoid an exponential cost, we will show that the computation of �ϕ -

closures can be confined to the members of ��
�⊂
ϕ ∪∪�

�=
ϕ only. As we will prove, this is just what the function ClosureMap

below does, when executed with its second argument set to ��
�⊂
ϕ ∪ ∪�

�=
ϕ . However, for convenience, we first show that 

the function ClosureMap with inputs a BST(∪, �⊂, �=)-formula ϕ and the whole collection P+(Vars(ϕ)) calculates the cor-
rect �ϕ -closure operator over P+(Vars(ϕ)). Subsequently, we will argue that the call ClosureMap(ϕ, V) (and in particular 
the call ClosureMap(ϕ, ��

�⊂
ϕ ∪∪�

�=
ϕ )) computes correctly the �ϕ -closure map over the collection in its second argument 

V, provided that it contains ��
�⊂
ϕ as a subset. Finally, we will show that the execution of ClosureMap(ϕ, ��

�⊂
ϕ ∪∪�

�=
ϕ )

takes polynomial time in the size of ϕ .
To be more specific, when called with inputs a BST(∪, �⊂, �=)-formula ϕ and a collection V ⊆ P+(Vars(ϕ)) such that 

��
�⊂
ϕ ⊆V, the function ClosureMap, after initializing each variable Â to A (for every A ∈V), executes repeatedly expan-

sion assignments of the form

L̂ ← L̂ ∪ R̂,

where 〈L, R〉 is any unsteady pair in V×��
�⊂
ϕ (in the sense of Definition 3 below), until no unsteady pairs remain.

Definition 3. A pair 〈L, R〉 ∈V×��
�⊂
ϕ is unsteady if the following two conditions hold:

(a) R̂ � L̂,

(b) R � L̂ −→ ( 〈L, R〉 ∈ �
�⊂
ϕ ∧ L ⊆ R̂

)
.

4.2.1. Termination
When an assignment ̂L ← L̂ ∪ R̂ at line 5 of ClosureMap is executed, the set ̂L gets new elements, as the pair 〈L, R〉 is 

unsteady beforehand and so R̂ � L̂ must hold. It therefore follows that during the execution of ClosureMap(ϕ, V), for any 
collection V such that ��

�⊂
ϕ ⊆V⊆ P+(Vars(ϕ)), the while-loop 4–5 is executed at most the following number of times∑

L∈V

(|Vars(ϕ)| − |L|) = |V| · |Vars(ϕ)| −
∑
L∈V

|L|, (10)

and so, in particular, ClosureMap(ϕ, V) terminates.
13
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Algorithm 2
1: function ClosureMap(ϕ , V)

Input: a BST(∪, �⊂, �=)-conjunction ϕ and a collection of sets V such that ��
�⊂
ϕ ⊆V⊆ P+(Vars(ϕ))

Output: the �ϕ -closure operator over V
2: for all A ∈V do
3: Â ← A;

4: while there are unsteady pairs 〈L, R〉 in V×��
�⊂
ϕ do

5: L̂ ← L̂ ∪ R̂; � 〈L, R〉 is any such unsteady pair
6: return the map A �→ Â on V;

We also remark that, since at termination of ClosureMap(ϕ, V) no pair 〈L, R〉 ∈V×��
�⊂
ϕ is unsteady, the following 

disjunction holds, for every 〈L, R〉 ∈V×��
�⊂
ϕ :

¬(R̂ � L̂) ∨ ¬(
R � L̂ −→ (〈L, R〉 ∈ � �⊂

ϕ ∧ L ⊆ R̂)
)
.

The latter disjunction is equivalent to

R̂ ⊆ L̂ ∨ (
R � L̂ ∧ (〈L, R〉 /∈ � �⊂

ϕ ∨ L � R̂)
)
,

which in its turn is equivalent to the conjunction

(R ⊆ L̂ −→ R̂ ⊆ L̂) ∧ ( 〈L, R〉 ∈ � �⊂
ϕ −→ (L ⊆ R̂ −→ R̂ ⊆ L̂)

)
.

