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A B S T R A C T   

The critical role of dysregulated epigenetic pathways in cancer genesis, development, and therapy has typically 
been established as a result of scientific and technical innovations in next generation sequencing. RNA inter-
ference, histone modification, DNA methylation and chromatin remodelling are epigenetic processes that control 
gene expression without causing mutations in the DNA. Although epigenetic abnormalities are thought to be a 
symptom of cell tumorigenesis and malignant events that impact tumor growth and drug resistance, physicians 
believe that related processes might be a key therapeutic target for cancer treatment and prevention due to the 
reversible nature of these processes. A plethora of novel strategies for addressing epigenetics in cancer therapy 
for immuno-oncological complications are currently available - ranging from basic treatment to epigenetic 
editing. – and they will be the subject of this comprehensive review. In this review, we cover most of the ad-
vancements made in the field of targeting epigenetics with special emphasis on microbiology, plasma science, 
biophysics, pharmacology, molecular biology, phytochemistry, and nanoscience.   

1. Introduction: epigenetic therapeutics in cancer 

Either with aging, or cancer malignancies, our DNA undergoes ge-
netic and epigenetic alterations which in turn result in altered gene 
expression. Modified gene expression result in loss of histones, imbal-
ance of repressive and activating modifications, evasion and expansion 
in heterochromatin, transcriptional changes, and breakdown of nuclear 
lamina along with chromatin remodelling [1–5]. Epigenetic modifica-
tions including DNA methylation, histone modifications, microRNAs, 
and nucleosome remodelling regulate gene expression in human ma-
lignancies (as shown in Fig. 1). A further demonstration of the genetics/ 
epigenetics relationship in cancer is the presence of abnormal meta-
bolism and biochemical pathways, as well as mutation in genes that are 
epigenetic actors in cancer pathologies [6]. 

Due to the reversible nature of epigenetic alterations in cancer, their 
timely targeting has emerged as a fascinating option in cancer thera-
peutics [7]. Many drugs have been developed which specifically target 
proteins that regulate histone acetylation and DNA methylation [8]. 
Some of these proteins are already being tested in clinical trials with 
encouraging results, highlighting the potential of epigenetic therapy and 

paving the way for the development of innovative drugs targeting 
epigenetic pathways in cancer [9]. Both the American Food and Drug 
Administration (FDA) and the European Medicines Agency (EMA) have 
approved the clinical use of two DNA demethylating agents, decitabine 
(Dacogen®) and azacytidine (Vidaza®, Azadine®, Onureg®), for their 
potential efficacies in haematological malignancies and myelodysplastic 
syndromes (MDS) [10]. 

Both compounds are chemical analogues of the cytidine nucleoside 
and must be integrated into DNA to exert their effect. After being pro-
duced as anti-metabolites in the 1960s [11,12], they were discovered to 
have DNA-targeted activity via inhibiting DNA methyltransferases 
(DNMTs). The significant toxicities associated with high drug doses in 
cancer patients have previously precluded their widespread use, espe-
cially in solid tumors [13]. Nonetheless, these compounds have regained 
considerable clinical attention over the recent years, the usage of low 
dose regimens showing promise in terms of clinical outcomes while 
causing mild side effects [14]. 

Many efforts have been undertaken to elucidate the processes by 
which decitabine and azacitidine exhibit therapeutic effectiveness [15]. 
These drugs have a variety of effects, including cancer cell 
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differentiation, DNA damage, the formation of covalent addition re-
actions between DNMTs and DNA with azanucleoside substitutions, 
immunological modulatory actions through cancer/germ-line protein 
reactivation, suppression of the NF-κB anti-apoptotic pathway, among 
others [10]. Notably, some data suggest that these drugs may alter gene 
expression independently of DNA methylation by disrupting complex 
protein interactions via the inhibition and removal of DNMTs from the 
nucleus [16,17]. Additionally, it has been hypothesized that the DNA 
methylation-dependent and -independent effects of these molecules may 
ultimately result in the reversal of genome-wide epigenetic alterations in 
cancer via multiple altered cell proliferation pathways followed by 
amplification of protooncogenes or the silencing of tumor suppressor 
genes [18]. Methylation is involved in several processes like cell cycle, 
differentiation, developmental and DNA repair that's why any alteration 
in this leads to disease. HDACi and DNMTs inhibitors downregulate all 
those genes which are involved in angiogenesis, migration, cell survival 
and epithelial to mesenchymal transition (EMT) while upregulate the 
expression of apoptotic genes [19]. Aside from the underlying mecha-
nisms of action, studying phenomena involved in drug resistance could 
be significantly important for the translation of this modality into clinic 
[18]. For instance, it has been shown that high levels of cytosine 
deaminase and low levels of nucleoside transporters and/or of deoxy-
cytidine kinase are hallmark of imparting resistance to decitabine in 
different cancer cell lines [20]. The medications have different impacts 
on various subpopulations due to epigenetic modifications. This might 
help in guiding future clinical applications of these treatments [21]. 

Histone deacetylase inhibitors (HDACIs) are another family of 

epigenetic modifiers that are therapeutically employed in the clinical 
practice [22–24]. HDAC enzymes may modify chromatin topologies and 
facilitate cancer-related gene silencing in cancer cells, among other 
roles, as components of repressive protein complexes comprising 
DNMTs. As a result, inhibiting HDAC enzymes may result in the reversal 
of cancer's aberrant gene silencing. Several HDACIs have been demon-
strated to have powerful anti-tumor properties and are now being tested 
in clinical studies. The FDA has authorized two such inhibitors, romi-
depsin (aka depsipeptide or FK228) and vorinostat (aka suberoylanilide 
hydroxamic acid or SAHA), for the treatment of cutaneous T-cell lym-
phoma [10,23,24]. Apart from antitumor activity, other possible ap-
plications of HDACIs and other epigenetic modifiers in clinical oncology 
are being investigated. According to Sharma et al. [25], drug resistance 
may be mediated by epigenetic processes and may be reversed with the 
use of certain HDACIs. This indicates a potential use of epigenetic 
treatment to overcome resistance, and to increase tolerance or poten-
tiate the effects of traditional chemotherapy in the clinical treatment of 
cancer, where drug resistance has traditionally been a major issue. 

Given that DNA methylation-mediated aberrant gene silencing in 
cancer requires transcriptional repressive complexes comprising both 
DNMTs and HDAC, targeting both enzymes with a DNMT inhibitor and 
an HDAC inhibitor in combination treatment is an appealing cancer 
management strategy. Indeed, using an HDAC inhibitor after a DNA 
demethylating drug has demonstrated to have synergistic benefits in in 
vitro gene re-expression as well as improved anti-tumor effects in clin-
ical trials [26,27]. Moreover, epigenetic-modifying medicines may work 
in tandem with other traditional chemotherapeutic treatments to 

Fig. 1. Epigenetic modifications include A. DNA methylation; B; histone modification and C: Non-coding RNA. These events lead to carcinogenesis, tumor pro-
gression and chemoresistance followed by promotion of oncogenes and inactivation of tumor suppressors. Cancer promotion events include hyper methylation, 
oncomir, acetylation and relaxation while tumor suppressor inactivation includes Histone condensation, histone methylation, hypomethylation and 
tumor suppressor. 
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increase clinical effectiveness with lower dosages of either therapy. For 
instance, decitabine and azacitidine may alter various cellular pathways 
via gene reactivation, making cancer cells more susceptible to other 
treatments that target comparable pathways. 

Both azacitidine and decitabine, while showing the clinical efficacy 
in haematological malignancies at low doses (when administered alone 
or in combination with other drugs), exert comparable anti-cancer ac-
tivities in solid tumors (when administered at similar dosing schedules) 
remains a matter of investigation. For example, patients with metastatic 
lung cancer who have failed multiple lines of previous chemotherapy 
have achieved a robust and durable response in a clinical trial using a 
low-dose regimen of azacitidine and an HDAC inhibitor, entinostat (also 
known as SNDX-275 or MS-275) [10,27–30]. Clinical trials are currently 
being conducted for a variety of tumor types, including breast and colon 
cancer. In addition to clinical efficacy, extensive research is required in 
the context of clinical trials to optimize patient benefits, such as opti-
mizing dose schedules and sequences and to identify individuals who 
could benefit from epigenetic treatment. Combining epigenetic and 
immune-based therapies to reduce cancer resistance. 

2. Combining epigenetic and immune-based therapies to reduce 
cancer resistance 

The integration of epigenetic medicines with other treatments, 
including standard chemotherapy, targeted therapies, and immuno-
therapy, has evolved as an attractive alternative for cancer treatment 

(shown in Fig. 2). Rational combination regimens offer the ability to 
overcome the limitations of single agent epigenetic treatments, thereby 
boosting antitumoral effects and decreasing drug resistance. Several 
studies are now being conducted to assess the effectiveness of various 
drug combination medicines, several of which have reached the clinical 
trial stage [31]. 

2.1. Synergies in epigenetics 

Given the complexities of epigenetics regulation during carcino-
genesis, the administration of a “cocktail” of epigenetically-targeted 
drugs could constitute a logical and viable therapeutic strategy [34]. 
Closed chromatin states characterised by underacetylated histone ly-
sines are frequently associated to heavily methylated DNA sequences 
[35]. Therefore, low dosages of DNA demethylating agent accompanied 
by HDAC inhibition was shown to foster the reactivation of cancer- 
silenced genes [36]; contextually, preclinical studies revealed that 
coupling HDAC and DNMT inhibitors has a synergistic impact on tumor- 
suppressor gene reactivation, apoptosis induction, and cell division/ 
growth inhibition in cancer cells [37]. Regimens based on combinations 
of DNMT and HDAC inhibitors have demonstrated early effectiveness 
and are being studied extensively in solid and haematological malig-
nancies as shown in Table 1. Combined vorinostat/decitabine treat-
ments, for example, showed therapeutic advantages in paediatric 
patients with secondary MDS/acute myeloid leukemia (AML) associated 
with solid tumor recurrence, including disease stability and a good 

Fig. 2. Combining epigenetic drugs with other therapies for the treatment of cancer. When epigenetic drugs are combined with chemotherapy, they reverse che-
moresistance associated epigenetic programming. Epigenetic drugs with targeted therapy prevent kinase reprogramming, overcome BCL-2 resistance and reverse 
endocrine resistance. When epigenetic drugs are combined with immunotherapy, they upregulate dsRNA which leads to accumulation of antigen presenting cells that 
promotes IFN signalling and activates MHC class I molecules and T-cells, ultimately inhibiting chemorestistance. Tumor antigens, and PD-1 ligands, activate ERVs, 
and IFN expression along with stimulation of anti-tumor immunity [32,33]. 
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quality of life [38]. Another study reported that coupling entinostat 
(another HDACI also known as SNDX-275 and MS-275) with low-dosage 
azacitidine results in objective and long-term responses in individuals 
with resistant advanced non-small cell lung cancer (NSCLC) [39]. 

