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Abstract. We consider the inverse problem of determining an inclusion con-

tained in a body for a Schrödinger type equation by means of local Cauchy data.
Both the body and the inclusion are made by inhomogeneous and anisotropic

materials. Under mild a priori assumptions on the unknown inclusion, we es-

tablish a logarithmic stability estimate in terms of the local Cauchy data. In
view of possible applications, we also provide a stability estimate in terms of

an ad-hoc misfit functional.

1. Introduction. The paper addresses the inverse boundary value problem of de-
termining an inclusion D contained in a body Ω for a Schrödinger type equation
by means of complete measurements on a portion Σ of the boundary. More pre-
cisely, we assume that Ω is a bounded domain in Rn, n ≥ 3 and D is an open set
contained in Ω. Let both the body Ω and the inclusion D be made by different
inhomogeneous and anisotropic materials. Consider a weak solution u ∈ H1(Ω) to
the Dirichlet problem {

div(σ∇u) + qu = 0 in Ω,
u = f on ∂Ω,

(1)

(2)

with

σ(x) = (ab(x) + (aD(x)− ab(x))χD(x))A(x), (3)

and

q(x) = qb(x) + (qD(x)− qb(x))χD, (4)

where ab, qb and aD, qD are the scalar parameters of the background body Ω and
the inclusion D, respectively, χD is the characteristic function of D and A(x) is a
matrix-valued function. We denote by CΣ

D the set of all the possible Cauchy data
(u|Σ, σ∇u · ν|Σ) associated to the problem, where ν is the outer unit normal of Ω
at Σ.

The inverse problem consists in the determination of D given CΣ
D.

For q = 0, namely when one deals with the conductivity equation, the direct
problem is well-posed and one can define the so-called Dirichlet-to-Neumann map
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ΛD : H
1
2
00(Σ) → H

− 1
2

00 (Σ)

f → σ∇u · ν|Σ, (5)

which, roughly speaking, assigns to each electric potential prescribed on Σ the
corresponding current density. When no sign nor spectrum condition on q are
assumed, the existence of such operator is not guaranteed.

Notice that the inverse problem we are discussing encompasses the classical in-
verse conducting problem for a special class of anisotropic conductivities σ of the
form (3) as well as the reduced wave equation △u+ k2c−2u = 0.

The prototype of this class of inverse problems is the determination of an inclusion
in an isotropic electrostatic conductor by means of full boundary measurements
of the electric potential and the current flux. The uniqueness issue for such an
inverse problem was solved by Isakov in [25] by combining the Runge approximation
theorem with the use of solutions with Green’s function type singularities. The
stability counterpart of Isakov’s result has been tackled by Alessandrini and Di
Cristo in [5] by providing a logarithmic stability estimate. Their argument is still
based on singular solution method, whereas Runge approximation argument has
been replaced by the quantitative unique continuation estimates, since they seem
to be more suitable for stability purposes. This strategy has inspired a line of
research in which some methods and results have been extended to more complicated
equations and systems (see for instance [17], [18], [6], [31]). More recently, in the
spirit of [9], where it has been observed that an improvement of the stability rate is
possible for finite dimensional unknown conductivities, Lipschitz stability estimates
for poligonal or polyhedral inclusions have been provided mainly in the context
of the conductivity equation and the Helmholtz equation (see [14], [15], [13], [11]).
Another class of problems which is a particular instance of our problem is the optical
tomography, which is mostly studied in medical imaging to infer the properties of
a tissue (see for instance [10]).

The purpose of our work is to prove the continuous dependence of D in the
Hausdorff metric from the local Cauchy data via a modulus of continuity of loga-
rithmic type. Although our strategy has been stimulated by the one introduced in
[5], the more general context we are dealing with requires the development of new
arguments and tools.

Let us summarize the main steps of our proof with the related issues.

i) We introduce the space of local Cauchy data CΣ
D measured on the accessible

portion Σ and their metric structure as a subspace of a Hilbert space. As in [4],
we express the error on the boundary data in terms of the so-called distance
(or aperture) between spaces of Cauchy data. We also wish to recall that when
the local Dirichlet to Neumann map ΛΣ

D exists, for instance when q = 0, the
local Cauchy data is the graph of ΛΣ

D and the distance between two sets of
Cauchy data is equivalent to the norm of the difference of the corresponding
local Dirichlet to Neumann maps. For two inclusions D1 and D2, we consider
the corresponding local Cauchy data sets CΣ

D1
, CΣ

D2
collected on Σ, the distance

d(CΣ
D1
, CΣ

D2
) and, by using the Alessandrini identity argument, we establish the

following inequality∣∣∣ ∫
Ω

(σ2 − σ1)∇u1 · ∇u2 +
∫
Ω

(q1 − q2)u1u2

∣∣∣ ≤
≤ d(CΣ

D1
, CΣ

D2
) ∥(u1, σ1∇u1 · ν)∥H ∥(ū2, σ2∇ū2 · ν)∥H,

(6)
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(see Subsection 2.3). Here, ui is a solution to (1) when D = Di in (3) and (4)
for i = 1, 2. Let us also observe that, in order to prove the above estimate, the
uniqueness of the solution to the Dirichlet problem (1)− (2) is not necessary.

ii) Since the equation at hand might be in the eigenvalue regime, we need to con-
struct and to estimate Green’s function with mixed type boundary conditions,
namely Dirichlet type on a portion of the boundary and complex-valued Robin
type in the remaining one. Such a boundary value problem with local complex
Robin condition is well-posed as proved by Bamberger and Duong in [12]. We
adapt the argument introduced in [4] to our equation, in which the principal
part has a matrix-valued leading coefficient that might have a discontinuity
across the boundary of the inclusion D. We overcome the leading term discon-
tinuity issue by using a quite recent result of propagation of smallness due to
Carstea and Wang [16] for a scalar second order elliptic equation in divergence
form whose leading coefficients are Lipschitz continuous on two sides of a C2

hypersurface that crosses the domain, but may have jumps across this hyper-
surface. We consider the above inequality for singular solutions u1(·) = G1(·, y)
and u2(·) = G2(·, w) defined on a larger domain.

Focusing on the right hand side of (6), we introduce the function

f(y, w) = SD1
(y, w)− SD2

(y, w), (7)

which is a solution of our underlying equation in the connected component G
of Rn \ (D1 ∪D2) which contains Rn \ Ω. Moreover, in the case in which y, w
are placed outside Ω, f is controlled in terms of d(CΣ

D1
, CΣ

D2
). We propagate

the smallness of f as y, w move inside Ω within G. We wish to underline a
delicate point of the proof which is the fact that we can only perform unique
continuation estimates near points in a subset, say V , of the boundary of D1 ∪
D2, that can be reached from G in a quantitative form. This involves the use
of chain of balls whose numbers are suitably bounded and whose radii must
be bounded from below (see [8], [6] and also [32] for a related argument). In
this respect, a crucial step is that under the a priori regularity assumptions
on D1, D2, we can prove that there exists a point P ∈ ∂D1 ∩ V such that
the Hausdorff distance between ∂D1 and ∂D2 is dominated by the distance
dist(P,D2) .

iii) We show that when y = w tends to a point P of ∂D1 \ D2, f(y, y) blows
up. The combination of such a blow-up and the control of f(y, y) in terms of
d(CΣ

D1
, CΣ

D2
) discussed above leads to the logarithmic estimate

dH(∂D1, ∂D2) ≤ C
∣∣log(d(CΣ

D1
, CΣ

D2
))
∣∣−η

. (8)

The new features of anisotropic and inhomogeneous leading coefficient, as well
as the additional zero-order term, require a careful analysis of the asymptotic
behaviour of the singular solutions Gi(·, y) when the pole y approaches to the
inclusion Di, i = 1, 2 and serves as a tool to achieve the blow up estimate of
f(y, y).

We believe that the present study might be a theoretical building block for future
Lipschitz stability result and corresponding numerical reconstruction procedure un-
der the a priori assumption of poygonal or polyhedral inclusion. For this reason,
we also choose to provide the following stability estimate

dH(∂D1, ∂D2) ≤ C |logJ (D1, D2)|−η
, (9)
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in the present context of a general inclusion with C2 boundary and in terms of a
misfit functional

J (D1, D2) =

∫
Dy×Dz

∣∣∣ ∫
Σ

[σ1(x)∇G1(x, y) · ν(x)G2(x, z)−

−σ2(x)∇G2(x, z) · ν(x)G1(x, y)] dS(x)
∣∣∣2dy dz, (10)

where the Dy, Dz are suitably chosen sets compactly contained in Rn \ Ω̄ (see Sec-
tion 5 for a more precise definition). We expect that for polygonal or polyhedra
inclusions, the logarithmic rate in (9) might be improved up to a Hölder type sta-
bility. As shown in [3] (see also [22]), the above mentioned Hölder estimate may be
suitable to the numerical reconstructions and to the use of the singular solutions
method. The use of a misfit functional of such kind suggests that the knowledge of
the full Dirichlet to Neumann map or the full local Cauchy data set are not nec-
essary, and that it suffices to sample them on Green’s type functions with sources
placed outside the physical domain.

The paper is organised as follows. In Section 2 we introduce the a priori assump-
tions, we define the local Cauchy data and state the main theorem. In Section 3 we
introduce the geometric lemmas and we prove the main theorem. In Section 4 we
introduce and prove technical propositions. In particular, we construct the Green
function (Lemma 4.1) and we prove the upper bound for f (Proposition 3.4) and
the lower bound for f (Proposition 3.5). In Section 5 we derive a stability result in
terms of the misfit functional (10).

2. Main result.

2.1. Notation and definitions. Denote a point x ∈ Rn by x = (x′, xn), where
x′ ∈ Rn−1 and xn ∈ R, n ≥ 3. Denote with Br(x) ⊂ Rn, B′

r(x
′) ⊂ Rn−1 the open

balls centred at x, x′ respectively with radius r, with Qr(x) the cylinder

Qr(x) = B′
r(x

′)× (xn − r, xn + r).

Set Br = Br(O), Qr = Qr(O), denote with Rn
+ = {(x′, xn) ∈ Rn : xn > 0} the

positive real half space, with Rn
− = {(x′, xn) ∈ Rn : xn < 0} the negative real

half space, with B+
r = Br ∩ Rn

+ the positive semisphere centred at the origin, with
B−

r = Br ∩ Rn
− the negative semisphere centred at the origin.