Thus, at termination of the execution of ClosureMap(ϕ, V), the following two terminating conditions hold:

(T1) R ⊆ L̂ −→ R̂ ⊆ L̂, for every 〈L, R〉 ∈V×��
�⊂
ϕ ;

(T2) L ⊆ R̂ −→ R̂ ⊆ L̂, for every 〈L, R〉 ∈ �
�⊂
ϕ .

4.2.2. Correctness
For convenience, we first prove the correctness of the algorithm ClosureMap when, for a given BST(∪, �⊂, �=)-formula 

ϕ , ClosureMap is called with its second argument set to P+(Vars(ϕ)). Subsequently, we will argue that, when called with 
any subcollection V of P+(Vars(ϕ)) containing ��

�⊂
ϕ ∪∪�

�=
ϕ as a subset, ClosureMap computes correctly the �ϕ -closure 

map over V.
To start with, we prove that the map A �→ Â over P+(Vars(ϕ)) computed by the execution of ClosureMap(ϕ,

P+(Vars(ϕ))) is an approximate �ϕ -closure operator, according to the following definition.

Definition 4. Given a BST(∪, �⊂, �=)-conjunction ϕ , an approximate �ϕ -closure operator is any map V �→ V̂ over P+(Vars(ϕ))

such that the inclusions

V ⊆ V̂ ⊆ �
V

hold for every V ∈ P+(Vars(ϕ)).

Lemma 11. The map A �→ Â over P+(Vars(ϕ)) computed by the execution of ClosureMap(ϕ, P+(Vars(ϕ))), for a given 
BST(∪, �⊂, �=)-formula ϕ , is an approximate �ϕ -closure operator.

Proof. Plainly, we have A ⊆ Â for all A ∈ P+(Vars(ϕ)), as the sets Â grow monotonically during the execution of Clo-

sureMap and initially each Â is set to A in the for-loop 2–3.
Concerning the inclusions Â ⊆ �

A , these hold trivially just after the execution of the initializing for-loop 2–3. Thus, it 
suffices to prove by induction that the inclusions Â ⊆ �

A are preserved after each execution of the assignment at line 5.
Let us first consider the case when R � L̂ holds just before the execution of the assignment under consideration at line 

5. Hence, we have

- R̂ � L̂ (by condition (a) of Definition 3)

- 〈L, R〉 ∈ �
�⊂
ϕ and L ⊆ R̂ (by condition (b) of Definition 3).

Also, let us assume inductively that L̂ ⊆ �
L and R̂ ⊆ �

R hold at that time, so that L ⊆ �
R holds as well. Then, by (Cl1�), we 

have L �ϕ R , namely 
�
L = �

R , and so the set L̂ ∪ R̂ assigned to L̂ is contained in 
�
L , proving that L̂ ⊆ �

L continues to hold 
after the execution of the assignment under consideration.

Next, we consider the case when R ⊆ L̂ holds just before the execution of the assignment under examination at line 5.
Let us inductively assume that the inclusions L̂ ⊆ �

L and R̂ ⊆ �
R hold at that time, so that L̂ ∪ R̂ ⊆ �

L ∪ �
R holds as well. 

From R ⊆ L̂ ⊆ �
L , Lemma 9(f) yields R̂ ⊆ �

R ⊆ �
L , and so the set ̂L ∪ R̂ assigned to ̂L at line 5 is contained in 

�
L , proving that 

the inclusion ̂L ⊆ �
L continues to hold after the execution of the assignment under consideration. �
14
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Next we show that when an approximate closure operator enjoys certain properties, it is indeed a closure operator. 
Subsequently, we will use such a result to prove that the execution of ClosureMap(ϕ, P+(Vars(ϕ))) computes correctly the 
�ϕ -closure operator.

Lemma 12. Let ϕ be a BST(∪, �⊂, �=)-conjunction, and let V �→ V̂ be an approximate �ϕ -closure over P+(Vars(ϕ)) such that the 
following conditions hold:

(i) if L ⊆ R̂ then ̂L = R̂ , for 〈L, R〉 ∈ �
�⊂
ϕ ;

(ii) if U ⊆ V then ̂U ⊆ V̂ , for U , V ∈ P+(Vars(ϕ));

(iii) V̂ = ̂̂V , for V ∈ P+(Vars(ϕ)).

Then the operator ̂ coincides with �, namely ̂V = �
V holds for all V ∈ P+(Vars(ϕ)).