Pinometostat, a disruptor of telomeric silencing 1-like (DOT1L) in-
hibitor, has exhibited synergic effect with azacitidine in MLL-rearranged 
leukemia cells [40]. A clinical trial evaluating the efficacy, tolerance, 
and initial anticancer efficacy of pinometostat in conjunction with 
azacitidine for the management of patients with mixed linage leukemia 
(MLL)-rearranged AML is now active. Furthermore, the bromodomain 
and extraterminal (BET) inhibitor JQ1 in conjunction with azacitidine 
has been shown to synergistically cause apoptosis in AML and MDS, 
indicating that inhibiting both BET proteins and DNA methylation at the 
same time is a promising therapeutic route [41]. Contextually, a phase 1 
trial in patients with non-Hodgkin lymphoma (NHL), MDS or AML was 
recently concluded aiming at examining the feasibility, pharmacologic, 
and anticancer effects of a new BET inhibitor, FT-1101, either alone or in 
conjunction with azacitidine approved by clinicaltrials.gov 
(NCT02543879). 

2.2. Combination with chemotherapy 

Coupling epigenetic agents with chemotherapeutic drugs that cause 
DNA damage has emerged as an appealing strategy for preventing or 
defeating resistance phenomena [42–44]. Chemoresistance is typically 
coupled with epigenetic programming, such as aberrant methylation of 
DNA and alterations in histone acetylation, which can be restored by 
DNMT and HDAC inhibitors [45–47]. This aberrant DNA is associated 
with methylation of key genes in mTOR signalling/AKT/PTEN/PI3K 
pathway which promotes resistance in various solid tumors via alter-
ation in cell survival, motility, apoptosis, angiogenesis, cell metabolism 
and cell proliferation [48]. As an example, the low-dose DNMT inhibitor 

decitabine has been demonstrated to re-sensitise chemotherapy resistant 
diffuse large B cell lymphoma (DLBCL) cells to doxorubicin without 
causing significant damage [49]. Based on preliminary findings, a phase 
1 clinical study in DLBCL patients evaluating azacitidine priming pre-
ceded by conventional chemo-immunotherapy R-CHOP (a drug cocktail 
including the monoclonal antibody rituximab, cyclophosphamide 
doxorubicin hydrochloride, vincristine and prednisolone) revealed that 
the combined treatment is well absorbed and resulted in a high rate of 
full remission [50]. HDAC inhibitors, like DNMT inhibitors, have been 
shown to alleviate resistance against chemotherapy, reprogramming 
cancer cells to respond to cytotoxic treatments [51,52]. Panobinostat, 
for example, inhibits resistance against cisplatin induced by hypoxia in 
NSCLC cells by destabilising HIF-1α [51]. HIF-1α activation causes 
resistance against various other chemotherapeutic agents like 5-Fluoro-
uracil, Actinomycin D, Bleomycin, Carboplatin, Cisplatin, Docetaxel, 
Doxorubicin, Etoposide, Gemcitabine, Irinotecan, Melphalan, Metho-
trexate, Oxaliplatin, Procarbazine and Sorafenib [53]. 

2.3. Coupling with targeted treatment 

The development of targeted treatments, which utilize chemicals 
intended to specifically interact with certain mutant/aberrantly signal-
ling proteins, has constituted a real shift in cancer therapy paradigm 
[54]. Pharmacological treatment of mutant kinases produces fast clin-
ical outcomes in genetically specified populations [55–57]. Resistance 
against targeted therapy, on the other hand, is almost unavoidable 
[57–63]. Genetic changes and transcriptional reprogramming are two 
resistance mechanisms that can be reversed using epigenetic treatments 
[32,64–67]. Epigenetic alterations are involved in oncogenesis of NSCL 
but its role in EGFR-TKI resistance is still uncharacterized. However, 
HDAC inhibition was reported to overcome tolerance to a variety of 
kinase inhibitors. For example, a relatively novel oral histone 

Table 1 
Clinical status of combined therapy of HDACi and DNMTi.  

NCT number Drug Combination therapy Cancer type Phase Status 

DNMTi 
NCT03913455 Guadecitabine Carboplatin Small cell lung cancer, extensive-stage small cell lung cancer II Active, not 

recruiting NCT03308396 Durvalumab Advanced kidney cancer, kidney cancer, clear cell renal cell 
carcinoma 

IB/II 

NCT03576963 Nivolumab Colorectal adenocarcinoma, CpG island methylator phenotype, 
metastatic microsatellite stable colorectal carcinoma 

IB/II Withdrawn 

NCT03264404 Azacitidine Pembrolizumab Pancreas cancer II Active, not 
recruiting NCT03019003 Durvalumab, Tremelimumab Head and neck cancer IB/II 

NCT04490707 Lenalidomide Acute myeloid leukemia in remission III Recruiting 
NCT03094637 Pembrolizumab High risk myelodysplastic syndrome, IPSS risk category 

intermediate-1, myelodysplastic syndrome 
II Active, not 

recruiting 
NCT03295552 Decitabine Carboplatin Metastatic triple negative breast cancer II Terminated 
NCT02957968 Pembrolizumab followed by standard 

neoadjuvant chemotherapy 
Breast adenocarcinoma; estrogen receptor-negative breast cancer; 
estrogen receptor-positive breast cancer 

II Active, not 
recruiting 

NCT03709550 Enzalutamide Castration-resistant prostate carcinoma, metastatic prostate 
carcinoma in the soft tissue 

Ib/II Withdrawn 

NCT04353479 Camrelizumab (SHR-1210) Acute myeloid leukemia II Not yet 
recruiting 

NCT02159820 Carboplatin-Paclitaxel Primary malignant neoplasm of ovary; FIGO stages II to IV II/III Recruiting 
NCT04510610 Camrelizumab Hodgkin lymphoma II/III 
NCT04049344 Oxaliplatin Metastatic renal cell carcinoma II Unknown  

HDACi 
NCT04651127 Chidamide Toripalimab Cervical cancer Ib/II Recruiting 
NCT04562311 Tislelizumab Bladder cancer stage IV II 
NCT03742245 Vorinostat Olaparib Relapsed/refractory and/or metastatic breast cancer I 
NCT03848754 Pracinostat Gemtuzumab Ozogamicin Relapsed adult AML Completed 
NCT03829930 Entinostat Enzalutamide Prostate adenocarcinoma Terminated 
NCT03939182 Abexinostat Ibrutinib Diffuse large B-cell lymphoma and mantle cell lymphoma I/II Active, not 

recruiting 
NCT02616965 Romidepsin Brentuximab vedotin Cutaneous T-cell lymphoma (CTCL) I Recruiting 
NCT03024437 Entinostat Atezolizumab and Bevacizumab Metastatic cancer, renal cancer I/II Suspended 
NCT03903458 Tinostamustine Nivolumab Malignant melanoma I Recruiting 
NCT03820596 Chidamide Sintilimab Extranodal natural killer/T cell lymphoma I/II Completed  
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deacetylase inhibitor MPT0E028 was able to rise apoptosis induced by 
the first-line epidermal growth factor receptor (EGFR) tyrosine kinase 
inhibitor (TKI) erlotinib in EGFR-TKI resistant NSCLC cells [68]. 
Another preliminary research reported that combining EGFR-TKIs and 
vorinostat reversed EGFR-TKI resistance and promoted apoptosis in 
NSCLC cell models [69]. HDAC inhibitors have also been shown to 
reverse the mammalian target of rapamycin (mTOR) TKI resistance in a 
number of malignancies as it has been observed that methylation of 
genes impact mTOR signalling pathway due to epigenetic alteration 
[48,70,71]. Resistance to mTOR inhibitors is caused by increased levels 
of protein kinase B (aka AKT) phosphorylation, which can successfully 
be suppressed by inhibiting HDAC. Accordingly, for example: i) HDAC 
inhibitors such as apicidin, vorinostat and panobinostat for example 
were shown to synergize with specific mTOR inhibitors to combat 
apoptosis resistance in B-cell acute lymphoblastic leukemia (ALL) cells 
[71]; ii) a combination of valproic acid and the mTOR inhibitor tem-
sirolimus inhibited cancer cell proliferation and causes autophagy- 
mediated cell death in Burkitt leukemia/lymphoma patients [70]; and 
iii) a phase 1 trial in patients with advanced renal cell carcinoma (RCC) 
reported that, when mTOR inhibitors vorinostat and ridaforolimus were 
used in combined regimen, they were well-absorbed and resulted in 
long-term disease stability, indicating that more research into the 
combination therapy is promising and need to be further pursued in the 
future [72]. 