Definition 2.1 (C2 regularity). Let Ω ⊂ Rn be a bounded domain. We say that
a portion Σ of ∂Ω is of C2 class with constants r0, L > 0, if, for any point P ∈ Σ,
there exists a rigid transformation of coordinates under which P = O and

Ω ∩Qr0 = {x ∈ Qr0 : xn > φ(x′)} ,

where φ ∈ C2(B′
r0) is such that

φ(O) = |∇φ(O)| = 0 and ∥φ∥C2(B′
r0

) ≤ Lr0.

Remark 2.2. The C2-norm in Definition 2.1 is normalized so that its terms are
dimensionally homogeneous, i.e.

∥φ∥C2(B′
r0

) =
2∑

i=0

ri0∥∇iφ∥L∞(B′
r0

).
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Definition 2.3. Let Ω be a domain of Rn. We say that a portion Σ of the boundary
of Ω is a flat portion of size r0 if there exist a point P ∈ Σ and a rigid transformation
of coordinates under which P = O and

Σ ∩Q r0
3
=

{
x ∈ Q r0

3
: xn = 0

}
,

Ω ∩Q r0
3
=

{
x ∈ Q r0

3
: xn > 0

}
,

(Rn \ Ω) ∩Q r0
3
=

{
x ∈ Q r0

3
: xn < 0

}
.

Definition 2.4. The Hausdorff distance between two bounded closed subsets D1

and D2 in Rn is defined as

dH(D1, D2) := max
{
max
w∈D2

dist(w,D1), max
w∈D1

dist(w,D2)
}
.

2.2. A priori information. In this section, we introduce the a priori information
on the domain Ω, the inclusion D and the coefficients σ and q.

i) Domain. The set Ω is a bounded domain in Rn such that

∂Ω is of Lipschitz class with constants r0, L, (11)

|Ω| ≤ Nrn0 , (12)

where r0, L,N are given positive constants, n ≥ 3.
ii) Open portion of the boundary.

Σ ⊂ ∂Ω is a non-empty, flat open portion, (13)

iii) Inclusion. Let D be a connected subset of Ω such that

D ⊂⊂ Ω and dist(∂D, ∂Ω) ≥ δ0 > 0, (14)

∂D is of C2 class with constants r0, L, (15)

Ω \ D̄ is connected. (16)

iv) Parameters.
The coefficient σ ∈ L∞(Ω, Symn) has the following structure

σ(x) = (ab(x) + (aD(x)− ab(x))χD(x))A(x), (17)

where the scalar functions ab, aD are in C0,1(Ω̄). Moreover, there exist γ̄ > 1,
η0 > 0 such that

γ̄−1 ≤ ab(x), aD(x) ≤ γ̄, for x ∈ Ω, (18)

(aD(x)− ab(x))
2 ≥ η20 > 0, for x ∈ Ω. (19)

The real n×n matrix-valued function A(x) is a symmetric Lipschitz continuous
function such that there exists Ā > 0 for which

∥A∥C0,1(Ω) ≤ Ā. (20)

The matrix-valued function σ satisfies the uniform ellipticity condition, i.e.
there exists a constant λ̄ > 1 such that

λ̄−1|ξ|2 ≤ σ(x)ξ · ξ ≤ λ̄|ξ|2, for a.e. x ∈ Ω, for all ξ ∈ Rn. (21)

The scalar function q has the form

q(x) = qb(x) + (qD(x)− qb(x))χD(x), (22)

where the functions qb, qD are in L∞(Ω̄). Moreover, there exists γ̄ > 0 such
that

∥q∥L∞(Ω) ≤ γ̄. (23)
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 The set {n, N, r0, L, ¯A, γ¯, ¯λ, δ0} is called the a priori data.

2.3. Local Cauchy data and the main result. Consider a domain Ω, an in-
clusion D satisfying (11)-(12) and (14)-(16) respectively. Let Σ be the accessible
portion of ∂Ω where the boundary measurements are taken. A Cauchy data set is
a collection of boundary data measurements associated with an inclusion. Before
giving the formal definition of the notion of local Cauchy data, we introduce suitable
trace spaces.

Let

H
1
2
co(Σ) =

{
f ∈ H

1
2 (∂Ω) : supp(f) ⊂ Σ

}
be the trace space that contains all the trace functions which are compactly sup-

ported in Σ. Denote with H
1
2
00(Σ) its closure under the norm ∥ · ∥

H
1
2 (∂Ω)

. Similarly,

let

H
1
2
co(∂Ω \ Σ̄) =

{
f ∈ H

1
2 (∂Ω) : supp(f) ⊂ ∂Ω \ Σ̄

}
,

and denote with H
1
2
00(∂Ω \ Σ̄) its closure under the norm ∥ · ∥

H
1
2 (∂Ω)

. Let H− 1
2 (∂Ω)

be the dual space of H
1
2
co(∂Ω).

Definition 2.5. The Cauchy data set on Σ associated with the inclusion D is
defined as the set

CΣ
D(Ω) =

{
(f, g) ∈ H

1
2
00(Σ)×H− 1

2 (∂Ω) : ∃u ∈ H1(Ω) weak solution to

div(σ∇u) + qu = 0 in Ω,

u|∂Ω = f, σ∇u · ν|∂Ω = g
}
.

(24)

Let

H
− 1

2
00 (∂Ω \ Σ̄) =

{
ψ ∈ H− 1

2 (∂Ω) : ⟨ψ,φ⟩ = 0, ∀φ ∈ H
1
2
00(Σ)

}
,

where ⟨ψ,φ⟩ represents the duality between the spacesH− 1
2 (∂Ω) andH

1
2 (∂Ω) based

on the inner product on L2(∂Ω)

⟨ψ,φ⟩ =
∫
∂Ω

ψ(x) · φ(x) dx.

Define H
1
2 (∂Ω)|Σ and H− 1

2 (∂Ω)|Σ as the restrictions to Σ of the trace spaces

H
1
2 (∂Ω) and H− 1

2 (∂Ω) respectively. These trace spaces can be equivalently de-
fined as quotient spaces via the following relation:

φ ∼ ψ ⇐⇒ φ− ψ ∈ H
1
2
00(∂Ω \ Σ̄),

so that

H
1
2 (∂Ω)|Σ = H

1
2 (∂Ω)/ ∼ = H

1
2 (∂Ω)/H

1
2
00(∂Ω \ Σ̄).

Similarly,

H− 1
2 (∂Ω)|Σ = H− 1

2 (∂Ω)/H
− 1

2
00 (∂Ω \ Σ̄).
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Definition 2.6. The local Cauchy data on Σ associated with the inclusion D whose
first component vanishes on ∂Ω \ Σ is defined as

CΣ
D(Σ) =

{
(f, g) ∈ H

1
2
00(Σ)×H− 1

2 (∂Ω)|Σ : ∃u ∈ H1(Ω) weak solution to

div(σ∇u) + qu = 0 in Ω,

u = f on ∂Ω,

⟨σ∇u · ν|∂Ω, φ⟩ = ⟨g, φ⟩, ∀φ ∈ H
1
2
00(Σ)

}
.

Notice that CΣ
D(Σ) is a subspace of the product space H

1
2
00(Σ)×H− 1

2 (∂Ω)|Σ.
Set H := H

1
2
00(Σ)×H− 1

2 (∂Ω)|Σ. Notice that H is a Hilbert space with norm

∥(f, g)∥H =
(
∥f∥2

H
1
2
00(Σ)

+ ∥g∥2
H− 1

2 (∂Ω)|Σ

) 1
2

, (f, g) ∈ H.

Let D1, D2 be two inclusions satisfying (14)-(16). In order to simplify the notation,
set Ci = CΣ

Di
(Σ) for i = 1, 2 which denote the local Cauchy data associated with the

corresponding inclusions.
As in [3], we find convenient to introduce the notion of distance (or aperture)

between closed subspaces F and G of a Hilbert space H as the quantity

d(F ,G) = max
{

sup
h∈G,h̸=0

inf
k∈F

∥h− k∥
∥h∥

, sup
k∈F,k ̸=0

inf
h∈G

∥h− k∥
∥k∥

}
.

As a reference for the related theory and applications see [26], [27]. If d(F ,G) < 1,
it is known that the two quantities in the maximum coincide (see [27, Corollary
2.13]), therefore we can assume that

d(F ,G) = sup
h∈G,h̸=0

inf
k∈F

∥h− k∥
∥h∥

. (25)

Choose F = C1 and G = C2, since we consider the case in which d(C1, C2) < 1, then
by (25) the distance between two local Cauchy data has the form

d(C1, C2) = sup
(f1,g1)∈C1\{(0,0)}

inf
(f2,g2)∈C2

∥(f1, g1)− (f2, g2)∥H
∥(f1, g1)∥H

. (26)

Let ω : [0,+∞) → [0,+∞) be a non decreasing, positive function such that

ω(t) ≤ | ln t|−η for t ∈ (0, 1), ω(t) → 0 as t→ 0+, (27)

where η is a positive constant.

Theorem 2.7. Let Ω ⊂ Rn, n ≥ 3 be a bounded domain satisfying (11)-(12) and
let D1, D2 be two inclusions of Ω satisfying (14)-(16). Let σ1, σ2 be the anisotropic
coefficients satisfying (17)-(21) and let q1, q2 be the coefficients of the zeroth order
term satisfying (22)-(23). Let Σ be a non-empty open portion of ∂Ω. Let C1, C2
be the local Cauchy data corresponding to the inclusions D1, D2, respectively. For
ϵ ∈ (0, 1), if d(C1, C2) < ϵ, then

dH(∂D1, ∂D2) ≤ Cω(ϵ), (28)

where C is a positive constant depending on the a priori data only and ω is defined
in (27).
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3. Proof of theorem 2.7. To begin with, in the spirit of [5], we introduce the
so-called modified distance. After that, we introduce the singular solutions and state
Proposition 3.4 and Proposition 3.5 which allow us to upper-bound the function f
defined in (42) in terms of the distance between two Cauchy data sets and to lower
bound f in terms of the geometric quantities related with our problem. In the last
part, we prove Theorem 2.7.