Proof. Let �̂ be the equivalence relation defined on P+(Vars(ϕ)) by setting

A �̂ B
Def.⇐=⇒ Â = B̂.

To begin with, we show that the relation �̂ satisfies both conditions (Cl1�) and (Cl2), thereby proving by the minimality 
of �ϕ the implication

A �ϕ B −→ A �̂ B, (11)

for all A, B ∈ P+(Vars(ϕ)).
Concerning (Cl1�), let 〈L, R〉 ∈ �

�⊂
ϕ and let V ∈ P+(Vars(ϕ)) be such that L ⊆ V and R �̂ V hold, so that R̂ = V̂ . Then we 

have L ⊆ V ⊆ V̂ = R̂ and therefore, by (i), L �̂ R readily follows.
As for the closure condition (Cl2), preliminarily we observe that the implication

U ⊆ V̂ −→ Û ⊆ V̂ (12)

holds for all U , V ∈ P+(Vars(ϕ)). In fact, by (ii) and (iii), U ⊆ V̂ implies Û ⊆ ̂̂V = V̂ .
Now, let A �̂ B for some A, B ∈ P+(Vars(ϕ)), and let C ∈ P+(Vars(ϕ)). Plainly, C ⊆ A ∪ C ⊆ Â ∪ C and, analogously, 

A ⊆ Â ∪ C . Thus, by (12), Â ⊆ Â ∪ C holds and so B ⊆ B̂ = Â ⊆ Â ∪ C . Hence, B ∪ C ⊆ Â ∪ C , which again by (12) implies 
B̂ ∪ C ⊆ Â ∪ C . Analogously, one can show that the reverse inclusion Â ∪ C ⊆ B̂ ∪ C is valid as well, and so Â ∪ C = B̂ ∪ C
holds. Hence, we have A ∪ C �̂ B ∪ C , proving that �̂ satisfies the second closure condition too.

As anticipated, the minimality of �ϕ readily yields the implication (11). In particular, since V �ϕ
�
V by Lemma 9(a), from 

(11) we get V �̂ �
V , and so we have

�
V ⊆ �̂

V = V̂ , (13)

for all V ∈ P+(Vars(ϕ)).
Finally, recalling that ̂ is an approximate �ϕ -closure operator (and so V̂ ⊆ �

V trivially holds), from (13) we get V̂ = �
V

for all V ∈ P+(Vars(ϕ)), proving the lemma. �
By a direct application of Lemma 12, next we prove that the approximate �ϕ -closure A �→ Â computed by Clo-

sureMap(ϕ, P+(Vars(ϕ))) is indeed the �ϕ -closure operator.

Theorem 5. For a given BST(∪, �⊂, �=)-conjunction ϕ , the map A �→ Â computed by ClosureMap(ϕ, P+(Vars(ϕ))) coincides with 
the �ϕ -closure operator.

Proof. On the basis of Lemma 12, it is enough to prove that the approximate �ϕ -closure operator A �→ Â computed by
ClosureMap(ϕ, P+(Vars(ϕ))) satisfies its conditions (i)–(iii).

Concerning condition (i), let 〈L, R〉 ∈ �
�⊂
ϕ and assume that L ⊆ R̂ holds. From the terminating condition (T2), we readily 

get R ⊆ R̂ ⊆ L̂, whereas from condition (T1), but applied to the pair 〈R, L〉, we have ̂L ⊆ R̂ . Hence, ̂L = R̂ follows, proving (i).
As for condition (ii), let U , V be any two members of P+(Vars(ϕ)) such that U ⊆ V . We prove that Û ⊆ V̂ holds.
Since U ⊆ V̂ , we can immediately rule out the case in which U ∈ dom(�

�⊂
ϕ ), as in this case Û ⊆ V̂ follows readily from 

the terminating condition (T1).
Thus, let us assume that U /∈ dom(�

�⊂
ϕ ). In this case, the set Û is the result of the execution of a sequence of assignments 

of the form ‘Û ← Û ∪ R̂ ’ at line 5 in ClosureMap (to be called Û -assignments), where 〈U , R〉 ∈ (
P+(Vars(ϕ))×��

�⊂
ϕ

)\�
�⊂
ϕ .