For the management of hematologic malignancies, DNMT inhibitors 
have been studied in conjunction with venetoclax, a specific inhibitor of 
the antiapoptotic B-cell lymphoma 2 (BCL-2) protein. Though ven-
etoclax monotherapy shows promise effectiveness in leukemia patients, 
resistance toward venetoclax has been documented to develop rapidly 
[73,74], with upregulation of two antiapoptotic proteins, induced 
myeloid leukemia cell differentiation protein (MCL-) and B-cell 
lymphoma-extra-large protein (BCL-XL), being involved in the resis-
tance mechanism [74]. When coupled with a BCL-2 inhibitor, azaciti-
dine has been shown to reduce BCL-2 inhibition resistance by decreasing 
the expression of MCL-1, hence synergistically increasing apoptosis 
[75]. Venetoclax in combination with azacitidine or decitabine had an 
acceptable safety record and an enhanced success rate in elderly AML 
patients when compared to azacitidine or decitabine alone [76]. The 
combination of DNMT inhibitors and venetoclax has been designated as 
a “break-through therapy” by the FDA for earlier non-treated AML pa-
tients who are ineligible for intense chemotherapy, and it is now being 
tested in clinical studies for the management of MDS and AML. 

2.4. Coupling with immunotherapy 

Immune checkpoint therapies, involved in boosting anticancer im-
mune responses by preventing checkpoint molecule interaction, have 
resulted in a significant advancement in cancer treatment [77–79]. Even 
though immunoglobulins against checkpoint proteins such as CTLA-4 
(aka cluster of differentiation 152 or CD152), programmed death- 
ligand 1 (PD-L1) and programmed cell death protein 1 (PD-1 or 
CD279) exhibited promising anticancer effects, their therapeutic use 
may be restricted due to poor antigen presentation and inadequate T-cell 
response. These limitations can be overcome by immunomodulatory 
actions driven by epigenetic remodelling [33,80–84]. Inhibiting epige-
netic regulators such as lysine-specific demethylase 1A (LSD1), 
enhancer of zeste homolog 2 (EZH2), HDAC and DNMT elicit several 
immunomodulatory actions in cancer cells, including overexpression of 
MHC class I molecules, tumor antigens, and PD-1 ligands [85]. Knocking 
out such epigenetic proteins also initialises the production of endoge-
nous retroviral components and double-stranded RNA in cancer cells, 
that also activates interferon signalling, helps to stimulate antineoplastic 
T-cell immunity, and makes cancer cells more susceptible to checkpoint 
blockade therapies [86]. These findings support the use of epigenetic 
agents in conjunction with immunotherapies. 

Recent efforts have shown that DNMT inhibitors can improve the 

preliminary effectiveness of immunotherapies in a variety of malig-
nancies. For instance, decitabine promoted the infiltration and anti-
cancer activity of cytolytic CD8+ T lymphocytes in a syngeneic mouse 
ovarian cancer model, and combining decitabine and anti-CTLA-4 
antibody displayed synergistic antitumor effects and longer mouse sur-
vival [87]. Further studies showed that DNMT inhibition caused over-
expression of MHC class I proteins, T-cell chemotaxis, and tumor 
infiltration of CD8+ T cells in animal studies of prostate, colon and breast 
malignancies, hence amplifying the anticancer effects of anti-PD-1 an-
tibodies [88,89]. Finally, a phase 2 research involving AML patients 
found that the combination of azacitidine with the PD-1 antibody 
nivolumab was safe and offered encouraging objective response rates 
and overall survival results [90]. 

In animal models of different malignancies, HDAC inhibitors have 
been shown to be effective when used with immunotherapies. For 
example, the HDAC inhibitor panobinostat increases PD-L1 and PD-L2 
expression in melanomas and improves anti-PD-1 antibody therapy, 
resulting in decreased tumor growth and enhanced survival when 
compared to single-agent therapies [91]. Furthermore, the HDAC in-
hibitor belinostat enhanced the anticancer effects of anti-CTLA-4 treat-
ment in a murine model of hepatocellular carcinoma, with increased 
IFN-γ generated by antitumor T-cells and decreased regulatory T cells 
[92]. Interestingly, entinostat was reported to suppress regulatory T 
cells and to improve the anticancer effects of IL-2 and vaccination 
treatment in animal studies of prostate and renal cancer [93]. According 
to the first report of clinical studies coupling HDAC inhibitors and IL-2 
immunotherapy, the combination treatment improved actual response 
rate and median progression-free life in patients with metastatic RCC 
[94]. Given the importance of epigenetic regulators in modifying anti-
tumor immunity, T-cell fatigue, immune cell infiltration, and function, a 
significant number of current clinical trials are assessing the effective-
ness of coupling epigenetic medicines with immunotherapies. Future 
research will describe the impact of epigenetic agents on tumor and 
immune cell populations, as well as give insight into the molecular 
processes behind epigenetic therapy responses, which will aid in the 
development of rational combination treatments. 

3. Epigenetic tools 

Both genome compaction and gene expression are regulated by 
epigenetic alterations operated by certain enzymes (referred to as 
writers) and identified by effector proteins (known as readers). The ma-
jority of, if not all, epigenetic marks are reversible, and they may be 
removed using a variety of other enzymes called erasers. They have 
shown promising results when they are used in combination with other 
chemo and immunotherapeutic agents [95]. The development of 
numerous small molecule medicines is presently focused mostly on these 
epigenetic regulatory factors. Even though the FDA has only approved a 
small number of epigenetic medications for the treatment of cancer, 
many good epigenetic medications have undergone clinical trials and 
have had outstanding outcomes [96]. There isn't much evidence, 
though, that epigenetic medications and cancer therapy work in 
conjunction [95]. The intricate interaction of these three protein groups 
regulates gene transcription, and abnormalities in this system may ul-
timately lead to tumor initiation and development (shown in Fig. 3). 

3.1. Epigenetic writers 

Epigenetic writers oversee promoting the addition of active and 
suppressive tags to DNA or histones. Among the plethora of chemical 
groups that can be added to DNA and histone proteins by a variety of 
writer enzymes [97], the two most common epigenetic alterations are 
methylation – that occurs on both histone proteins and DNA and acet-
ylation, which occurs solely on histones [98]. These two changes 
commonly influence cellular gene expression patterns by switching be-
tween transcriptional activation and suppression [99]. Histone 
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methyltransferases (HMTs, including histone lysine methyltransferases 
and protein arginine methyltransferases), histone acetyltransferases 
(HATs) and DNMTs are all remarkable examples of writer proteins 
[100], with DNMTs being the most attractive targets for therapeutic 
research, and clinical studies are underway for a number of inhibitors 
like azacytidine and decitabin to target these proteins [9,101]. 

3.2. Epigenetic readers 

To moderate the impact of the variety of alterations performed by 
epigenetic writers, other cellular proteins must identify them and con-
trol their activity [102]. In mammalian cells, many protein domains that 
bind to these alterations have emerged, and these proteins are referred 
to as known as epigenome readers [103]. Numerous chromatin modi-
fiers function as epigenetic readers owing to the existence of specialized 
domains capable of recognizing and binding various covalent changes to 
DNA and histones. Limiting again to the two most extensively studied 
histone modifications (methylation and acetylation), the methyl-CpG- 
binding domain (MBD) family of proteins are key DNA methylation 
readers because they attract chromatin remodellers, HDACs, and 
methylases to methylated DNA associated with gene regulation 
[104,105]. Interestingly, some MBD proteins may also bind unmethy-
lated DNA through alternative regulatory domains or association with 
components of the Mi-2/nucleosome remodelling and deacetylase 
(NuRD) complex [106]. In addition, the Kaiso family proteins and the 

SET- and Ring finger-associated (SRA) domain family are also effective 
DNA methylation readers, while DNA methylation editors are a new 
group in this class of epigenetic modifiers (comprising the ten–eleven 
translocation (TET) protein family), which form 5-hydroxymethylcyto-
sine (5-hmC) by converting the carbon-5 methyl group in 5-mC into 
an -OH group [107–109]. The category of methylated histone readers 
includes a wide range of proteins that have specific domains in charge of 
recognizing such modifications. So far, readers of methyl lysine and/or 
arginine residues have been located in, e.g., the royal superfamily do-
mains (which include Tudor, tandem Tudor (TT), chromo and double 
chromo, malignant brain tumor (MBT), Pro-Trp-Trp-Pro (PWWP) and 
agenet domains), WD40 repeat (WDR) domains and plant homeo-
domains (PHDs), among others [110–112]. 

3.3. Epigenetic erasers 

Post-translational changes on histones and covalent alterations on 
DNA are not persistent epigenetic markers [113] and, as such, they can 
be removed based on the cell's need to modulate the expression levels of 
the specific locus [114,115]. To the purpose, epigenetic erasers delete 
DNA or histone changes established by writers to control gene expres-
sion. Interestingly, eraser proteins like HDACs, histone demethylases 
(HDMs), LSD1 and ten-eleven translocation (TET) enzymes have all been 
linked to cancer, and many inhibitors of HDAC and LSD1 have made 
their way to clinical trials [101]. Because of the availability of specific 

Fig. 3. Landscape of epigenetic marks, writers, readers and erasers. Inhibitors of epigenetic writers add marks, inhibitors of epigenetic readers detect marks and 
inhibitors of epigenetic erasers remove marks which leads to treatment of cancer. Writers cause various chemical modifications on histones and DNA; readers are 
proteins with special domains that interpret and identify those modification while erasers are group of enzymes which is proficient in removing chemical tags. 
Tumorigenesis is largely influenced by altered control of these epigenetic tools. 
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domains that can recognise and bind various covalent modifications 
found on DNA and histones, many chromatin modifiers operate as 
epigenetic erasers [116]. For the sake of brevity, in what follows only 
protein domains that can detect and bind to methylated DNA and those 
domains that can recognise and bind to the two commonly studied 
histone modifications, acetylation and methylation [98] will be 
discussed. 