3.1. Metric lemmas. Let Ω ⊂ Rn be a bounded domain satisfying (11)-(12) and
let D1, D2 be two inclusions contained in Ω satisfying (14)-(16). Let σ1, σ2 be the
anisotropic coefficients satisfying (17)-(21), and q1, q2 satisfying (22)-(23).

Denote with G the connected component of Ω\(D1∪D2) whose boundary contains
∂Ω. Set ΩD = Ω \ G.

Definition 3.1. The modified distance between two closed subsets D1 and D2 of
Rn is the number

dµ(D1, D2) = max
{

max
x∈∂D1∩∂ΩD

dist(x,D2), max
x∈∂D2∩∂ΩD

dist(x,D1)
}
. (29)

The introduction of another map that quantifies the distance between two inclusions
D1, D2 is justified by the fact that the point in which the Hausdorff distance is
attained may lay on ∂D1 ∪ ∂D2 but not on ∂ΩD. This is an obstruction in view of
the application of the propagation of smallness argument, since in order to reach
that point from ∂Ω we have to cross ∂D1 ∪ ∂D2.

In general, the modified distance is not a distance and it does not bound the Haus-
dorff distance from above (see [2] for a counterexample). Under our assumptions on
the inclusions, the following lemma guarantees that in our case dµ dominates dH
(for the proof see [5, Proposition 3.3]).

Lemma 3.2. Let Ω, D1, D2 be, respectively, a bounded domain satisfying (11)-(12)
and two inclusions satisfying (14)-(16). Then there is a positive constant c which
depends only on the a priori data such that

dH(∂D1, ∂D2) ≤ cdµ(D1, D2). (30)

Let us remark now that for simplicity we assume that there exists a point on ∂D1∩
∂ΩD which realizes the modified distance. We denote that quantity simply as dµ.

In order to apply the quantitative estimates for unique continuation, based on
the iterated application of the three-spheres inequality, it is important to control
the radii of these balls from below and to avoid the case in which points of ∂ΩD are
not reachable by such a chain of balls. Hence, we find convenient to introduce here
ideas first presented in [8] and then applied by [6] in the elasticity case.

Let O denote the origin in Rn, ν be a unit vector, h > 0 and θ ∈
(
0, π2

)
be an

angle. We recall that the closed truncated cone with vertex at O, axis along the
direction ν, height h and aperture 2θ is given by

C(O, ν, h, θ) = {x ∈ Rn : |x− (x · ν)ν| ≤ |x| sin θ, 0 ≤ x · ν ≤ h} . (31)

In our case, for d,R > 0 such that R < d, fixed a point Q = −den, we consider the
closed cone

C

(
O,−en,

d2 −R2

d
, arcsin

R

d

)
whose oblique sides are tangent to the sphere ∂BR(O).

Let us pick a point P ∈ ∂D1 ∩ ∂ΩD and let ν be the outer unit normal to ∂D1

at P . For a suitable d > 0, let [P + dν, P ] be the segment contained in Rn \ Ω̄D.

8



For P0 ∈ Rn \ Ω̄, let γ : [0, 1] → Rn \ Ω̄D be the path contained in Rn \ Ω̄D

such that γ(0) = P0 and γ(1) = P + dν. Consider the following neighbourhood of
γ ∪ [P + dν, P ] \ {P} formed by a tubular neighbourhood of γ attached to a cone
with vertex at P and axis along ν,

V (γ) =

⋃
S∈γ

BR(S)

 ∪ C
(
P, ν,

d2 −R2

d
, arcsin

R

d

)
. (32)

Notice that V (γ) will depend on the parameters d,R, that will be chosen step by
step. The following result guarantees the application of the three-sphere inequality
along the tubular neighbourhood contained in Rn \ Ω̄D centred at any point of
∂D1 ∩ ∂ΩD (see [6, section 11] for a proof).

Lemma 3.3. There exist positive constants d̄, c1 where d̄
r0
, c1 depend on L and there

exists a point P ∈ ∂D1 satisfying

c1dµ ≤ dist(P,D2), (33)

and such that, for any P0 ∈ B r0
16
(P0), where B r0

16
(P0) ⊂⊂ Rn \ Ω̄D, there exists a

path γ ⊂ Rn \ Ω̄D joining P0 to P + d̄ν where ν is the outer unit normal to D1 at P
such that, if we choose the coordinate system in which P coincides with the origin
and ν = −en, then

V (γ) ⊂ Rn \ ΩD, (34)

where V (γ) is the tubular neighbourhood introduced in (32), provided that R =
d̄√

1+L2
0

, where L0 > 0 depends only on L.

3.2. Proof of theorem 2.7. Before proving the theorem, fix a point on the surface
Σ so that, up to a rigid transformation, it coincides with the origin. We define D0

as the bounded domain with Lipschitz constants r0 > 0, L > 0 of the form

D0 =
{
x ∈ (Rn \ Ω) ∩Br0 : |xi| < r0, i = 1, . . . , n− 1, −r0 < xn < 0

}
, (35)

such that ∂D0 ∩ ∂Ω ⊂⊂ Σ. We define the augmented domain Ω0 as the set

Ω0 =
◦

Ω ∪D0. (36)

It turns out that Ω0 is of Lipschitz class with constants r0 and L̃, where L̃ depends
on L only. Moreover, let Σ0 ⊂ ∂D0 be a nonempty portion of the boundary of D0

of the form

Σ0 = {x ∈ Ω0 : |xi| ≤ r0, xn = −r0} ,
such that Σ0 ∩ ∂Ω = ∅.

Consider D1, D2 the two inclusions of Ω satisfying (14)-(16). Without loss of
generality, we can extend the corresponding coefficients σ1, σ2, q1, q2 to the aug-
mented domain Ω0 by setting their value equal to the identity matrix on D0, so
that they are of the form

σi(x) =
(
ab(x) + (aDi(x)− ab(x))χDi(x)

)
A(x), for any x ∈ Ω,

σi|D0
= I, qi|D0

= 1.

We denote with the same symbol the extended coefficients σi and qi for i = 1, 2.
By now, let us drop the pedix i and consider the coefficients σ, q associated

with a generic inclusion D. Denote with G the Green function associated with the

9



operator div(σ(·)∇·)+ q(·) on the augmented domain Ω0. For every y ∈ D0, G(·, y)
is the distributional solution to the Dirichlet problem div(σ(·)∇G(·, y)) + q(·)G(·, y) = −δ(· − y) in Ω0,

G(·, y) = 0 on ∂Ω0 \ Σ0,
σ(·)∇G(·, y) · ν(·) + iG(·, y) = 0 on Σ0,

(37)

where δ(· − y) is the Dirac distribution centred at y and ν is the outer unit normal
at Σ0. The following property holds true for the Green’s functions (see Lemma 4.1):

0 < |G(x, y)| < C|x− y|2−n for any x ̸= y, (38)

where C is a positive constant depending on λ̄ and n.
Let us now consider G1 and G2 the Green functions solutions to (37) associated to

the inclusionsD1 andD2 respectively. Fix k in (37), then multiply the first equation
by Gj(·, y) for j ̸= k and integrate by parts on Ω. Repeat the same procedure
interchanging the role of k and j. Subtracting the two quantities obtained leads to
the following equality∫

Σ

[
σ1(x)∇G1(x, y) · ν(x)G2(x, z)− σ2(x)∇G2(x, z) · ν(x)G1(x, y)

]
dS(x) =

=

∫
Ω

(σ1(x)− σ2(x))∇G1(x, y) · ∇G2(x, z) dx+

+

∫
Ω

(q2(x)− q1(x))G1(x, y)G2(x, z) dx.

(39)

Define

S1(y, z) =

∫
D1

(aD1(x)− ab(x))A(x)∇G1(x, y) · ∇G2(x, z) dx−

−
∫
D1

(qD1(x)− qb(x))G1(x, y)G2(x, z) dx.

(40)

S2(y, z) =

∫
D2

(aD2
(x)− ab(x))A(x)∇G1(x, y) · ∇G2(x, z) dx−

−
∫
D2

(qD2(x)− qb(x))G1(x, y)G2(x, z) dx.

(41)

Set

f(y, z) = S1(y, z)− S2(y, z). (42)

As a premise to the main result, we state the Proposition 3.4 and Proposition
3.5 that allow us to determine an upper bound of f in terms of the Cauchy data
d(C1, C2) and a lower bound of f .

Proposition 3.4. Let D1, D2 be two inclusions of Ω satisfying (14)-(16). Let C1, C2
be the local Cauchy data associated with the inclusions D1, D2, respectively. Under
the notation of Lemma 3.3, let

y = hν(O),

where

0 < h ≤ d̄

(
1− sin θ0

4

)
for θ0 = arctan

1

L
,

10



and ν(O) is the outer unit normal of D1 at O. For ϵ ∈ (0, 1), if d(C1, C2) < ϵ, it
follows that

|f(y, y)| ≤ c1
ϵBhF

hA
, (43)

where A,B, F, c1 > 0 constants that depend on the a priori data only.

Proposition 3.5. Under the same assumptions as in Proposition 3.4 and Lemma
3.3, there exist c2, c3 > 0, h̄ ∈

(
0, 12

)
that depend on the a priori data only such that

|f(y, y)| ≥ c2h
2−n − c3(dist(O,D2)− h)2−2n for 0 < h < h̄r̄2, (44)

where y = hν(O) with r̄2 ∈ (0,min
{

r0√
1+L2

min{1, L}, dist(O,D2)
}
).

Proof of Theorem 2.7. Let O ∈ ∂D1 be the point of Lemma 3.3 such that (33) is
satisfied and w.l.o.g. assume that it coincides with the origin. Choose

yh = hν(O) for 0 < h < h̄r̄2.

Combining the upper bound (43) and the lower bound (44) at yh, it follows that

c2h
2−n − c3(dist(O,D2)− h)2−2n ≤ c1

ϵBhF

hA
,

where c1, c2, c3, A,B, F are the constants appearing in the Propositions 3.4 and 3.5
which depends on the a priori data only.

Let ϵ1 ∈ (0, 1) be such that exp(−B| ln ϵ1|
1
2 ) = 1

2 . We distinguish between two
cases.

a) Assume that ϵ ∈ (0, ϵ1). Define h = h(ϵ) = min{| ln ϵ|− 1
2F , dist(O,D2)}.