Accordingly, let 
{

Û ← Û ∪ R̂ i
}

i=1,...,k be the sequence of the Û -assignments in the order in which they are executed 

by the algorithm ClosureMap during the computation of the map ̂ . For each i = 1, . . . , k, we denote by R(i) and U (i) the 
i

15
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values of the algorithm’s variables ‘R̂ i ’ and ‘Û ’, respectively, at the time the i-th Û -assignment ‘Û ← Û ∪ R̂ i ’ is about to be 
executed. Then, we plainly have:

U (i) = U ∪
i−1∪
j=1

R( j)
j ⊆ U ∪

i−1∪
j=1

R̂ j, (14)

for each i = 1, . . . , k, and4

Û ⊆ U ∪
k∪

j=1
R̂ j. (15)

Since each pair 〈U , Ri〉 is unsteady just before the execution of the i-th Û -assignment ‘Û ← Û ∪ R̂ i ’ and 〈U , Ri〉 /∈ �
�⊂
ϕ , 

condition (b) of Definition 3 yields Ri ⊆ U (i) . Hence, by (14), we have

Ri ⊆ U ∪
i−1∪
j=1

R̂ j, for i = 1, . . . ,k. (16)

In order to prove the inclusion Û ⊆ V̂ (where—recall—we are assuming U ⊆ V ), it is enough to show that

Ri ⊆ V̂ , for i = 1, . . . ,k. (17)

Indeed, in the light of condition (T1), from (17) it would follow

R̂ i ⊆ V̂ , for i = 1, . . . ,k,

and so from (15) we would get

Û ⊆ U ∪
k∪

i=1
R̂ i ⊆ V̂ .

We prove (17) by induction on i = 1, . . . , k.
For i = 1, by (16) we have

R1 ⊆ U ⊆ V ⊆ V̂ .

Next, let us inductively assume that 
i−1∪
j=1

R j ⊆ V̂ holds for 2 � i � k, and show that Ri ⊆ V̂ . Since, by condition (T1), 
i−1∪
j=1

R̂ j ⊆
V̂ holds, using (16) we have

Ri ⊆ U ∪
i−1∪
j=1

R̂ j ⊆ V̂ ,

and so, again by condition (T1),

R̂ i ⊆ V̂ .

Thus, by induction and by (15), we have

Û ⊆ U ∪
k∪

i=1
R̂ i ⊆ V̂ .

Finally, concerning condition (iii) of Lemma 12, let V ∈ P+(Vars(ϕ)) and put W := V̂ . We prove that Ŵ = W , namely ̂̂V = V̂ .

4 The inclusion that we are about to prove can be strengthened into

Û = U ∪
k∪

i=1
R̂ i . (�)

Indeed, since Ri ⊆ R(i)
i , then by (15) we have Ri ⊆ Û and so the terminating condition (T1) yields ̂Ri ⊆ Û for all i = 1, . . . , k, thus proving

U ∪
k∪

i=1
R̂ i ⊆ Û .

Together with (15), the latter inclusion yields (�).
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Arguing by contradiction, assume that Ŵ �= W holds. If W ∈��
�⊂
ϕ , then 〈V , W 〉 ∈ P+(Vars(ϕ)) ×��

�⊂
ϕ , and so, by 

condition (T1), at termination we would have

V̂ = W � Ŵ ⊆ V̂ ,

which is untenable. On the other hand, if W /∈��
�⊂
ϕ , let ‘Ŵ ← Ŵ ∪ R̂ ’ be the first Ŵ -assignment during the execution 

of ClosureMap and, much as above, let W and R be the values of the algorithm’s variables ‘Ŵ ’ and ‘ R̂ ’ just before the 
execution of such Ŵ -assignment, so that W = W plainly holds. As the pair 〈W , R〉 must be unsteady just before the 
execution of the Ŵ -assignment at hand and in this case 〈W , R〉 /∈ �

�⊂
ϕ , by conditions (a) and (b) of Definition 3 we must 

have:

(A) R � W
(B) R ⊆ W = W = V

respectively. Thus, from the terminating condition (T1), the inclusion (B) yields

R ⊆ R̂ ⊆ V̂ = W = W ,

which contradicts (A).