As discussed above, histone acetylation is an essential method in 
epigenetics for lowering chromatin condensation and so increasing gene 
transcription, but another significant process is the removal of acetyl 
groups through the activities of histone deacetylases (HDACs). HDACs 
are classified into two groups: group I and group II. Group I enzymes, 
which are further subdivided into classes I, II, and IV, comprise zinc- 
dependent amidohydrolases, while group II enzymes, also known as 
class III or sirtuins (SIRTs), rely on nicotinamide adenine dinucleotide 
(NAD) as a cofactor [117–119]. Interestingly, SIRTs play a role in 
transcription control, metabolic regulation, cell survival, and a variety 
of other biological processes and because numerous SIRT inhibitors have 
been found to have anticancer properties, some SIRTs like, e.g., SIRT1 to 
SIRT7 might be interesting therapeutic targets for cancer treatment 
[120]. Histone phosphatases may bind to histone proteins that have 
phosphorylated serine, threonine, or tyrosine residues, and several 
protein Ser/Thr phosphatases have been shown to dephosphorylate 
histone proteins, including PP1, PP2A, and PP4 [121–123]. Proteases 
known as deubiquitinating enzymes catalyse the removal of ubiquitin 
groups from histone lysine residues (DUBs) [124]. Additionally, they 
may be classified as ubiquitin-specific proteases (USPs) and Jab1/MPN 
domain-associated metalloisopeptidase (JAMM) domain proteins [125]. 
Both members of the USP and JAMM families have been demonstrated 
to target histone proteins H2A and H2B, which control transcription, 
DNA repair, gene expression, and cell cycle progression [126,127]. 
While histone ubiquitination activities are less well known than those of 
other histone modifications, mounting evidence suggests that this 
epigenetic change plays a critical role in the DNA damage response 
[128]. Lysine-specific demethylase 1 (LSD1 aka KDM1) is the first re-
ported histone demethylase, and features an amino oxidase domain that 
interacts with flavin adenine dinucleotide (FAD) as a cofactor required 
for demethylation [129]. Since then, a new class of lysine demethylases 
known as Jumonji C domain-containing demethylases has been 
discovered (JMJD), that require Fe2+/2-oxoglutarate (2-OG) in place of 
FAD for activity [130]. Interestingly, within JMJD proteins, there is 
currently just one enzyme, JMJD6, with is endowed with arginine 
demethylase activity [131]. 

4. Old drugs repurposed as novel epigenetic inhibitors 

The conventional drug development process is expensive and time- 
consuming; moreover, the actual success rate of a drug candidate re-
ported in the last decades ranges from 10 % to 20 %. With these limi-
tations in mind, alternative approaches have been investigated, and the 
drug repurposing approach has evolved as an intriguing possibility in 
the treatment of numerous illnesses [132–134]. Different drug repur-
posing (DR) methods may be adopted to find possible repurposing 
medications, including network-based procedures such as semantic- 
based methods, clustering, text mining-based and propagation [135]. 
DR is a significant tool for developing innovative, tailored therapeutics; 
accordingly, the next paragraphs will be dedicated to a brief survey of 
various drugs that have been repurposed for epigenetic targeting, 
including BET, HDM, HAT, DNMT, HMT inhibitors and histone modu-
lators alone or in combination [136–140]. 

The strategy of repurposing old drugs – for which crucial information 
like safety and pharmacokinetic characteristics are already known – for 
epigenetic-targeting might sidestep the traditional paradigm, in which 
the primary goal is to create one-indication-only drugs, since epigenetic 
pathways are common across various cancer models. Contextually, it 
can provide patients with lower-cost treatments and a revolutionary 

precision medical approach to maximize therapeutic effectiveness and 
minimize toxicity, as shown in Table 2. Apicidin, Mahanine, Berberine, 
DNMTi HDACi TSA, Procainamide and Hydralazine are just a few ex-
amples of successful epidrug repurposing [141]. These chemicals have 
been reported to be efficient in many tumor models, and hence appear to 
be endowed with promising potential for further research and devel-
opment [142]. Interestingly, however, although many tumor models 
have similar interactions between repurposed medicines and epigenetic 
enzymes, the results of epigenetic repression may vary. Depending on 
the tumor model, abnormal epigenetic pathways generate unique 
modifications in cell cycle, expression of genes and proliferation, which 
may have a differential influence on levels of gene expression [143]. 

The most investigated epigenetic targets are the HDAC and DNMT 
enzymes. As mentioned earlier, changes in expression of DNMT and 
HDAC are connected in cancer, causing tumor suppressor gene expres-
sion to be downregulated [144]. As a result, active compounds that 
target both HDAC and DNMT enzymes might be a more effective solu-
tion with respect to single target agents [145]. BET, HMT, HAT and 
HDM inhibitors have piqued the scientific community's interest in recent 
years, with various drugs showing potential as repurposed blockers of 
these histone modulators [146,147]. As a partial drawback, HDAC en-
zymes are ubiquitously expressed, and because of the variety within 
subclasses, it is difficult to design novel treatments targeting these 
epigenetic enzymes [148]. Nonetheless, a number of licenced medica-
tions have being investigated as effective HDACi [149,150]. Contextu-
ally, DNMT inhibitors (DNMTi) are also widely studied, and several 
medications have been successfully repurposed as DNMTi [151,152]. 

5. Epigenetic editing 

Epigenetic editing is the use of epigenetic enzymes to rebuild the 
localized epigenetic environment of an internal genomic region, usually 
with the goal of regulating transcription. The use of sporadically inter-
spaced small palindromic repeats d-Cas9 has considerably enhanced 
epigenetic editing progress, resulting in preclinical pharmacological 
achievements with a range of epigenetic enzymes [188–190]. Epigenetic 
modification tools - such as DNA binding proteins like transcription 
activator-like effector nucleases (TALENs) or zinc finger nucleases 
(ZFN), which are linked to epigenetic modifiers - were found to be 
capable of introducing epigenetic alterations to a specified locus 
[191,192]. TAL effector repeats, which display a modular architecture 
that includes a central DNA-binding region comprising a tandem array 
of nearly identical repeats that are almost all 34 residues long - are the 
DNA-binding structures that may be engineered to interact with almost 
any genomic sequence [193,194]. Maeder et al., for instance, discovered 
that fusing modified TALE repeated arrays with the TET1 hydroxylase 
catalytic site allows effective and selective demethylation of particular 
CpGs in living cells [195]. The authors showed that these TALE-TET1 
combinations allow the alteration of crucial methylated promoters 
CpGs, resulting in significant improvements in gene expression. Also, 
Mendenhall et al. showed that TALE effector can be coupled to LSD1 to 
effectively demethylate enhancers and disclose enhancer target genes 
[196]. According to their results, enhancer-associated chromatin alter-
ations could be effectively removed from targeted loci by the fusion 
proteins, with little effect on controlled areas. 

Recent advances in epigenome editing based on clustered regularly 
interspaced palindromic repeats (CRISPR)/Cas-based technologies have 
endowed researchers with powerful tools to site-specifically program 
epigenetic modifications to endogenous DNA and histones and to con-
trol native chromatin architecture. As a result, these systems have sub-
stantially contributed to uncover the intricacy of epigenetic events and 
give new insights into the role of chromatin abnormality in the insur-
gence of genetic disorders, as well as novel techniques for preventing or 
reversing this dysregulation [197,198]. The CRISPR/Cas9 epigenetic 
editing approach relies on an endonuclease protein whose DNA- 
targeting specificity and cutting activity can be programmed by a 
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short guide RNA (gRNA) [199,200]. In concomitance, nuclease-null 
disabled (or dead) CRISPR/Cas systems (dCas) coupled with effectors 
have transformed our capacity to edit the epigenome and have sub-
stantially advanced our knowledge of epigenetic control due to the 
relatively straightforward targeting of genomic DNA by modifying the 
protospacer sequence inside gRNAs. The gRNA targets particular loci 
and the effector can either activate or suppress transcription of genes, as 
shown in Fig. 4. The effectors are generated from epigenetic erasers and 
writers like TETs, HDAC, HMTs, HATs, HDM and DNMTs [201]. The 
Krüppel associated box enzyme linked to dCas9 is another potent 
epigenetic editing tool that may be employed for silencing of gene 
[202]. It has been demonstrated that dCas9-KRAB-mediated suppression 
is precise in blocking the activation of particular enhancers through 
epigenome alteration at the local level [203]. As a result, epigenetic 

editing might be viewed as a viable strategy for targeted gene therapy 
that can fix disease-related epi-mutations. It also acts as a valuable 
approach for identifying basic epigenetic concerns, such as the source 
and effect of epigenetic changes in expression of gene. Nonetheless, the 
most difficult issues facing epigenome editing are attaining non- 
immunogenicity, effective delivery and high sensitivity [188]. 

6. Epigenetics modulations by dietary compounds 

Polyphenols produced from Hibiscus sabdariffa have been shown to 
alter expression of miRNA in hyperlipidemic mouse lacking the LDL 
receptors. These epigenetic alterations are becoming well recognised as 
important epigenetic gene regulatory mechanisms. Individual pheno-
typic heterogeneity is demonstrated accompanying cellular epigenetic 

Table 2 
Repurposed drugs to target epigenetics.  