If dist(O,D2) ≤ | ln ϵ|− 1
2F then from Lemma 3.2 and Lemma 3.3 the thesis

follows straightforwardly. If dist(O,D2) ≥ | ln ϵ|− 1
2F , then h = | ln ϵ|− 1

2F so
that

c4(dist(O,D2)− h)2(1−n) ≥ c5
(
1− ϵBhF

hÃ
)
h2−n, (45)

where Ã = 1−A. Since

ϵBhF

hÃ ≤ exp(−B| ln ϵ| 12 ),
then

(dist(O,D2)− h)2(1−n) ≥ c6h
2−n,

and since h = | ln ϵ|− 1
2F ,

dist(O,D2) ≤ c7| ln ϵ|−η for η =
n− 2

4F (n− 1)
.

b) Assume that ϵ ∈ [ϵ1, 1), then, since dist(O,D2) ≤ diam(Ω), it follows that

dist(O,D2) ≤ diam(Ω)
| ln ϵ|− 1

2F

| ln ϵ1|−
1

2F

.

Finally, applying Lemma 3.2 and Lemma 3.3, the thesis follows.

4. Proofs of technical propositions. In this section, we construct the Green
functions associated with (37) and we sketch the proofs of the Proposition 3.4 and
Proposition 3.5 stated in section 3.1. In order to simplify the notation, we prefer to
drop the pedix i = 1, 2 for all the quantities related to the two inclusions, so that
the following statements hold true for a generic inclusion D satisfying (14)-(16),
coefficients σ satisfying (17)-(21) and q satisfying (22)-(23).

11



4.1. The construction of the green function.

Lemma 4.1. For any σ ∈ L∞(Ω0, Symn) that satisfies the uniform ellipticity
condition, for any q ∈ L∞(Ω0), y ∈ Ω0 there exists a unique distributional solution
G(·, y) of the boundary value problem div (σ(·)∇G(·, y)) + q(·)G(·, y) = −δ(· − y) in Ω0,

G(·, y) = 0 on ∂Ω0 \ Σ0,
σ(·)∇G(·, y) · ν(·) + iG(·, y) = 0 on Σ0,

(46)

such that for any x, y ∈ Ω0, x ̸= y, there exists a constant C depending on the a
priori data such that

0 < |G(x, y)| ≤ C|x− y|2−n. (47)

Proof. Our proof is based on the reasoning introduced in [4, Proposition 3.1]. We
find more convenient to divide the proof into three steps: in the first step we
prove the well-posedness of the problem, in the second step we construct the Green
function and in the final step we prove the symmetry of the Green function.

First step (well-posedness) For f ∈ L2(Ω0), consider the following mixed
boundary value problem div(σ∇v) + q v = f, in Ω0,

v = 0, on ∂Ω0 \ Σ0,
σ(·)∇v(·) · ν(·) + iv(·) = 0, on Σ0.

(48)

Our goal is to find a solution v ∈ H1(Ω0) in the weak sense. Consider the adjoint
mixed boundary value problem div(σ∇w) + q w = f, in Ω0,

w = 0, on ∂Ω0 \ Σ0,
σ(·)∇w(·) · ν(·)− iw(·) = 0, on Σ0.

(49)

The Fredholm alternative tells us that existence of a solution to (48) implies unique-
ness to (49) and viceversa (see [21, Theorem 4, §6]). We prove uniqueness for both
boundary value problems. Consider the homogeneous problem div(σ∇u) + qu = 0, in Ω0,

u = 0, on ∂Ω0 \ Σ0,
σ(·)∇u(·) · ν(·)± iu(·) = 0 on Σ0.

(50)

Assume that u ∈ H1(Ω0). If we multiply (50) by ū and integrate on Ω0, by the
Green’s identity it follows that∫

Ω0

σ(x)∇u(x) · ∇ū(x) dx−
∫
Ω0

q(x)|u(x)|2 dx± i

∫
Σ0

|u(x)|2 dx = 0. (51)

Therefore, u = 0 on Σ0. Hence, u satisfies the Cauchy problem{
div(σ∇u) + qu = 0, in Ω0,
u = 0, on ∂Ω0.

(52)

so that u = 0 in Ω0. In conclusion, we have proved existence and uniqueness for
(48). It remains to prove stability. For this purpose, consider v ∈ H1(Ω0) the weak
solution to (48), then by the weak formulation the following identities hold:∫

Σ0

|v|2 = −ℑ
(∫

Ω0

fv̄
)
, (53)
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∫
Ω0

σ(x)∇v(x) · ∇v̄(x) dx = −ℜ
(∫

Ω0

fv̄
)
+

∫
Ω0

q(x)|v(x)|2 dx. (54)

Define the following quantities:

ϵ2 =

∫
Σ0

|v|2 +
∫
Σ0

σ(x)∇v(x) · ν(x) v̄(x) dx,

η = ∥f∥L2(Ω0), δ = ∥v∥L2(Ω0), E = ∥∇v∥L2(Ω0).

From the Schwarz inequality and (53), it follows that∫
Σ0

|v|2 ≤ η δ, (55)

and combined with the impedance condition,

ϵ2 ≤ 2η δ. (56)

From (53), we derive

E2 ≤ η δ + ∥q∥2L∞(Ω0)
δ2. (57)

Our claim is that there exists a positive constant which depends on the a priori
data such that

E2 ≤ Cη2. (58)

We distinguish between two cases.

• If δ2 ≤ η2, then the claim follows from (57).
• If δ2 ≥ η2, we recall a quantitative estimate of unique continuation due to
Carstea and Wang [16, Theorem 5.3], which is a generalization of [7, Theorem
1.9], so that

δ2 ≤
(
E2 + ε2 + η2

)
ω
( ε2 + η2

E2 + ε2 + η2

)
, (59)

where ω(t) ≤ C| ln t|−µ for t ∈ (0, 1), ω(t) → 0 for t→ 0+ and C > 0, µ ∈ (0, 1)
positive constants depending on the a priori data only. From (56) and (57),

δ2 ≤
(
ηδ + ∥q∥L∞(Ω0)δ

2 + 2ηδ + η2
)
ω
( ε2 + η2

E2 + ε2 + η2

)
≤

(
4δ2 + ∥q∥L∞(Ω0)δ

2
)
ω
( ε2 + η2

E2 + ε2 + η2

)
.

Multiplying by δ2 leads to

1 ≤ (4 + ∥q∥L∞(Ω0)) ω
( ε2 + η2

E2 + ε2 + η2

)
.

Inverting with respect to ω leads to

ω−1
( 1

4 + ∥q∥L∞(Ω0)

)
≤ ε2 + η2

E2 + ε2 + η2
.

Set C = ω−1
(

1
4+∥qD∥L∞(Ω0)

)
, it follows that

CE2 ≤ C(E2 + ε2 + η2) ≤ ε2 + η2 ≤ 2ηδ + η2 ≤ 3η2,

so that the claim follows.
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Finally, applying Poincarè inequality, it follows that

∥v∥H1(Ω0) ≤ C∥f∥L2(Ω0).

Second step (construction of the Green function) Fix y ∈ Ω0 and let

G̃(·, y) be the weak solution to the boundary value problem
div(σ(·)∇G̃(·, y)) = −δ(· − y) in Ω0,

G̃(·, y) = 0 on ∂Ω0 \ Σ0,

σ(·)∇G̃(·, y) · ν(·) + iG̃(·, y) = 0 on Σ0.

(60)

From [29], G̃(·, y) satisfies the following properties:

G̃(x, y) = G̃(y, x), (61)

and

|G̃(x, y)| ≤ C|x− y|2−n for any x ̸= y, x, y ∈ Ω0. (62)

Fix J = ⌊n−1
2 ⌋, for x ∈ Ω0, x ̸= y, define R0(x, y) = G̃(x, y)

Rj(x, y) =

∫
Ω0

q(z)G̃(x, z)Rj−1(z, y) dz for j = 1, . . . , J.

The distribution Rj(·, y) is a weak solution to the boundary value problem divx(σ(x)∇xRj(x, y)) = −q(x)Rj−1(x, y) for x ∈ Ω0,
Rj(x, y) = 0 for x ∈ ∂Ω0 \ Σ0,
σ(x)∇xRj(x, y) · ν(x) + iRj(x, y) = 0 for x ∈ Σ0,

for j = 1, . . . , J . From [30, Chapter 2] one can show that

|Rj(x, y)| ≤ C|x− y|2j+2−n, for every j = 0, 1, . . . , J − 1. (63)

For j = J , one has to distinguish between two cases:

• for n even,

|RJ(x, y)| ≤ C(| ln |x− y||+ 1), (64)

• for n odd,

|RJ(x, y)| ≤ C, (65)

where in both cases C is a positive constant which depends on the a priori data
only. In either cases,

∥RJ(·, y)∥Lp(Ω0) ≤ C, for 1 ≤ p <∞.

Define the distribution RJ+1(·, y), for y ∈ Ω0 as the weak solution to the boundary
value problem divx(σ(x)∇xRJ+1(x, y)) + q(x)RJ+1(x, y) = −q(x)RJ(x, y) for x ∈ Ω0,

RJ+1(x, y) = 0 for x ∈ ∂Ω0 \ Σ0,
σ(x)∇xRJ+1(x, y) · ν(x) + iRJ+1(x, y) = 0 for x ∈ Σ0.

It follows that ∥RJ+1(·, y)∥H1(Ω0) ≤ C where C is a positive constant and by interior
regularity estimates

|RJ+1(x, y)| ≤ C for x ̸= y, x, y ∈ Ω0. (66)

Define

G(x, y) = G̃(x, y) +
J+1∑
j=1

Rj(x, y). (67)
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For y ∈ Ω0, G(·, y) is a distributional solution to the boundary value problem (46)
so that G is the Green’s function that we were looking for.

Third step (Simmetry of the Green function). Let f, g ∈ C∞
0 (Ω0). Let

u ∈ H1(Ω0) be a weak solution to div(σ∇u) + q u = f, in Ω0,
u = 0, on ∂Ω0 \ Σ0,
σ(·)∇u(·) · ν(·) + iu(·) = 0, on Σ0.

(68)

Let v ∈ H1(Ω0) be a weak solution to div(σ∇v) + q v = g, in Ω0,
v = 0, on ∂Ω0 \ Σ0,
σ(·)∇v(·) · ν(·) + iv(·) = 0, on Σ0.