Since we have reached a contradiction in either case, we must have Ŵ = W , namely ̂̂V = V̂ , proving (iii) by the arbi-
trariness of V ∈ P+(Vars(ϕ)).

Having shown that the approximate �ϕ -closure operator A �→ Â satisfies conditions (i)–(iii) of Lemma 12, we may 
conclude that it coincides with the �ϕ -closure operator. �

The correctness of ClosureMap(ϕ, P+(Vars(ϕ))), proved in Theorem 5, readily implies the correctness of Clo-

sureMap(ϕ, V), for every subcollection V ⊆ P+(Vars(ϕ)) containing ��
�⊂
ϕ as a subset. It is enough to observe that the 

assignment at line 5 of ClosureMap has the form ‘̂L ← L̂ ∪ R̂ ’, with L ∈V and R ∈��
�⊂
ϕ . Therefore, only the values R̂ for 

R ∈��
�⊂
ϕ are needed for the proper functioning of the computation of ClosureMap(ϕ, V), and these values are available 

since in our case ��
�⊂
ϕ ⊆V holds.

On the grounds of the above results, the theory BST(∪, �⊂, �=) admits the following satisfiability test, whose complexity 
is assessed next.

Algorithm 3 Satisfiability test for BST(∪, �⊂, �=).
Require: a BST(∪, �⊂, �=)-formula ϕ;
Ensure: is ϕ satisfiable?

1: let A �→ Â be the map computed by ClosureMap(ϕ , ��
�⊂
ϕ ∪ ∪�

�=
ϕ );

2: for each {L, R} ∈ �
�=
ϕ do

3: if L̂ = R̂ then
4: return false;
5: return true;

4.2.3. A polynomial implementation of the satisfiability test for BST(∪, �⊂, �=)

For an input BST(∪, �⊂, �=)-formula ϕ , the time complexity of ClosureMap(ϕ, ��
�⊂
ϕ ∪ ∪�

�=
ϕ ) and of Algorithm 3 will 

be expressed in terms of the following quantities:

- m := |Vars(ϕ)| (the number of distinct variables in ϕ),

- n := |ϕ| (the size of ϕ , namely the total number of symbols in ϕ),

- 	 := |� �⊂
ϕ | + |� �=

ϕ | (the total number of literals in ϕ).

Plainly, we have m, 	 � n.
As in Section 2.1, we assume that the distinct set variables occurring in ϕ have been indexed from 1 to m, so that each 

of the relevant subsets V of Vars(ϕ) can be regarded as a bit-array of size m, where V [i] = 1 if and only if xi ∈ V . As 
remarked in Section 2.1, such an indexing and the subsequent initialization of all the bit-arrays relative to the conjunction 
ϕ require O(m	 + n) time. Notice that once all the relevant sets of variables have been represented as bit-arrays, each 
operation involving them in ClosureMap and each set-inclusion test can be executed in O(m) time.

The function ClosureMap presents two parts: an initialization phase (lines 2–3) and a construction phase (lines 4–5). The 
initialization phase creates just a bit-array of size m for each of the O(	) sets of variables in ��

�⊂
ϕ ∪ ∪�

�=
ϕ , thus taking 
17
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O(m	) time. Concerning the construction phase, from (10) it follows that the while-loop at lines 4–5 is executed O(m	)

times. Each iteration takes O(m) time for the assignment at line 5 and O(m	2) time for the evaluation of condition at line 
4. Hence, the overall complexity of the construction phase of ClosureMap is O(m2	3), and therefore the execution cost of 
line 1 in Algorithm 3 is O(m2	3) too. The for-loop at lines 2–4 of Algorithm 3 is executed O(	) times and each execution 
takes O(m) time, for a total of O(m	) time. Hence, the overall time complexity of Algorithm 3 is O(m2	3).

Summing up, we can conclude that

Theorem 6. The satisfiability problem for BST(∪, �⊂, �=) can be solved in quintic time.