Drug Approved for Epigenetic target Cancer model References 

a) Candidates for non-cancer drug repurposing for inhibition of DNMT 

Procaine Anesthesia via infiltration, peripheral 
nerve block, and spinal blockage 

DNMT3A, DNMT1 NSCLC, gastric cancer, hepatocellular carcinoma, breast cancer [139] 

Procainamide Cardiac arrhythmias 

DNMT1 

Prostate cancer [153] 

Mithramycin A 
Hypercalcemia, particularly as a result of 
malignancy Lung cancer [154] 

Laccaic acid A 
Natural compound (NA) 

Breast cancer [155,156] 
Harmine Acute myeloid leukemia [157] 
Chlorogenic acid Breast cancer [158] 

Hydralazine Hypertension T-cell leukemia, prostate cancer, cervical cancer, bladder cancer, breast 
cancer 

[159–163] 

Mahanine Natural compound (NA) DNMT3B, DNMT1 Prostate cancer [164,165] 

Nanaomycin A Antibiotic quinone DNMT3B 
Burkitt lymphoma, colon cancer, lung cancer, T-cell acute lymphoblastic 
leukemia [166,167] 

Olsalazine Ulcerative colitis, inflammatory bowel 
disease 

DNMT Cervical cancer [168]  

b) Candidates for non-cancer therapeutic repurposing for HDAC inhibition 

TSA Antifungal antibiotic SIRT6, HDAC class I, 
II 

Prostate cancer, pancreatic cancer, leukemia, hepatocellular carcinoma, 
esophageal squamous carcinoma, colon cancer, breast cancer 

[139] 

Sodium butyrate Anti-inflammatory HDAC1 Breast cancer, gastric cancer, prostate cancer [169] 

Psammaplin A 

Natural compound (NA) 

SIRT1, HDAC6, 
HDAC1 Breast cancer, cervical cancer, endometrial cancer, lung cancer [139] 

HC toxin HDAC Neuroblastoma, breast cancer [170] 
Ginseng HDAC Non-small cell lung cancer [171] 
Aspigenin HDAC class I Prostate cancer [172] 

Carbamazepine 
Seizures with psychomotor or focal 
characteristics can be controlled 

HDAC7, HDAC6, 
HDAC3 Colon cancer, liver cancer, breast cancer [139] 

Artemisin Malaria 
HDAC6, HDAC1, 
HDAC2 Breast cancer [173] 

Apicidin Antiprotozoal (NA) 
HDAC8, HDAC3, 
HDAC4 

Pancreatic cancer, ovarian cancer, oral squamous cell carcinoma, lung 
cancer, endometrial cancer, cervical cancer, colon cancer, breast cancer, 
acute promyelocytics leukemia 

[139]  

c) Candidates for non-cancer medication repurposing for BET, HMT, HAT and HDM inhibition 

Tranylcypromine 
Phobic and panic disorders, dysthymic 
disorder, depression, atypical depression 

LSD1 

Sarcomas, glioblastoma multiforme [174,175] 

Pargyline 
Antihypertensive, irreversible selective 
MAO-B Prostate cancer [176] 

Geranylgeranoic 
acid 

Natural compound (NA) Neuroblastoma [177] 

Clorgyline MAO inhibitor Leukemia, colon cancer, bladder cancer [178] 
Garcinol Antioxidant (NA) KAT2B, Ep300 Cervical cancer [139] 
Nitroxoline Urinary antibacterial agent BRD4 Mixed-lineage leukemia [179] 
Plumbagin Natural compound (NA) KAT3B/p300 Liver carcinoma [176] 
Ribavirin Hepatitis C, RSV infections EZH2 Solid tumors [180] 

Anarcadic acid 
Radio-sensitization activities, anti- 
inflammatory 

Tip60, Ep300 
T-cell lymphoma, prostate cancer, myeloid leukemia, lung cancer, cervical 
cancer 

[181,182]  

d) Candidates for non-cancer medication repurposing that inhibit both DNMT and HDAC 
Resveratrol Natural compound (NA) DNMT 

HDAC1 
NSCLC, breast cancer [183,184] 

Parthenolide Anti-inflammatory (NA) Myeloma, leukemia, breast cancer [185–187] 

Berberine Fungal and parasitic infections 
DNMT3A, DNMT1, 
HDAC class I, II, IV Lung cancer, multiple myeloma, prostate cancer [139]  
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mosaicism even in genetically similar people. Nutritional and environ-
mental variables have the capacity to impact organisms from infancy 
through adulthood, and transgenerationally via epigenetic changes 
affecting regulation of genes. Organisms have tissue-specific modifica-
tion of histone and DNA methylation patterns. Plant-derived poly-
phenols such as catechins and curcumin are constantly in contact with 
enzymes along with epigenetic modulators such as miRNA, kinases, 
histone acetyltransferases, deacetylases along with DNA 
methyltransferases. 

Fatty acids (FAs) have been linked to epigenetic processes that 
control expression of gene. Fatty acids have the ability to change the 
epigenomics and influence genes involved in the reduction of diabetes 
and insulin resistance (IR), along with improvement in metabolism of 
glucose and lipid. The capability of reprogramming epigenetic charac-
teristics is intriguing for the treatment of chronic diseases. This is 
possible through changing one's lifestyles and consuming substances 
linked to epigenetic changes. Vitamins, polyphenols, phytochemicals, 
minerals, fatty acids, methyl donors and amino acids have all been 
identified as potentially harmful nutrients. 

DNA methylation has been demonstrated to be influenced by poly-
unsaturated fatty acids (PUFAs), that is naturally occurring fatty acids 
featuring 2 or more double bounds along their hydrocarbon chain. 
Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) include α-linolenic 
acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic 
acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and do-
cosahexaenoic acid (DHA; 22:6 ω-3). These ω-3 PUFAs can be found both 
in plant and animal sources and are characterised by the presence of the 
first double bond located on the third carbon atom away from distal 
-CH3 group. Omega-6 (ω-6) PUFAs, with the first double bond 6C atoms 
way from the terminal methyl group, are also present in both plant and 
animal diets, with linoleic acid (LA; 18:2 ω-6) and arachidonic acid (AA; 
20:4 ω-6) being prime examples of these compounds. PUFAs are thought 
to be crucial mediators for promoting and sustaining human health 
throughout life. In particular, ω-3 PUFAs have recently been found to be 
advantageous in a variety of human pathologies, including obesity and 
diabetes mellitus type 2 (T2D), as well as being linked to a lower risk of 
stroke and atherosclerosis and, more generally, a lower risk of 

cardiovascular diseases. 
Concerning their involvement in DNA modification, the Dietary ω-3 

supplementation was explored for its epigenetic anti-obesity benefits in 
a 6-month supplementation trial on overweight and obese individuals, 
both as a preventative and therapeutic measure. This analysis was 
concluded by finding that 308 CpG sites comprising 231 genes had a 
changed methylation profile, with 286 hypermethylated and 22 hypo-
methylated patterns. These epigenetic changes were found to be sig-
nificant for pathways involved in lipid metabolism, as well as a variety 
of other diseases. In a similar study, an energy-restricted diet combined 
with ω3-rich fish oil resulted in higher methylation levels of fatty acid 
desaturase 1 (FADS1, that encodes for the Δ-5 desaturase enzymatic step 
in the long chain PUFA biosynthetic pathway) and pyruvate dehydro-
genase kinase 4 (PDK4, a kinase that plays a key role in regulation of 
glucose and fatty acid metabolism and homeostasis) at several CpG sites, 
as well as weight reduction. This latter beneficial impact was similarly 
linked to a change in the methylation status of CD36, a gene that en-
codes a multifunctional transmembrane glycoprotein required for 
metabolism of lipids. As a result, it may be implicated in obesity-related 
problems such as glucose intolerance and T2D. 

An interesting study was focused on the impact of ω-3 on Yup'ik 
Eskimos in Alaska, who on average consume 20 times more ω-3 fats from 
fish with respect to all other USA residents. The result from this inves-
tigation suggests that a high intake of these fats contributes in pre-
venting obesity-related chronic diseases such as diabetes and heart 
disease. The authors discovered 27 differentially methylated CpG sites in 
physiologically significant areas with epigenome-wide significance. Two 
meaningful correlations of PUFA consumption were found on chromo-
somes 3 (helicase-like transcription factor), 10 (actin 2 smooth muscle/ 
FAS cell surface death receptor), and 16 (protease serine 36/C16 open 
reading frame 67), with 27 differently methylated CpG sites expected to 
reduce FAS expression. An apoptotic mechanism was supposed to 
govern and regulate lipid metabolism. Furthermore, ω3-FA ingestion 
influenced the methylation profile of the aryl-hydrocarbon receptor 
repressor (AHRR) gene. This impact was complemented by additional 
beneficial outcomes, such as increased glucose tolerance and insulin 
sensitivity. In another research, Mediterranean diet supplemented either 

Fig. 4. Epigenetic editing with CRISPR/dCas9 through attachment on Effector domain (ED).  
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with extra virgin olive oil or nuts resulted in hypomethylation and 
improved the gene expression implicated in inflammatory and diabetic 
pathways. An examination of the impact of ω-6 consumption in women 
indicated a positive connection with waist circumference, truncal fat 
and body mass index (BMI), and linked high resulting of ω-6 intake to 
the hypermethylation of the tumor necrosis factor alpha (TNF-α) 
promoter. 

In cultured human THP-1 monocytes (a cell line derived from an 
acute monocytic leukemia patient), the monounsaturated fatty acid 
(MUFA) oleic acid generated notable hypomethylation and an increased 
expression pattern when compared to arachidonic acid. Moreover, the 
inflammatory profile was improved because of this. Both MUFA and 
PUFA epigenetic effects are heavily influenced by subtype and dosage. 
Oleic acid, which is derived mostly from vegetables, is particularly 
beneficial epigenetically in factors linked to T2D, obesity and 
atherosclerosis. 

A clear FA-induced memory was shown in an insulin-resistant (IR)- 
cellular model treated with high dosages of palmitate and in male 
Sprague-Dawley rats fed with a high-fat diet (HFD). This might be linked 
to changes in histone methylation levels, which have a stimulating 
impact, specifically on the forkhead box protein O1 (FOXO1) promoter. 
Palmitate promoted IR, which resulted in prolonged hyperglycemia and 
gluconeogenesis, indicating a type of cellular metabolic memory. 

The implications of palmitate on genome-wide expression of mRNA 
and methylation of DNA in human pancreatic islet cells were examined 
by two different groups. Data were represented as DNA methylation 
alterations in various locations. The methylation of DNA was found to be 
altered in 290 genes, 73 of which were linked to BMI. Palmitate influ-
enced the expression of 1860 genes related to gluconeogenesis, FA 
metabolism, T2D and glycolysis. 