(69)

Let G(·, y) be the Green function solution to (46). The weak solution u of (68) can
be written as

u(x) =

∫
Ω0

G(x, y)f(y) dy,

and similarly,

v(x) =

∫
Ω0

G(x, y)g(y) dy.

Hence, by the Green’s identity, it follows that∫
Ω0

u(x) g(x) dx =

∫
Ω0

f(x) v(x) dx.

Hence,∫
Ω0

[∫
Ω0

G(x, y)f(y) dy

]
g(x) dx =

∫
Ω0

[∫
Ω0

G(y, x)g(x) dx

]
f(y) dy. (70)

By Fubini’s theorem and the arbitrarity of f and g, it follows that
G(x, y) = G(y, x) for any x, y ∈ Ω0.

4.2. Upper bound for the function f . Let Ω ⊂ Rn, n ≥ 3 be a bounded
domain satisfying (11)-(12) and let D1, D2 be two inclusions of Ω satisfying (14)-
(16). Let σ1, σ2 be the anisotropic coefficients satisfying (17)-(21) and let q1, q2
be the coefficients of the zeroth order term satisfying (22)-(23). Before proving
Proposition 3.4, let us introduce some useful formulas.

Let uj ∈ H1(Ω) with j = 1, 2 be a weak solution to the Dirichlet problem{
div(σj∇uj) + qjuj = 0 in Ω,

uj |∂Ω ∈ H
1
2
00(Σ).

(71)

Integrating by parts (71) leads to the following identity,∫
Ω

(σ2−σ1)∇u1·∇u2+
∫
Ω

(q1−q2)u1u2 = ⟨σ2∇ū2·ν|∂Ω, u1⟩−⟨σ1∇u1·ν|∂Ω, ū2⟩. (72)

Let vj for j = 1, 2 with vj ∈ H1(Ω) be weak solution to div(σj∇vj) + qjvj = 0 in
Ω.

⟨σj∇vj · ν|∂Ω, ūj⟩ − ⟨σj∇ūj · ν|∂Ω, vj⟩ = 0 for j = 1, 2. (73)
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Moreover, from (72) and (73), one can show that∫
Ω

(σ2 − σ1)∇u1 · ∇u2 +
∫
Ω

(q1 − q2)u1u2 =

= ⟨σ2∇ū2 · ν|∂Ω, (u1 − v2)⟩ − ⟨σ1∇u1 · ν|∂Ω − σ2∇v2 · ν|∂Ω, ū2⟩.
(74)

Finally, (74) and the the Cauchy-Schwarz inequality allow us to bound f(y, y) with
d(C1, C2) as ∣∣∣ ∫

Ω

(σ2 − σ1)∇u1 · ∇u2 +
∫
Ω

(q1 − q2)u1u2

∣∣∣ ≤
≤ d(C̄1, C̄2) ∥(u1, σ1∇u1 · ν)∥H ∥(ū2, σ2∇ū2 · ν)∥H.

(75)

We introduce the asymptotic estimates for the gradient of the Green function G
that will be used in the proof of Theorem 2.7.

Proposition 4.2. Let Ω, D be, respectively, a bounded domain satisfying (11)-(12)
and an inclusion satisfying (14)-(16). Then there exists a positive constant C1 that
depends on the a priori data only such that

|∇xG(x, y)| ≤ C1|x− y|1−n, (76)

for any x, y ∈ R3.

Proof of Proposition 4.2. See [5, Proposition 3.4].

Proof of Proposition 3.4. Fix a point ȳ ∈ D0 such that dist(ȳ, ∂Ω) ≥ c̃r0, for 0 <
c̃ < 1 suitable constant. For any w̄ ∈ Rn \ Ω̄D, f(ȳ, ·) is a weak solution to

divw (ab(·)A(·)∇wf(ȳ, ·)) + qb(·)f(ȳ, ·) = 0 in Rn \ Ω̄D. (77)

First, choose w̄ ∈ D0 such that dist(w̄, ∂Ω) ≥ c̃r0, for 0 < c̃ < 1. By (75),

|f(ȳ, w̄)| ≤ d(C̄1, C̄2) ∥(G1(·, ȳ), σ1∇G1(·, ȳ) · ν)∥H ∥(Ḡ2(·, w̄), σ2∇Ḡ2(·, w̄) · ν)∥H.
Since by Proposition 4.2 and the definition of the norm on H,

∥(G1(·, ȳ), σ1∇G1(·, ȳ) · ν)∥H ≤
(
∥G1(·, ȳ)∥2

H
1
2
00(Σ)

+ C∥∇G1(·, ȳ) · ν∥2
H− 1

2 (∂Ω)|Σ

) 1
2

,

for C suitable constant depending on Ā and γ̄, it follows that

|f(ȳ, w̄)| ≤ C1ϵ. (78)

where C1 is a positive constant depending on the a priori data only.
Now let w̄ ∈ Ω̄r0 \ Ω̄D, where Ωr0 = {x ∈ R3 : dist(x, ∂Ω) < r0} and let ȳ ∈ D0.

By Proposition 4.2 and since |x− ȳ| ≥ r0,

|f(ȳ, w̄)| ≤ C
2∑

j=1

∫
Dj

|x− ȳ|1−n|x− w̄|1−n dx

≤ C
2∑

j=1

∫
Dj

|x− w̄|1−n dx.

Choosing R̃ = diam(Ω) + r0 ≤ Cr0, where C is a constant which depends only on
L. Hence, Ω ⊂ BR̃(w̄) and for j = 1, 2,∫

Dj

|x− w̄|1−n dx ≤
∫
BR̃(w̄)

|x− w̄|1−n dx ≤ C.
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The next step consists in the determination of an estimate for f(ȳ, w) when w ∈ G.
For h > 0, define

(G)h = {x ∈ Ωc
D : dist(x, ∂ΩD) ≥ h}.

For w ∈ (G)h, by Proposition 4.2,

|S1(ȳ, w)| ≤ C

∫
D1

|x− ȳ|1−n|x− w|1−n dx ≤ Ch1−n.

Similarly, |S2(ȳ, w)| ≤ Ch1−n, so that

|f(ȳ, w)| ≤ Ch1−n. (79)

We proceed with a quantitative estimate of propagation of smallness for the function
f with respect to the second variable. Let O be the point of Lemma 3.3 and
assume to be in a coordinate system in which O coincides with the origin and set
yh = hν(O). The goal is to propagate (78) inside G up to yh.

In order to do it, fix ȳ, w ∈ D0 such that dist(ȳ, ∂Ω) ≥ r0 and dist(w, ∂Ω) ≥ r0.
By Lemma 3.3 we know that there exists a curve γ ⊂ (Ω̄r0 ∪ D0) \ Ω̄D joining
w to the point Q = d̄ν(O), where ν(O) = −en, such that V (γ) ⊂ R3 \ ΩD with

R = d̄√
1+L2

and θ0 = arcsin R
d̄
.

Notice that, since f(ȳ, ·) is a weak solution to (77), one can apply the three sphere
inequality in the ball Br0(x̄), where the point x̄ ∈ D0 is such that dist(x̄, ∂Ω) = 3r0

4 .
Choose r = r0

4 , then, for radii r, 3r, 4r, the following estimate holds,

∥f(ȳ, ·)∥L∞(B3r(x̄)) ≤ C∥f(ȳ, ·)∥τL∞(Br(x̄))
∥f(ȳ, ·)∥1−τ

L∞(B4r(x̄))
,

where

τ =
ln 4λ̄

3

ln 4λ̄
3 + c ln 3

λ̄

,

0 < τ < 1 and C > 0 depends on λ̄, L, r0.
Consider w,Q and the curve γ as above. We select a finite number of points on

γ as follows. Set ϕ1 = w. Then

1. if |ϕj−1 −Q| > r, then set ϕj = γ(tj) where tj = max{t : |γ(t)− ϕj−1| = r};
2. otherwise, set s = j, ϕs = Q and stop the process.

By iterating the three sphere inequality along the chain of balls centred at ϕj for
j = 1, . . . , s, and assuming that s ≤ S where S depends on n only, one derives that
for any r1 with 0 < r1 < r,

∥f(ȳ, ·)∥L∞(B r1
2

(Q)) ≤ C∥f(ȳ, ·)∥τ
s

L∞(B r1
2

(w̄))∥f(ȳ, ·)∥
1−τs

L∞(G). (80)

By (78), (79) and (80),

∥f(ȳ, ·)∥L∞(B r1
2

(Q)) ≤ Cϵτ
S

(h1−n)1−τS

. (81)

The goal is to propagate the smallness from Q to yh. Consider the truncated cone

C(O,−en, d, θ0) where d = d̄2−R2

d̄
. Define

λ1 = min

{
d

1 + sin θ0
,

d

3 sin θ0

}
, θ̃0 = arcsin

(
sin θ0
8

)
,

w1 = O + λ1ν(O), ρ1 = λ1 sin θ1, a =
1− sin θ1
1 + sin θ1

,

so that Bρ1(w1) ⊂ C(O, ν(O), d, θ1) and B4ρ1(w1) ⊂ C(O, ν(O), d, θ̃0). Since ρ1 <
r0
2 , one can apply (81) in the cone C(O,−en, d, θ1) over a chain of balls of shrinking
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radii ρk = aρk−1 centred at points wk = O + λkν(O) with λk = aλk−1. Denote by
d(k) = |wk − O| − ρk, then d(k) = ak−1d(1). We consider h ≤ d(1) and define a
natural number k(h) as the smallest positive integer such that d(k(h)) ≤ h. Hence∣∣∣ln h

d(1)

∣∣∣
| ln a|

≤ k(h)− 1 ≤

∣∣∣ln h
d(1)

∣∣∣
| ln a|

+ 1.

By iterating the three-sphere inequality over the chain of balls Bρ1(w1), . . . ,
Bρk(h)

(wk(h)), one derives

∥f(ȳ, ·)∥
L∞

(
Bρk(h)

(wk(h))
) ≤ c(h1−n)A

′′
ϵβτ

k(h)−1

, (82)

where β = τS and A′′ = 1− β.
Consider now f(y, w) as a function of y. Notice that for any w ∈ Rn \ΩD, f(·, w)

is a weak solution to

divy(ab(·)A(·)∇yf(·, w)) + qb(·)f(·, w) = 0 in Rn \ ΩD.