4.3. A satisfiability test for BST(∩, �⊂, �=)

The satisfiability problem for the theory BST(∩, �⊂, �=) can be reduced by duality to that of BST(∪, �⊂, �=) in linear time. 
Specifically, for any BST(∩, �⊂, �=)-conjunction ψ , we define its dual ψ� as the BST(∪, �⊂, �=)-conjunction obtained from ψ
by

- replacing each occurrence of the operator ‘∩’ with its dual ‘∪’, and then
- exchanging the left-hand side with the right-hand side in any of the literals of type (�⊂).

Since dual conjunctions can be constructed in linear time, we obtain that the satisfiability problem for BST(∩, �⊂, �=) can be 
solved in quintic time once we prove that each BST(∩, �⊂, �=)-conjunction and its dual are equisatisfiable.

Lemma 13. A BST(∩, �⊂, �=)-conjunction is satisfiable if and only if so is its dual.

Proof. Let ψ be a BST(∩, �⊂, �=)-conjunction and let M be any set assignment over Vars(ψ). Also, let D M := ∪x∈Vars(ψ) Mx
be the domain of M .

We define the dual assignment M� of M by setting

M�x := D M \ Mx , for all x ∈ Vars(ψ),

and prove that the following equivalence holds:

M |= ψ ⇐⇒ M� |= ψ�. (18)

It is enough to show that (18) holds for every literal of ψ .

Literals of type ∩ X �= ∩ Y . We have:

M |=∩ X �=∩ Y ←→ M ∩ X �= M ∩ Y

←→ ∩
x∈X

Mx �= ∩
y∈Y

M y

←→ D M \ ∩
x∈X

Mx �= D M \ ∩
y∈Y

M y

(since ∩
x∈X

Mx, ∩
y∈Y

M y ⊆ D M )

←→ ∪
x∈X

(D M \ Mx) �= ∪
y∈Y

(D M \ M y)

(by De Morgan’s Law of intersection)

←→ ∪
x∈X

M�x �= ∪
y∈Y

M� y

←→ M�∪ X �= M�∪ Y

←→ M� |=∪ X �=∪ Y

←→ M� |= (∩ X �=∩ Y
)�

.

Literals of type ∩ X �⊂ ∩ Y . We have:
18
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M |=∩ X �⊂∩ Y ←→ M ∩ X �⊂ M ∩ Y

←→ ∩
x∈X

Mx �⊂ ∩
y∈Y

M y

←→ D M \ ∩
y∈Y

M y �⊂ D M \ ∩
x∈X

Mx

(since ∩
x∈X

Mx, ∩
y∈Y

M y ⊆ D M )

←→ ∪
y∈Y

(D M \ M y) �⊂ ∪
x∈X

(D M \ Mx)

(by De Morgan’s Law of intersection)

←→ ∪
y∈Y

M� y �= ∪
x∈X

M�x

←→ M�∪ Y �⊂ M�∪ X

←→ M� |=∪ Y �⊂∪ X

←→ M� |= (∩ X �⊂∩ Y
)�

. �
In view of Lemma 13, Algorithm 4 is a satisfiability test for BST(∩, �⊂, �=)-conjunctions.

Algorithm 4 Satisfiability test for BST(∩, �⊂, �=).
Require: a BST(∩, �⊂, �=)-formula ψ ;
Ensure: is ψ satisfiable?

1: let A �→ Â be the map computed by ClosureMap(ψ� , ��
�⊂
ψ� ∪ ∪�

�=
ψ� );

2: for each {L, R} ∈ �
�=
ψ� do

3: if L̂ = R̂ then
4: return false;
5: return true;

Thus, we have:

Theorem 7. The satisfiability problem for BST(∩, �⊂, �=) can be solved in quintic time.

Remark 5. Again by duality, it can be shown that the satisfiability problem for BST(∪, �⊂, �=) can be reduced in linear time 
to the satisfiability problem for BST(∩, �⊂, �=). �

4.4. Extending BST(∪, �⊂, �=) and BST(∩, �⊂, �=)

As stated at the beginning of Section 4, BST(∪, �⊂, �=) and BST(∩, �⊂, �=) generalize, respectively, BST(∪,=, �=) and 
BST(∩,=, �=). This can be shown by using the tools of existential expressibility and of O( f )-expressibility.

Lemma 14.