Maples and coworkers reported an increase in methylation affecting 
expression of peroxisome proliferator-activated receptor-delta (PPAR-δ) 
in human skeletal muscle cells in both severely obese and lean women in 
experiments utilising 1–1 oleate-palmitate combinations. The authors 
found that the previously indicated elevation in methylation of the same 
gene was less significant in obese women, suggesting that the degree of 
obesity affects methylation epigenetic modifications in an environment- 
specific approach. Another study showed that, in murine macrophages, 
stearate and palmitate boosted interleukin-4 (IL-4) levels along with 
PPARγ methylation, and such hypermethylation was thought to impact 
the proinflammatory implications of these saturated FAs, which has 
been linked to IR in obesity. The detrimental effects of certain saturated 
FAs on proinflammatory and metabolic abnormalities were studied 
further, with IR, hyperglycaemia, deregulation of lipid metabolism, 
lipotoxicity, T2D, fat build-up and obesity all being phenotypes appar-
ently linked to epigenetic changes in methylation of DNA and acetyla-
tion of histone. 

Short-chain fatty acids have less than 6 carbon atoms, are generated 
by fermentation of microbes, and are digestible in the large intestine. 
They have the potential to modify epigenetic profiles and, as a result, the 
expression of genes involved in lipid metabolism, insulin sensitivity, 
glucose homeostasis and cancer. Sodium butyrate (NaB) is one of such 
short-chain FAs that has been shown to decrease activity of HDAC. 
Indeed, Through HDAC inhibition and histone acetylation, NaB treat-
ments reduced plasma glucose, glycated haemoglobin (HbA1c), beta- 
cell apoptosis, and improved plasma insulin level and glucose homeo-
stasis in diabetic animals compared to controls. By modulating the p38/ 
ERK MAPK and apoptotic pathways, NaB therapy enhanced beta-cell 
proliferation, function, and glucose homeostasis in juvenile diabetic 
rats, as well as reducing beta-cell death. 

The beneficial NaB antidiabetic effect was affirmed in comparison to 
boosting type-1 fiber ratio, improving muscular acylcarnitine profile 
along with improving insulin sensitivity in relation to protective anti- 
obesity and prolonged adiposity and body mass utilising a C57BL/6 J 
mouse model under a HFD [150]. However, in chickens body weight 
reacted favourably to NaB under the influence of epigenetic 

modifications such as histone hyperacetylation. In another report, NaB 
was found to cause hypomethylation of genes involved in apoptosis, 
signalling and cell cycle processes or hypermethylation of genes asso-
ciated with processing of RNA and transportation of protein in Chinese 
hamster ovary (CHO) cells. Both hypo- and hypermethylation effects 
were seen for genes involved in protein production, RNA metabolism 
and differentiation. The altered gene areas were thought to represent 
regulatory sequences that are strongly connected to the above 
mentioned cellular events to butyrate. NaB supplementation increased 
histone hyperacetylation in bovine cells, which was supported by the 
suppression of HDAC, among other alterations of genes involved in en-
ergy consumption, death, differentiation and cell cycle and growth. 

Several more investigations supported the effect of butyrate in 
raising histone acetylation in promoting chemokine/cytokine produc-
tion, cell proliferation, NF-κB, differentiation and proinflammatory 
response. As a protective effect of butyrate, NaB can modify the acti-
vation of androgen receptors in prostate cancer cells through increased 
acetylation of H4 and H4, resulting in tumor growth inhibition. Butyrate 
has a similar protective role in human gastric cancer cells, which was 
established by generating histone and demethylation changes in the 
promoter area of secreted frizzled-related protein 1 and 2 (SFRP1/2). 
NaB was also thought to be able to promote apoptosis and activation of 
caspase by using these pathways. 

From all evidences discussed above, butyrate is endowed a wide 
range of actions, from adiposity, glucose homeostasis, increased insulin 
sensitivity, to maintaining body weight and reduced plasma glucose 
along with less desirable consequences including build-up of fat and IR. 
More research is however required to differentiate the consequences of 
metabolic and chronic conditions and the underlying processes, 
including epigenetic ones, in a preventative and therapeutic approach. 

Trans-fatty acids (tFAs) - that is unsaturated fatty acids with one or 
more double bonds in a trans configuration which can be found in foods 
obtained from ruminants and in industrially produced, partially hy-
drogenated vegetable oils - have been shown to link metabolic diseases 
via epigenetics. High-density lipoproteins (HDLs) are associated to 
cardioprotection and transport functional miRNAs in circulation, and a 
dedicated investigation found that human miRNAs, particularly those 
linked to HDLs, were changed as a result of commercial tFA consump-
tion. Interestingly, although the authors reported no significant varia-
tion in HDL-carried miRNA concentration between diets, differences in 
plasmatic pool contribution between diets were seen for miR-124-3p, 
miR-375, miR-150-5p, and miR-31–5p, and these miRNAs were shown 
to be more abundant in lipid metabolism pathways. Changes in miRNA 
were linked to interaction of extracellular matrix receptor and meta-
bolism of lipid. As a result, miRNAs were suggested to have a role in the 
control of metabolism of plasma lipid levels. The industrially modified 
FAs' epigenetic activity was discovered to be passed on to succeeding 
generations. Elaidic acid (EA) supplementation to pregnant or lactation 
C57BL/6 mice is one example. Both exhibited widespread methylation 
induction in 3-month-old offspring adipose tissues, which associated 
with build-up of adipose tissue and, as a result, weight growth. In a 
reverse dose-effect relationship, EA was demonstrated to promote 
methylation in human THP-1 monocytes. In conjunction with DNA 
methylation, the gene expression that drives adipogenic and proin-
flammatory patterns was changed. Accordingly, these results showed 
that EA influences expression of genes via epigenetic processes. EA 
targets components that might be regulated. 

In the initial stages of tumor growth, many epigenetic modifications 
of cancer-related genes take place in cancer cells. Interestingly, these 
epigenetic chromatin alterations are hereditary and transient, making 
them intriguing targets for the production of novel medications that 
target the epigenome and could improve current cancer treatments 
[204–207]. Utilising innovative treatment medications and individual-
ized options improves patient survival. Alternative remedies repre-
sented by organic phytochemical components have been incorporated 
into several of these treatments. According to some reports, eating a diet 
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high in fruits and vegetables can greatly lower the chance of developing 
cancer because these foods include phytochemicals that may control 
oncogene expression and tumor suppressor genes. Surprisingly, phyto-
chemicals may influence the epigenome via altering the activity of 
HDACs and DNMTs [208,209]. Generally, kinase inhibitors, personal-
ized antibodies, chemo and radiotherapy agents, immune system stim-
ulants, and other drugs are used to treat cancer. The abnormal 
epigenetic modifications gained during cancer were specifically 
reversed by HDAC inhibitors and demethylating medications, which 
altered gene expressions [210]. According to recent findings, natural 
substances and dietary supplements may be able to restore the normal 
epigenetic markers that are changed during carcinogenesis. Curcumin, 
EGCG, resveratrol, quercetin and SFN are the phytochemicals most 
thoroughly investigated in relation to cancer. According to numerous 
studies, these natural substances block a number of cellular processes 
linked to cancer. Particularly, these drugs restored the expression of 
tumor suppressor genes and inhibited the production of oncogenes, 
which prevented the growth and spread of tumors by specifically tar-
geting important signalling mediators [211]. The management of the 
epigenetic system, which included the control of HDACs and DNMTs 
activities as indicated in Table 1, is one way that these effects are 
partially regulated. 

7. Natural cancer treatments that target epigenetic processes 

Due to the reversibility of epigenetic markers, they may be changed 
by a range of external and internal events. Several natural compounds 
generated from diverse sources have been discovered to directly affect 
different components of the cell's epigenetic machinery [212]. Given 
that dietary factors have been demonstrated to affect epigenetic varia-
tion, it is reasonable to expect that investigating strategies for modifying 
epigenetic variation using natural products may be effective in pre-
venting and treating diseases such as cancer. [213]. In certain malig-
nancies, epigenetic-related pathways can be influenced by nutritional 
and non-nutritional contents of vegetables and fruits through of tumor 
suppressor reactivation, oncogene suppression, cell cycle modulation 
and apoptosis induction [214]. Several natural substances have been 
confirmed to have a substantial importance in the restoration of 
abnormal epigenetic modifications in cancer in recent years, and a few 
of the most significant are discussed below. Compounds such as curcu-
min, epigallocatechin gallate (EGCG), genistein, quercetin, resveratrol 
and sulforaphane are known to inhibit tumor development in many 
models of cancer and are now in various phases of clinical studies for 
their use toward different malignancies. Curcumin, for example, has 
been certified by the FDA to be used as a nutritional supplement; 
consequently, understanding the activities of these chemicals offers 
considerable promise in the fields of chemoprevention and treatment 
[215]. These chemicals have been shown to be effective at reverting 
altered genes and enhancing the efficiency of traditional cancer thera-
pies against expansive and malignant tumors. Furthermore, they have a 
significant advantage as a strong chemotherapeutic drug since they 
change cancer cells in a multi-targeted manner via numerous routes and 
mechanisms, particularly epigenetic mechanisms. As a result, natural 
materials may serve as sources of therapeutically useful epidrugs. 

8. Microbiota-induced epigenetic alterations in the host 

Microbiota, as an essential symbiont of the human body, may cause 
epigenetic changes in the host. More precisely, human body can respond 
to environmental signals through epigenetic mechanisms, changes in 
histone or methylation of DNA [255]. Gut microbiota influence host 
epigenetics largely through synthesizing metabolites to sustain the 
body's dynamic equilibrium, such as forming SCFAs to change the host 
epigenome that impacts the body's health and disorders [256–259]. Gut 
microbiota can produce biological chemicals as raw materials, such as 
acetyl or methyl groups for modification of histone or methylation of 

DNA that can alter host epigenetic mechanisms in pathologic and 
physiologic ways [260]. Previous studies looked at DNA methylation 
and expression of genes in the mucosa of Toll-like receptor 2 (TLR2) 
knockout mice. Two immune-related genes, namely interferon induced 
protein with tetratricopeptide repeats 2 (IFIT2, encoding a protein 
responsible for interferon stimulation) and alanyl aminopeptidase N 
(ANPEP, encoding a small intestine enzyme that plays a role in the final 
digestion of peptides generated from hydrolysis of proteins by gastric 
and pancreatic proteases), were hypermethylated in the promoter area 
of this TLR2− /− mouse model [261]. 