For any y, w ∈ Gh, by Proposition 4.2,

|S1(y, w)| ≤ c

∫
D1

|x− y|1−n|x− z|1−n dx ≤ ch2(1−n).

Similarly, |S2(y, w)| ≤ ch2(1−n), so that

|f(y, w)| ≤ ch2(1−n) for any y, w ∈ (G)h.

Now, for y ∈ D0 such that dist(y, ∂Ω) ≥ c̃r0, for w ∈ (G)h and by (82),

|f(y, w)| ≤ c(h1−n)A
′′
ϵβτ

k(h)−1

,

where A′′, β are defined as above. Fix w ∈ G such that dist(w,ΩD) = h, ȳ ∈ D0

such that dist(ȳ, ∂Ω) ≥ 3r0
2 , then for r̄ = r0

2 , 3r̄, 4r̄ and y1 = w1 defined as above,
by an iterated application of the three sphere inequality one derives

∥f(·, w)∥L∞(Br̄(y1)) ≤ c∥f(·, w)∥τ
s

L∞(Br̄(ȳ))
∥f(·, w)∥1−τs

L∞(G)

≤ c(h2−2n)A
′′
ϵβ

2τk(h)−1

,

where A′ = 1− β +A′′τs, β = τS . Once more we apply the three sphere inequality
inside the cone of vertex O over a chain of balls with shrinking radii as above so
that

∥f(·, w)∥
L∞

(
Bρk(h)

(yk(h))
) ≤ c(hA

′
)1−τk(h)−1

(ϵβ
2τk(h)−1

)τ
k(h)−1

.

Now, if we choose y = w = yh, one derives

|f(yh, yh)| ≤ ch−A(ϵβ
2τk(h)−1

)τ
k(h)−1

,

where A = −(2− 2n)A′(1− τk(h)−1) > 0. Since k(h) ≤ c| lnh| = −c lnh, then

τk(h) = e−c lnh ln τ = h−c ln τ = hF , where F = c| lnh|.

In conclusion,

|f(y, y)| ≤ c1h
−Aϵβ

2τ2(k(h)−1)

= c1h
−Aeβ

2τ2(k(h)−1) ln ϵ = c1h
−AϵBhF

,

where B = β2.
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4.3. Lower bound for the function f . In view of the proof Proposition 3.5, we
introduce the asymptotic estimates for the Green’s functions which are solutions of
(37) with respect to two auxiliary families of Green’s functions.

First, let P ∈ ∂D1∩∂ΩD be the point of Lemma 3.3. Up to a rigid transformation,
we can assume that P coincides with the origin O and

D1 ∩Q r0
3
=

{
x ∈ Q r0

3
: xn ≥ φ(x′)

}
,

where φ ∈ C2(B′
r0
3

). In the remaining part of this section we drop out the pedix of

the inclusion to improve readability of the argument.
Following the lines of [9, Theorem 4.2], we introduce a change of coordinates

which flattens the boundary near O. Let τ ∈ C∞(R) such that 0 ≤ τ(s) ≤ 1,
τ(s) = 1 for s ∈ (−1, 1) and τ(s) = 0 for s ∈ R \ (−2, 2) and |τ ′(s)| ≤ 2 for any
s ∈ R. Set

r1 =
r0
3
min

{
1

2
(8L)−1,

1

4

}
.

The following change of coordinates

ξ = ϕ(x) =

{
ξ′ = x′

ξn = xn − φ(x′)τ
(

|x′|
r1

)
τ
(

xn

r1

)
is a C1,1 diffeomorphism of Rn into itself and allows us to flatten locally the bound-
ary of the inclusion. In what follows, we keep the notation with x, since the ex-
ponent appearing in the asymptotic estimates does not depend on the change of
coordinates.

Set

σ0(x) =
(
a− + (a+ − a−)χ+

)
A, q0(x) = qb(0) + (qD(0)− qb(0))χ

+(x), (83)

where

a− = ab(0), a+ = aD(0), A = A(0), χ+ = χRn
+
.

For y ∈ D0, let G0(·, y) be the weak solution to
div(σ0(x)∇G0(x, y)) + q0(x)G0(x, y) = −δ(x− y) for x ∈ Ω0,

G0(x, y) = 0 for x ∈ ∂Ω0 \ Σ0,

σ0(x)∇G0(x, y) · ν(x) + iG0(x, y) = 0 for x ∈ Σ0.

Let Γ denote the fundamental solution associated with the Laplacian operator de-
fined on Rn. Let H be the fundamental solution to

div (σ0(·)∇H(·, y)) = −δ(· − y) in Rn.

Recalling [22], H has the following expression

H(x, y) = |J |



1

a+
Γ(Jx, Jy) +

a+ − a−

a+(a+ + a−)
Γ(Jx, Jy∗) if xn, yn > 0,

2

a− + a+
Γ(Jx, Jy) if xn · yn < 0,

1

a−
Γ(Jx, Jy) +

a− − a+

a−(a+ + a−)
Γ(Jx, Jy∗) if xn, yn < 0,

(84)

where y∗ = (y1, . . . , yn−1,−yn), J =
√
A(0)−1 and |J | = det(

√
A(0)−1).

We introduce the asymptotic estimates for the Green’s functions G with respect
to H.

19



Proposition 4.3. Under the same assumptions as in Proposition 4.2, there exist
positive constants C2, C3 and θ1 ∈ (0, 1) that depend on the a priori data only such
that

|G(x, y)−H(x, y)| ≤ C2|x− y|3−n, (85)

|∇xG(x, y)−∇xH(x, y)| ≤ C3|x− y|1−n+θ1 , (86)

for every x ∈ D ∩ Br and y = hν(O) where r ∈
(
0, r02 min{(8L)−1, 14}

)
and h ∈(

0, r04 min{(8L)−1, 14}
)
.

Proof of Proposition 4.3. Notice that for x, y as in the assumptions,

|G(x, y)−H(x, y)| ≤ |G(x, y)−G0(x, y)|+ |G0(x, y)−H(x, y)|.

Hence we can split the proof of Proposition 4.3 into two claims.

Claim 4.4. There exist positive constants C4, C5 and θ1 ∈ (0, 1) that depend on
the a priori data only such that

|G(x, y)−G0(x, y)| ≤ C4|x− y|3−n, (87)

|∇xG(x, y)−∇xG0(x, y)| ≤ C5|x− y|1−n+θ1 , (88)

for every x ∈ D ∩ Br and y = hν(O) where r ∈
(
0, r02 min{(8L)−1, 1}

)
and h ∈(

0, r04 min{(8L)−1, 1}
)
.

Proof of Claim 4.4. We follow the lines of the proof of [5, Proposition 3.4]. For
simplicity, we consider a generic inclusionD with jump coefficients σ, q. Fix P ∈ ∂D
so that under a suitable transformation of coordinates, P = O. Let G denote the
Green function associated with the elliptic operator div(σ(·)∇·) + q(·) so that for
any y ∈ Ω0, G(·, y) is a distributional solution to the following boundary value
problem

div(σ(x)∇G(x, y)) + q(x)G(x, y) = −δ(x− y) for x ∈ Ω0,

G(x, y) = 0 for x ∈ ∂Ω0 \ Σ0,

σ(x)∇G(x, y) · ν(x) + iG(x, y) = 0 for x ∈ Σ0.

(89)

For O ∈ ∂D, let σ0, q0 be as in (83). For y ∈ Ω0, let G0(·, y) be the Green’s function
which is a distributional solution to the following auxiliary boundary value problem

div(σ0(x)∇G0(x, y)) + q0(x)G0(x, y) = −δ(x− y) for x ∈ Ω0,

G0(x, y) = 0 for x ∈ ∂Ω0 \ Σ0,

σ0(x)∇G0(x, y) · ν(x) + iG0(x, y) = 0 for x ∈ Σ0.

(90)

Define

R(x, y) = G(x, y)−G0(x, y). (91)

Subtracting the first equation of (90) to (89), it follows that R(x, y) is a weak
solution in Ω0 to the equation

div(σ(·)∇R(·, y)) + q(·)R(·, y) =− div((σ(·)− σ0(·))∇G0(·, y))+
+ (q0(·)− q(·))G0(·, y), in Ω0

(92)

with boundary conditions{
R(·, y) = 0 in ∂Ω0 \ Σ0,
σ0(·)∇xR(·, y) · ν(·) + iR(·, y) = (σ0(·)− σ(·))∇xG0(·, y) · ν(·) in Σ0.
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Then the following representation formula holds

−R(x, y) =
∫
Ω0

(
σ(z)− σ0(z)

)
∇zG(z, x) · ∇zG0(z, y) dz+

+

∫
Ω0

(
q(z)− q0(z)

)
G(z, x)G0(z, y) dz+

+

∫
Σ0

[σ0(z)∇zG0(z, y) · νG(z, x)− σ(z)∇zG(z, x) · νG0(z, y)] dS(y).

(93)

The boundary integral are bounded (for instance by the Schwarz inequality and the
trace estimates). The second volume integral in (93) is less singular than the first
volume integral, so that we find convenient to study the first volume integral. Let
us split the domain of integration into the union of the subdomains Ω ∩ Qr̄0 and
Ω \Qr̄0 for r̄0 = r0

4 min{(8L)−1, 1}. For x ∈ Ω ∩Qr̄0 ,

|σ(z)− σ0(z)| ≤ C|z|.

Then we can apply the same argument of [17, Proposition 4.1] and conclude that

|R(x, y)| ≤ C4|x− y|3−n, (94)

where C4 is a positive constant which depends only on the a priori data.
Regarding the estimate for the gradient of the residual R, recalling that the

boundary of D is C2 and hence C1,1, for x ∈ D ⊂ Br, we consider a cube Q ⊂ B+
r
4

of side cr̄0
4 , c ∈ (0, 1) so that y /∈ Q and x ∈ ∂Q. By [1, Lemma 3.2], the following

interpolation formula holds

∥∇R(·, y)∥L∞(Q) ≤ C∥R(·, y)∥
1
2

L∞(Q)|∇xR(·, y)|
1
2

1,Q, (95)

where C depends on L only. For y = hν(O) for h as in the Proposition statement,
from the piecewise Hölder continuity of∇xG(x, y) and∇xG0(x, y) (see [28, Theorem
16.2]),

|∇xG(·, y)|1,Q, |∇xG0(·, y)|1,Q ≤ Ch−n.