(i) Literals of the forms

x ⊆ y and x = y

are expressible both in BST(∪, �⊂) and in BST(∩, �⊂);
(ii) literals of the form x ⊂ y are expressible both in BST(∪, �⊂, �=) and in BST(∩, �⊂, �=).

Proof. As a consequence of the bi-implication

|= x ⊆ y ←→ y �⊂ y ∪ x, (19)

literals of the form x ⊆ y are expressible in BST(∪, �⊂), since y �⊂ y ∪ x is a BST(∪, �⊂)-literal.
To prove (19), let M be any set assignment that satisfies x ⊆ y. Then M |= y = x ∪ y, so that M |= y �⊂ y ∪ x holds. On the 

other hand, if a set assignment M models y �⊂ y ∪ x, then M |= y = y ∪ x, namely M |= x ⊆ y, as |= y ⊆ y ∪ x.
Similarly, one can show that literals of the form x ⊆ y are expressible in BST(∩, �⊂), by relying on the bi-implication:

|= x ⊆ y ←→ y ∩ x �⊂ x.
19
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In the light of the preceding results, the conjunction

x ⊆ y ∧ y ⊆ x,

and therefore the literal

x = y,

is plainly expressible both in BST(∪, �⊂) and in BST(∩, �⊂), completing the proof of (i).
Concerning (ii), from the bi-implication

|= x ⊂ y ←→ x ⊆ y ∧ x �= y,

and from (i) it readily follows that x ⊂ y is expressible both in BST(∪, �⊂, �=) and in BST(∩, �⊂, �=). �
The above lemma yields that BST(∪,=, �=)- and BST(∩,=, �=)-conjunctions can be expressed by BST(∪, �⊂, �=)- and 

BST(∩, �⊂, �=)-conjunctions, respectively. Thus, from Lemma 6 and Theorems 6 and 7, we have:

Lemma 15. The satisfiability problem for the theories

- BST(∪, =∅, �=∅, ¬Disj, ⊆, �, =, �=, ⊂, �⊂)

- BST(∩, =∅, �=∅, Disj, ¬Disj, ⊆, �, =, �=, ⊂, �⊂)

can be solved in quintic time.

Related work and conclusions

In [4,6], we highlighted initial results on fragments of set theory endowed with polynomial-time satisfiability decision 
tests, potentially useful for automated proof verification and, more generally, in the symbolic manipulation of declara-
tive specifications (cf., e.g., [18,9,8,2]). At the outset, we focused on ‘Boolean Set Theory’, BST , namely the language of 
quantifier-free formulae that involves set-variables, the Boolean set operators ∪, ∩, \, the Boolean relators ⊆, �, =, �=, and 
the predicates ‘ =∅’ and ‘Disj( , )’ along with their opposites. That language, whose expressive power is greater than it may 
appear at first glance (cf. [3]), has an NP-complete satisfiability problem. In [4] we arranged the fragments of BST in a 
full complexity taxonomy which spots the 18 minimal NP-complete fragments, and the 5 maximal polynomial fragments. 
We then announced a study on sub-maximal polynomial fragments of BST , which this paper has undertaken, but which 
is left largely undone.

Two of the four decidable fragments of set theory studied in this paper do not perfectly fit into the taxonomy introduced 
in [4], according to which a conjunct of the form �⊂ should not be regarded as a literal but, rather, as the disjunction of 
two literals. This does not imply that we should redesign our BST taxonomy; anyhow, it slightly broadens the inventory 
of addressed satisfiability decision algorithms—a treatable formula is not always a conjunction of literals, but it can be a 
conjunction of literals and ‘small’ disjunctions. It should be noted that a move towards a similar broadening already took 
place in the translation [3] of MLS into BST , where the formula resulting from a translation could be a conjunctive normal 
form involving only small disjunctions.

As said at the end of [4], we envisage a confluence of the line of research centered on satisfiability testers, to which this 
paper, along with [4,6,3], contributes, with another active line of research centered on set-unification algorithms (see, e.g., 
[10]).

Another foreseeable confluence has to do with a long-standing line of research initiated by [12,13], concerning the 
cooperation among decision algorithms (see also, among many, [16]). In connection with the problem of combining decision 
algorithms, it is worth noticing that not just BST but even the much richer decidable theory MLS turns out to be ‘convex’ 
in the sense explained in [14].
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