Changes in the composition of mucosal microbes are linked to epi-
genomic and transcriptome changes. A substantial difference in abun-
dance was seen between wild-type and TLR2/animals for several 
microbes, including member of the Firmicutes genus. These findings 
imply that changes in composition of mucosal microbes mediated by 
TLR2 deletion may result in changes in epigenetic regulation [262]. 
Biomolecules synthesized by metabolising the host's nutrition, such as 
vitamins, tryptophan, SCFAs, polyamines, polyphenols and catabolites 
can be used to connect the gut microbiota to host epigenetics [263]. 
However, the fundamental molecular mechanism driving this interac-
tion has not been extensively understood. According to research, SCFAs, 
which are among the most essential mediators, are involved in this 
interaction process. Rapid increases or decreases in SCFAs caused by 
dietary food consumption or ecological factors might result in epigenetic 
alterations in the host. Butyrate, for example, may increase intestinal 
growth and keep homeostatic balance, which it does through a variety of 
signal transduction pathways [264–267]. Furthermore, the gut micro-
biota can influence the responses of host cells to stimulus by modifying 
host epigenetics, which controls expression of genes [268]. Table 3 
shows how compounds derived from microbiota and gut microbiota can 
trigger typical epigenetic modifications to govern numerous physio-
logical activities of the host. SCFAs generated from microbial meta-
bolism, for example, are key sources of energy for intestinal epithelial 
cells of host and gut microbiota [269,270]. SCFAs play a vital role in 
homeostasis regulation via influencing epigenetic processes [271–274]. 
Propionate and acetate are the most prevalent SCFAs in the colon. 
Several Negativicutes and Bacteroides mostly create propionate via the 
succinate cascade [275]. Butyrate can trigger colonic Treg cell devel-
opment in mice and increase acetylation of histone H3 in the repetitive 
introns and Foxp3 promoter [86]. Butyrate, an essential source of energy 
for IECs, may be produced by Firmicutes via the acetate CoA-transferase 
cycle from butyryl-CoA [269,276,277]. Amino acid and peptide 
fermentation can also produce butyrate and propionate. Both promote 
the hyperacetylation of specific transcription factors involved in signal 
transduction and histones, which inhibits activity of HDAC in IECs and 
immune cells; as a result, they play an important part in cancer forma-
tion [278]. By current absorption, electroneutralization or passive 
diffusion, propionate and acetate are consumed by colon cells and 
transferred to peripheral organs. It has been demonstrated experimen-
tally that the levels of SCFAs in the intestinal contents of germ-free 
mouse are lesser than in ordinary animals [166]. The levels of SCFAs 
in faeces may not properly signify the rate of formation of SCFAs in the 
intestinal lumen, as the majority of SCFAs may be consumed by the host 
[167]. Several microbial species, such as Eggerthella lenta, Eubacterium 
limosum, Clostridium and Bacteroides may be able to biotransform certain 
aromatic SCFA derivatives, such as phenylbutyrate and phenylacetate 
[279] (Table 4). 

9. Targeting epigenetics using terahertz radiation 

Non-ionizing terahertz (THz) rays in the sunlight spectrum (wave-
length λ = 1 mm–0.1 mm) have shown great potential for a range of 
biochemical uses in past decades [303], since they could permeate deep 
into tissue without causing any harm or damage to live beings [304]. In 
particular, non-thermal THz waves (THzWs) can produce methylation of 
promoter regions in DNA, which modulates expression of genes without 
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Table 3 
Food sources as a source to target epigenetics.  

Name of product Food source Class Epigenetic alterations Phenotypic alteration Reference 

Triptolide Tripterygium wilfordi/ 
thunder god vine 

Terpenoids H3 acetylation is reduced globally, but histone 
methylation is increased. Expressions of miR- 
17-92 and miR-193b-3p are altered. 

Inhibits metastasis by arresting the cell 
cycle and inducing apoptosis. 

[216,217] 

Thymoquinone Black cumin Terpenoids DNMT1 is induced/disrupted. Controls histone 
acetylation and deacetylation. MiR-34a is 
upregulated, while miR206b-3p and miR146a 
are downregulated. 

Reduces cell growth, prevents cell 
cycle progression, and inhibits 
metastasis. 

[218,219] 

Sulforaphane (SFN) Sprouts, broccoli, 
cabbage 

Isothiocyanate Reduces the expression of HDAC4, HDAC3, 
HDAC2, and HDAC1 proteins. Reduced 
expression of miR-21, miR155, miR-145, 
miR143, DNMT3B, DNMT1 

Induction of apoptosis and autophagy, 
as well as cell cycle arrest (CCA) and 
death 

[220] 

Retinoic acid Vegetables, sweet 
potatoes, palm oil, 
orange root, orange and 
yellow fruits 

Vitamin A DNMT1 and 3 are repressed, whereas 
methylation of histone and expression of HAT 
are increased. MiR-10a is influenced. 

Reduces cell growth while increasing 
apoptotic and cancer cell death. 

[221,222] 

Resveratrol Grape, mulberries, 
peanuts 

Polyphenol DNMT and HDAC inhibitor targets HATs, and 
modify miRNAs such as miR27, miR-106b-25, 
miRNA-182, miR-1305 and others. 

Apoptosis activation, mitophagy, cell 
cycle disruption, decreased TMZ 
resistance 

[223–225] 

Quercetin Onion, citrus Flavanoids DNMT1, HAT and HDAC1 are inhibited, 
whereas let-7c, miR-16 and miR-217 are 
regulated. 

Proliferation is inhibited, the cell cycle 
is inhibited, apoptosis is activated, and 
mitophagy 

[226,227] 

Piceatannol Berries, grapes Polyphenol 
(stilbene) 

DNMT3 levels are reduced, miR129 expression 
is increased, and miR-21 is regulated. 

Reduces cell growth by causing 
apoptotic cell death. 

[228] 

Phenyl 
isothiocyanate 
(PEITC) 

Cruciferous vegetables, 
watercress 

Isothiocyanate Inhibits HDAC, controls miR135a, miR-194, 
and miR-192, and modulates acetylation and 
methylation. 

Reduces EMT by causing cell death 
and activating apoptotic genes. 

[229,230] 

Parthenolide Tanacetum parthenium Terpenes DNMT1 and HDAC1 activity is inhibited. Anti-proliferative, promotes 
apoptosis, anti-inflammatory, 
suppresses cell cycle, and inhibits 
metastasis 

[186,231] 

Organosulfur 
compounds 

Chives, garlic  HDACs are inhibited, whereas HATs are 
increased. 

Antiangiogenesis, pro-apoptotic, 
inhibits proliferation, recruitment, 
and infiltration. 

[232,233] 

Lycopene Tomatoes Terpenoid Changes miRNA-21 and suppresses DNMT3 
expression. 

Controls damage to DNA and tumor 
development, as well as managing cell 
division and death. 

[234,235] 

Kaempferol Leek, apples, carrots Flavonoid Expression of HDAC is restricted, DNMT 3b is 
reduced, miR-21 is downregulated, and miR- 
340 is upregulated. 

Cell growth is inhibited, resulting in 
CCA and death. 

[236] 

Indole-3-carbinol Cruciferous vegetables Glucosinolates Class 1 HDACs are degraded, whereas Class 2 
HDACs are increased. Different HDAC 
expression influences miRNA expression 
differently, such as miR34a and miR-146b. 

It inhibits tumor development by 
inducing apoptosis, CCA and cell 
death. 

[237,238] 

Icariin Herba epimedii Flavonoids Acetylation of H4, decreased expression of 
miR-21 and miR-625-3p. 

Cell growth is reduced, apoptosis is 
induced, and recruitment and 
infiltration are reduced. 

[239] 

Gossypol Cotton plant Phenol Reduces HDAC, modifies HMT, and regulates 
miRNAs such as miR-125b and miR-15a. 

Tumor growth inhibition, mitophagy, 
autophagy, cell death 

[240,241] 

Genistein Soybean Soy 
polyphenols 

Histone changes occur as methylation levels 
rise or fall. Modulates miRNAs such as 
miR221/miR-222, miR-15b and miR-125b 
along with increasing expression of HAT. 

Mitophagy, nucleation complex, cell 
growth restriction, apoptosis and 
regulation of cell cycle 

[242] 

Garcinol Lemon drop mangosteen Phenol Acetylation of histone is inhibited, with varied 
effects on let-7, miR-218, miR-205, miR-200, 
H4 and H3. 

Reverses EMT by inhibiting cell 
proliferation and increasing apoptosis. 

[240,243,244] 

Epigallocatechin-3- 
gallate (EGCG) 

Green tea Polyphenol 
(stilbene) 

Decrease methylation of promoter, reduces 
DNMT 3b, DNMT 3a and DNMT 1 and controls 
miR-16, miR-210 and let-7a. 

Formation of phagophore, reduction 
of metastasis and invasion, and 
restriction of cell cycle progression, 
growth, and division. 

[242,245,246] 

Curcumin Turmeric Phenol Inhibitor of DNMT. Decreases expression of 
HDAC8, HDAC3 and HDAC1. Modulator of 
miR-34a and miR17-92. 

Maturation of APH, mitophagy, 
inhibition of angiogenesis and 
activation of apoptosis 

[247,248] 

Cucurbitacin B Cucumber Triterpenoid DNMTs and HDACs are degraded and 
regulated, acetylation of histone is increased, 
miR146-5p and miR-143 and are altered. 

Cell apoptosis is induced by anti- 
proliferative cytoskeleton disruption. 

[249,250] 

Berberine Oregano, grape, barberry Alkaloid DNMT1 and 3 are inhibited and miR-21, 
miR23a, miR203 and miR429 are restored. 

Causes apoptosis, inhibits cell 
proliferation, inhibits recruitment and 
infiltration and inhibits tumor 
development 

[251–253] 

Apigenin Parsley, orange onion Flavonoids Decreases HDAC3 and HDAC1, suppresses 
hypermethylation and DNMT and differently 
modulates miRNAs such as miR-125a5p and 
miR138. 