Therefore,

|∇xR(·, y)|1,Q ≤ Ch−n, (96)

and collecting (94), (95) and (96), it follows that

|∇xR(x, y)| ≤ C5|x− y|1−n+θ1 ,

where θ1 = 1
2 .

Claim 4.5. There exist positive constants C6, C7 that depend on the a priori data
only such that

|G0(x, y)−H(x, y)| ≤ C6|x− y|4−n, (97)

|∇xG0(x, y)−∇xH(x, y)| ≤ C7|x− y|2−n, (98)

for every x ∈ D ∩ Br and y = hν(O) where r ∈
(
0, r02 min{(8L)−1, 1}

)
and h ∈(

0, r04 min{(8L)−1, 1}
)
.
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Proof of Claim 4.5. We follow the argument in [17, Proposition 4.2]. Let y, z ∈ Ω0

and let D be an inclusion in Ω satisfying (14)-(16). Recall that G0(·, y) is the weak
solution to

div(σ0(x)∇G0(x, y)) + q0(x)G0(x, y) = −δ(x− y) for x ∈ Ω0,

G0(x, y) = 0 for x ∈ ∂Ω0 \ Σ0,

σ0(x)∇G0(x, y) · ν(x) + iG0(x, y) = 0 for x ∈ Σ0.

and H(·, y) is the fundamental solution to

divx(σ0(·)∇xH(·, y)) = −δ(· − y) in Rn. (99)

The residual function

R(x, y) = G0(x, y)−H(x, y),

is a weak solution to the equation
divx(σ0(·)∇xR(·, y)) = −q0(·)G0(·, y) in Ω0,

R(·, y) = −H(·, y) on ∂Ω0 \ Σ0,

σ0(·)∇R(·, y) · ν(·) + iR(·, y) = −σ0(·)∇H(·, y) · ν(·)− iH(·, y) on Σ0.

Its representation formula is

−R(x, y) =−
∫
Ω0

q0(z)G0(z, x)H(z, y) dx+

+

∫
∂Ω0

σ0(z) [∇zH(z, x) · νH(z, y)−∇zG0(z, x) · νH(z, y)] dS(z)+

+

∫
∂Ω0

σ0(z) [∇zH(z, y) · νG0(z, x)−∇zH(z, y) · νH(z, x)] dS(z).

(100)

The surface integral can be easily bounded from above using Cauchy-Schwarz in-
equality by a constant that depends on the a priori data only. Regarding the volume
integral, by (38) it follows that∣∣∣ ∫

Ω

q0(z)G0(z, x)H(z, y) dx
∣∣∣ ≤ ∥q0∥L∞(Ω)

∫
Ω

|G0(z, x)||H(z, y)| dz

≤ C

∫
Ω

|z − x|2−n|z − y|2−n dz.

Set r̃ = |x − y| and let N ∈ N be such that B r̃
N
(x) ∩ B r̃

N
(y) = ∅. Let O =

Ω \ (B r̃
N
(x) ∪B r̃

N
(y)) and split the integral over the domain Ω as the sum of three

integrals over the subdomains B r̃
N
(x), B r̃

N
(y) and O. Our goal is to estimate∫

B r̃
N

(y)
|z − x|2−n|z − y|2−n dz.

For z ∈ B r̃
N
(y), by the triangular inequality it follows that |x − z| ≥ |x − y| −

|y − z| ≥ |x−y|
c̃ for a suitable constant c̃, then∫

B r̃
N

(y)

|z − x|2−n|z − y|2−n dz ≤ c|x− y|2−n

∫
B r̃

N
(y)

|z − y|2−n dz ≤ c|x− y|4−n.

Similarly, ∫
B r̃

N
(x)

|z − x|2−n|z − y|2−n dz ≤ c|x− y|4−n.
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Then, for z ∈ O, since |x− z| ≥ |z−y|
N , it follows that∫

O
|z−x|2−n|z−y|2−n dz ≤ c

∫
O
|z−y|4−2n dz ≤ c

∫
Ω\B r̃

N
(y)

|z−y|4−2n dz ≤ c|x−y|4−n,

where the constants c appearing in the inequalities depend on the a priori data only.
In conclusion, we have proved that

|R(x, y)| ≤ C6|x− y|4−n, (101)

where C6 depends on the a priori data only.
The next quantity that we wish to estimate is the gradient of R. By a similar

argument as in Proposition 4.3, we pick a cube Q such that Q ⊂ B+
r
4
of side cr

4 with

c ∈ (0, 1) such that x ∈ ∂Q. By [1, Lemma 3.2], the following interpolation formula
holds

∥∇R(·, y)∥L∞(Q) ≤ C∥R(·, y)∥
1
2

L∞(Q)|∇xR(·, y)|
1
2

1,Q, (102)

where C depends on L only. Since G0 and H are Hölder continuous, the following
estimates hold

|∇xG0(·, y)|1,Q ≤ c|x− y|−n and |∇xH(·, y)|1,Q ≤ c|x− y|−n,

where c depends on L only. By (95) and(101),

∥∇xR(·, y)∥L∞(Q) ≤ C7|x− y|2−n,

where C7 depends on the a priori data only.

Collecting the results obtained by the two claims, the asymptotic estimates for
the Green function follow.

Proof of Proposition 3.5. The proof follows the lines of [5, Proposition 3.5] and [6,
Theorem 6.5]. Let O ∈ ∂D1 be the point of Lemma 3.3, let y = hν(O) where ν(O)
is the outer unit normal of D1 at O . Recall the definition of S1 as

S1(y, y) =

∫
D1

(aD1(x)− a0(x))A(x)∇xG1(x, y) · ∇xG2(x, y) dx−

−
∫
D1

(qD1(x)− q0(x))G1(x, y)G2(x, y) dx.

(103)

Set r̄2 = min
{
dist(O,D2),

r0
12

√
1+L2

·min{1, L}
}

and fix r ∈ (0, r̄2).

Then (103) can be rewritten as follows:

S1(y, y) =

∫
D1∩Br(O)

(aD1(x)− ab(x))A(x)∇xH1(x, y) · ∇xH2(x, y) dx+

+

∫
D1∩Br(O)

(aD1(x)−ab(x))A(x)∇xH1(x, y) · ∇x(G2(x, y)−H2(x, y)) dx+

+

∫
D1∩Br(O)

(aD1(x)− ab(x))A(x)∇x(G1(x, y)

−H1(x, y)) · ∇x(G2(x, y)−H2(x, y)) dx+
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+

∫
D1∩Br(O)

(aD1(x)−ab(x))A(x)∇x(G1(x, y)−H1(x, y)) · ∇xH2(x, y) dx+

+

∫
D1\Br(O)

(aD1(x)−ab(x))A(x)∇xG1(x, y) · ∇xG2(x, y) dx−

−
∫
D1∩Br(O)

(qD1(x)− qb(x))H1(x, y)H2(x, y) dx−

−
∫
D1∩Br(O)

(qD1(x)− qb(x))H1(x, y) (G2(x, y)−H2(x, y)) dx−

−
∫
D1∩Br(O)

(qD1(x)−qb(x))(G1(x, y)−H1(x, y)) (G2(x, y)−H2(x, y)) dx−

−
∫
D1∩Br(O)

(qD1(x)− qb(x))(G1(x, y)−H1(x, y))H2(x, y)−

−
∫
D1\Br(O)

(qD1(x)− qb(x))G1(x, y)G2(x, y) dx.

(104)

Set

I1 =

∫
D1∩Br(O)

(aD1(x)− ab(x))A(x)∇xH1(x, y) · ∇xH2(x, y) dx,

R1 =

∫
D1∩Br(O)

(aD1(x)− ab(x))A(x)∇xH1(x, y) · ∇x(G2(x, y)−H2(x, y)) dx+

+

∫
D1∩Br(O)

(aD1(x)− ab(x))A(x)∇x(G1(x, y)

−H1(x, y)) · ∇x(G2(x, y)−H2(x, y)) dx,

R2 =

∫
D1∩Br(O)

(aD1(x)− ab(x))A(x)∇x(G1(x, y)−H1(x, y)) · ∇xH2(x, y) dx,

R3 =

∫
D1\Br(O)

(aD1(x)− ab(x))A(x)∇xG1(x, y) · ∇xG2(x, y) dx.

(105)

Hence,

|S1(y, y)| ≥ |I1| − |R1| − |R2| − |R3|.

For the term I1, one can simply notice that

H1(x, y) = c̃Γ(Jx, Jy), and H2(x, y) = c̃Γ(Jx, Jy),

where J =
√
A(O)−1 and c̃ is a constant that depends only on a+, a−. Hence, by

the uniform ellipticity condition and the lower bound (19),

|I1| ≥ c

∫
D1∩Br(O)

|x− y|2−2n dx ≥ cr2−n ≥ ch2−n.

Regarding the term R2, by Proposition 4.3 we know that

|∇xG1(x, y)−∇xH1(x, y)| ≤ C|x− y|1−n+θ2 ,

so that

|R2| ≤ c̃

∫
D1∩Br(O)

|x− y|2−2n+θ2 dx ≤ ch2−n+θ2 .

The term R3 can be bounded in terms of a constant depending on the a priori data
only, since x ̸= y.
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It remains to estimate the term R1. One of the issues is that, by our choice of
r, there are no asymptotic estimates for the term ∇x(G2(x, y)−H2(x, y)), but we
can solve this problem by applying the following trick. Recalling Lemma 4.1, one
has that G2 has the form

G2(x, y) = G̃2(x, y) +
J+1∑
j=1

Rj(x, y),

where G̃2 is a weak solution to
div(σ2(·)∇G̃2(·, y)) = −δ(· − y) in Ω0,

G̃2(·, y) = 0 on ∂Ω0 \ Σ0,

σ2(·)∇G̃2(·, y) · ν(·) + iG̃2(·, y) = 0 on Σ0.

(106)

Hence,

|∇x(G2(x, y)−H2(x, y))| ≤ |∇x(G̃2(x, y)−H2(x, y))|

+
J+1∑
j=1

|∇xRj(x, y)|.

Since

|∇xRj(x, y)| ≤ c|x− y|2j+1−n,

for any j = 1, . . . , J − 1, one can infer that

J+1∑
j=1

|∇xRj(x, y)| ≤
J+1∑
j=1

(dµ − h)2j+1−n ≤ c (dµ − h)2−n,

where dµ > 0. Regarding the other term, let us first consider a change of variable Φ
as in [9, Theorem 4.2] that allows us to flatten the boundary of ΩD near the point

O. Consider G̃2,0(·, y) as the Green function which is weak solution to
div(σ2,0(·)∇G̃2,0(·, y)) = −δ(· − y) in Ω0,

G̃2,0(·, y) = 0 on ∂Ω0 \ Σ0,

σ2,0(·)∇G̃2,0(·, y) · ν + iG̃2,0(·, y) = 0 on Σ0,

(107)

where

σ2,0(x) = (ab(0) + (aD2(0)− ab(0)χ+(x))A(0).

Hence,

|∇x(G̃2(x, y)−H2(x, y))| ≤ |∇x(G̃2(x, y)− G̃2,0(x, y))|+

+ |∇x(G̃2,0(x, y)−H2(x, y))|.
(108)

Regarding the second term on the right-hand side of (108), first notice that (G̃2,0−
H2)(·, y) is a weak solution to{

divx(σ2,0(·)∇(G̃2,0(·, y)−H2(·, y))) = 0 in Br(O),(
G̃2,0(·, y)−H2(·, y)

)
|∂Br(O) ≤ c r2−n,

(109)

so that by the Maximum Principle one has

|G̃2,0(x, y)−H2(x, y)| ≤ c r2−n.
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Hence, by interior gradient estimates (see for instance [23]), it follows that

|∇x(G̃2,0(x, y)−H2(x, y))| ≤ c r1−n. (110)

For the first term on the right-hand side of (108), define

R̃2(x, y) = G̃2(x, y)− G̃2,0(x, y).

One can notice that R̃2(·, y) is a weak solution to
div(σ2(·)∇R̃2(·, y)) = −div

(
(σ2(·)− σ2,0(·))∇G̃2,0(·, y)

)
in Ω0,

R̃2(·, y) = 0 on ∂Ω0 \ Σ0,

σ2(·)∇R̃2(·, y) · ν + iR̃2(·, y) = −(σ2(·)− σ2,0(·))∇G̃2,0(·, y) · ν on Σ0.

By the representation formula, the remainder has the form

−R̃2(x, y) =

∫
Ω0

(σ2(z)− σ2,0(z))∇zG̃2(z, x) · ∇zG̃2,0(z, y) dz+

+

∫
∂Ω0

σ2,0(z)∇zG̃2,0(z, y) · ν
[
G̃2(z, x)− G̃2,0(z, x)

]
dS(z)+

+

∫
∂Ω0

σ2(z)∇z

[
G̃2(z, x)− G̃2,0(z, x)

]
· ν G̃2,0(z, y) dS(z). (111)

The integral over ∂Ω0 are bounded from above by a positive constant that depends
on the a priori data only. In order to estimate the volume integral, first notice that

|σ2(z)− σ2,0(z)| ≤ C|z|,
where C is a positive constant depending only on a priori data.
Hence, by Proposition 4.2,∣∣∣ ∫

Ω0

(σ2(z)− σ2,0(z))∇zG̃2(z, x) · ∇zG̃2,0(z, y) dz
∣∣∣ ≤

≤ c

∫
Ω0

|z| |z − x|1−n |z − y|1−n dz, (112)

where c is a positive constant depending on the a priori data only. Set h̃ = |x− y|
and define

I1 =

∫
B4h̃

|z| |z − x|1−n |z − y|1−n dz, (113)

I2 =

∫
Rn\B4h̃

|z| |z − x|1−n |z − y|1−n dz, (114)

so that
|R̃2(x, y)| ≤ c(I1 + I2). (115)

First, let us estimate I1. Set z = h̃w, t = x
h̃
and s = y

h̃
, then

I1 =

∫
B4

h̃|w| |h̃(w − t)|1−n |h̃(w − s)|1−nh̃ dw

= 4h̃3−n

∫
B4

|w − t|1−n |w − s|1−n dw

≤ ch̃3−n,

since
∫
B4

|w − t|1−n |w − s|1−n dw ≤ c (see [30, Chapter 2, section 11]). Hence,

I1 ≤ c(h− dist(O,D2))
3−n. (116)
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Regarding the integral I2, notice that since y = hν(O) = −hen in a suitable coor-
dinate system, we might choose h so that

|y| = −h ≤ |x− y| = h̃,

and

|x| ≤ |x− y|+ |y| ≤ 2h̃.

For any z ∈ Rn \B4h̃, since |z| > 4h̃, it follows that

3

4
|z| ≤ |z − y| and

1

2
|z| ≤ |z − x|.

Therefore,

I2 ≤
(
8

3

)1−n ∫
Rn\B4h̃

|z|3−2n dz ≤ ch̃3−n ≤ c(h− dist(O,D2))
3−n. (117)

By (116) and (117), we can conclude that

|R̃2(x, y)| ≤ c|x− y|3−n. (118)

At this point, in order to determine an upper bound for ∇xR̃2. Consider a cube
Q ⊂ D1∩Br(O). Since G̃2(·, y) and G̃2,0(·, y) are Hölder continuous, it follows that

|∇R̃2(x, y)|α,Q ≤ c|x− y|−n.

By the known inequality,

∥∇R̃2(·, y)∥L∞(Q) ≤ ∥R̃2(·, y)∥
1
2

L∞(Q)|∇R̃2(·, y)|
1
2

1,Q,

by (118) it follows that

|∇R̃2(x, y)| ≤ c|x− y|1−n+θ3 where θ3 =
1

2
. (119)

Collecting (108), (110) and (119) together, we obtain

|∇x(G̃2(x, y)−H2(x, y))| ≤ ch1−n+θ3 . (120)

In conclusion, the lower bound of S1 is given by

|S1(y, y)| ≥ ch2−n.

Regarding the estimate for S2, from Proposition 4.2 it follows that

|S2(y, y)| ≤ C

∫
D2

|x− y|1−n|x− y|1−n dx ≤ C(dist(O,D2))− h)2(1−n).

In conclusion,

|f(y, y)| = |S1(y, y)− S2(y, y)| ≥ |S1(y, y)| − |S2(y, y)|

≥ c2h
2−n − c3(dist(O,D2))− h)2(1−n),

(121)

for suitable c2, c3 > 0 constants depending on the a priori data only.
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5. The misfit functional. In this section we introduce a stability estimate in
terms of the misfit functional that is defined in (123).

Let Ω, D1, D2 be, respectively, a bounded domain satisfying (11)-(12) and two
inclusions satisfying (14)-(16). Let σ1, σ2, q1.q2 be the jump coefficients that cor-
respond to the two inclusions. Let Gi be the Green functions associated to the
operator div(σi(·)∇·) + qi for i = 1, 2 so that for y ∈ D0, Gi(·, y) is a distributional
solution to the boundary value problem (37). Pick Dy, Dz ⊂⊂ D0 suitable Lipschitz
domains whose intersection is empty. For (y, z) ∈ D0 ×D0, define

SU0
(y, z) =

∫
Σ

[
σ1(x)∇G1(x, y) · ν(x)G2(x, z)−

− σ2(x)∇G2(x, z) · ν(x)G1(x, y)
]
dS(x),

(122)

where Σ is the open portion of the boundary of Ω where the measurements are
performed.

The misfit functional is defined as

J (D1, D2) =

∫
Dy×Dz

|SU0(y, z)|
2
dy dz. (123)

where J : L∞(Ω0)× L∞(Ω0) → R encodes the error that occur when one approx-
imates the boundary data induced by σ1 and q1 by the one induced by σ2 and
q2.

5.1. The stability estimate. Let ω : [0,+∞) → [0,+∞) be a non-decreasing
function such that for any t ∈ (0, 1), ω(t) ≤ C · | ln t|−η, where η ∈ (0, 1) is a
suitable constant.

Theorem 5.1. Let Ω ⊂ Rn be a bounded domain satisfying (11)-(12) and let D1,
D2 be two inclusions of C2 class contained in Ω satisfying (14)-(16). Let σ1 and
σ2 be the anisotropic conductivities satisfying (17)-(21) and let q1 and q2 be the
coefficients of the zero order term satisfying (22)-(23). Let Σ be a non-empty open
portion of ∂Ω. For any ϵ ∈ (0, 1), if J (D1, D2) < ϵ, then

dH(∂D1, ∂D2) ≤ ω(ϵ), (124)

where C > 0 is a constant that depends on the a priori data only.

The proof of Theorem 5.1 follows the lines of the proof of Theorem 2.7, but
instead of Proposition 3.5 we need a modified version, Proposition 5.2. Before
stating it, notice that by the Green’s identity and (39), (122) can be rewritten as

SU0(y, z) =

∫
Ω

(
σ2(x)− σ1(x)

)
∇G1(x, y) · ∇G2(x, z)+

+

∫
Ω

(
q1(x)− q2(x)

)
G1(x, y)G2(x, z) dx.

(125)

Hence, recalling (40), (41) and (42), we have that

SU0
(y, z) = f(y, z).

Proposition 5.2. Under the same assumptions of Theorem 5.1, for ϵ ∈ (0, 1), if
J (D1, D2) < ϵ, then

|f(y, y)| ≤ C1
ϵBhF

hA
,
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where A ∈ (0, 1), C1, B, F are positive constants that depend on the a priori data
only, y = hν(O) where

0 < h ≤ d̄

(
1− sin θ0

4

)
for θ0 = arctan

1

L
.

Proof of Proposition 5.2. As in the previous proofs, we drop the indices and con-
sider a generic inclusion D. Fix ȳ ∈ D0, then f(ȳ, ·) is a weak solution to

divz(σ(·)∇zf(ȳ, ·)) + q(·)f(ȳ, ·) = 0, in Ωc
D.

Since in this case f(ȳ, z) = SU0
(ȳ, z), by [22, Equation (3.23)] we have

max
z∈(D0)r

SU0(ȳ, z) ≤ c(J (D1, D2))
1
2 ,

where (D0)r = {x ∈ D0 : dist(x, ∂D0) > r} for r > 0 and the constant c depends
on the a priori data only. Then

f(ȳ, z) ≤ cε. (126)

The remaining part of the proof follows the line of the proof of Proposition 3.4.
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