Inhibits cell proliferation by causing 
CCA and death. 

[172] 

Allyl isothiocyanate 
(AITC) 

Mustard, cabbage, 
broccoli 

Isothiocyanate Lysine acetylation, methylation, miR-155 and 
p21 reactivation are all regulated. 

Induction of apoptosis, suppression of 
metastatic spread, and reduction of 
proinflammatory indicators. 

[220,254]  
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Table 4 
Gut microbiota and associated metabolites to target epigenetics.  

Gut microbiota and 
associated metabolites 

Epigenetic alterations Reported mechanisms Outcomes References 

Propionate 
Acetate 

HDAC3 HDAC2 HDAC3 and HDAC2 inhibition Nm [280] 

Lactobacillus plantarum 
Akkermansia muciniphila 

N6-methyladenosine 
alteration 

Mettl16 expression and the mRNA that encodes S- 
adenosylmethionine synthase Methylation of Mat2a. 

Influence the host's antibacterial 
defences, inflammation and 
metabolism. 

[281] 

Butyrate Hypomethylation of LINE1 
and FFAR3 

LINE1 and FFAR3 DNA methylation Metabolic disorders are influenced. [282] 

H3K27me3 The enrichment of H3K27me3 is inversely linked to the 
down-regulation of NFκB1 dependent on concentration. 

In colon tissues, H3K27me3 of the 
NFκB1 promoter is elevated, which 
reduces inflammation of intestine. 

[283] 

Downregulation of miR-24 To withstand caspase inhibition, reduces the expression of 
XIAP. 

Cancer cell death [283] 

Reduces the concentrations 
of miR-17-92a. 

Butyrate suppresses transcription of miR-92a via decreasing 
c-Myc protein production, which is regulated by the 
interaction between the c-Myc and C12or f25 promoter, 
hence increasing p57 levels. 

Suppresses colon cancer cell 
proliferation and apoptosis; increases 
apoptosis 

[284] 

HDAC2, HDAC1 inhibition Hyperacetylation of histones along with transcription of 
genes are induced. 

Inhibits cell proliferation, promotes 
differentiation and treats cancer. 

[283] 

Inhibition of HDAC3 Increase intestinal macrophage antibacterial activity; reduce 
HDAC3 activity in IECs. 

Increase resistance of intestine 
against infections; avoid obesity 
induced by diet. 

[285,286] 

Butyrate and propionate Inhibition of HDAC Suppresses Prdm1 and Aicda in B cells by downregulating 
their mRNA-3'UTRs. 

Inhibit autoantibody synthesis and 
autoimmunity in lupus 
erythematosus mice. 

[287] 

Catechins DNMT1 expression in the 
colon is increased. 

Inhibition of DNMT activity by degrading catechins to form 
phenolic acids. 

Inhibition of growth of the tumor 
tissues. 

[288,289] 

Lactobacillus johnsonii 129 
and Bacteroides 
acidifaciens type A43 

MiR-21-5p ARF4 controls intestinal epithelial permeability via 
commensal microbiome-dependent expression of miR-21-5p 
in IECs. 

Regulation of epithelial permeability 
in the intestine. 

[290] 

Fusobacterium nucleatum miRNAs, TLR Reduces the expression of miR-18a * and miR-4802, resulting 
in the depressurization of proteins related to autophagy 
ATG7 and ULK1. 

Lowers cancer recurrence by 
improving chemo-response. 

[291] 

Gutmicrobiota HDAC3 Promote lipid absorption and dietary-induced obesity by 
programming diurnal metabolic cycles, coactivating ERRα 
transcription of the lipid transporter gene CD36. 

Induction of microbiota-dependent 
rhythmic 

[292] 

MicroR-107 Affects the activation of the NF-κB and MyD88 mechanisms; 
targets IL-23p19 expression of genes. 

Gut homeostasis maintenance and 
IBD treatment. 

[293] 

Acetylation of H3 histones Improves the acetylation of H3 histones in the Foxp3 
promoter and protect introns. 

Nm [283] 

Methylation of DNA DNMT1 may be activated by metabolites, and the 
methylation of three ‘CpG islands’ may then be regulated. 

Advantage to epithelial cell 
maturation. 

[294] 

Inositol-1,4,5- trisphosphate Activation of HDAC3 Butyrate has an antagonistic influence on HDAC3. Promotes epithelial healing by 
activating histone deacetylase in 
IECs. 

[295] 

Lactobacilli Downregulation of miRNAs Nm Maintenance of homeostasis and 
influencing the infectious response of 
the host 

[296] 

Leuconostoc mesenteroides miRNA-200b, miRNA-21 Stimulates colon cancer cells to die 
through apoptosis. 

[283] 

Listeria monocytogenes IL8 promoter, histone H4, 
histone H3 

In HUVEC cells, recruiting of the histone acetylate cyclic 
adenosine 3, phosphorylation/acetylation of histone H3 and 
H4. 

Nm [202,290] 

LPS Methylation of TL4 Reduced transcriptional activity at this region results in 
reduced LPS responses. 

Activation of innate immune system [297] 

Methionine Methylation of DNA Generation of substrates for production of SAM Microbiota formation in the host; 
microbiota metabolism regulation 

123, 124 

Mycobacterium tuberculosis Demethylation can be induced by oxidising 5mC to 5hmC 
through proteins of TET family. 

Enhanced chromatin availability, 
immune transcription factors and 
activated histone marker sites 

[298] 

Salmonella enterica, 
Helicobacter pylori and 
Mycobacterium tuberculosis 

MiR-let-7f By secreting ESAT-6, M. tuberculosis reduces the expression of 
miR-let-7 f. Mir-let-7f inhibits TNFAIP3 which is a negative 
regulator of the NF-κB pathway. 

Activation of the immune system of 
the host and decrease bacteria 
survival. 

[283] 

Polyamines (putrescine, 
spermidine, arginine) 

DNMT, methylation of DNA Increase dcAdoMet to suppress DNMT activity and repair 
systemic DNA methylation abnormalities. 

Cancer treatment might be possible. [283] 

SCFAs Activation and inhibition of 
Stat3 and HDACs, 
respectively. 

Claudin-2 inhibition, which is a method dependent on IL- 
10RA. 

Support the development of an 
epithelial barrier. 

[299] 

Nuclear SIRT1 Produce resveratrol derivatives and enhance its accessibility 
by using precursors. 

Aging, genomic stability, 
metabolism, mitochondrial 
biogenesis, stress responses are all 
regulated. 

[283] 

SLC5A8 SLC5A8 enhances butyrate entry into cells and inhibits 
HDACs as a plasma membrane transporter of SCFAs. 

Cancer cell death [283] 

(continued on next page) 
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causing any sequencing changes which is due to ROS production along 
with DNA damage [305]. As a result, many genes that are inhibited by 
chemotherapy or phototherapy can be selectively suppressed [306,307]. 
Non-thermal THzW selective methylation at the promoter site of nuclear 
factor-erythroid factor 2-related factor 2 (NRF2), a significant gene that 
inhibits chemotherapy in most malignancies by activating basic anti-
oxidant responsive genes [308]. Transactivation of genes involved in 
transcription, synthesis, repair and methylation of DNA and cell cycle 
control occurs when intracellular signalling pathways are activated in 
response to THz rays. Different epigenetic medicines combined with 
several rays, notably ultraviolet radiation (UVR), improve cancer 
chemotherapeutic results [304,307,309]. Understanding the complex-
ities of mechanisms of oxidative stress (OS) that regulate tumor pro-
gression, melanocyte proliferation and pigmentation suggests the 
possibility to identify a multitude of therapeutically effective rays that 
hold significant potential for patients with skin disorders. As per the 
stimulation of certain gene products, the actions of THz rays on 
expression of genes may be characterised as early or late effects; these 
THz reactions are critical in affecting fate of the cell, such as apoptosis, 
cell survival and growth arrest. THz is considered to produce a certain 
amount of ROS, which might trigger apoptosis and other cellular sig-
nalling mechanisms. Because of their powerful cytoprotective actions 
under stressed conditions, the NRF2 and heme oxygenase-1 (HO-1) anti- 
oxidative pathways are assumed to represent the key barrier in 
chemotherapy drugs. However, it has recently been revealed that NRF2 
may exacerbate this OS, eventually resulting in cell death [272]. 

10. Epigenetics modification using cold atmospheric plasma 

Cold atmospheric pressure plasma (CAP) is an ionised medium 
containing mostly ROS and reactive nitrogen species (RNS) [310]. CAP 
has received interest for medicinal uses, particularly cancer therapy, as 
it was effectively manufactured under cold circumstances [311]. In fact, 
in a variety of cancer types, CAP has been shown to suppress cancer cell 
development differently than its normal equivalent. By causing double- 
strand breaks (DSBs) in the DNA, CAP may cause a genetic alteration in 
the nucleus. DSBs were seen in CAP-treated lung cancer cells, resulting 
in cell death [312]. Although CAP was found to generate DSBs in leu-
cocytes implanted in agarose, it is unknown if it may directly generate 
DSBs in the cell [313]. Apart from DSBs, nothing is understood about 
gene mutations in DNA at the base level like nucleotide mutation. 
Epigenetic mechanisms such as histone modification, miR and CpG 
methylation have emerged as an alternative explanation for the varied 
alterations in gene expression and cellular activity caused by CAP [314]. 
According to Lee et al. (2016), CAP therapy resulted in hyper-
methylation and down-regulation of miR-19a, an oncomiR, as well as 
up-regulation of miR-19a target genes in MCF-7 breast cancer cells. 
Furthermore, CAP inhibited the cell proliferation impact caused by miR- 
19a upregulation. These findings might help to identify the epigenetic 
mechanisms of CAP when it is given to cells and tissues for cancer 

therapy. 

11. Targeting epigenetic machinery with nanotechnology 

Despite constant advancements, epigenetic medicine still confronts 
significant hurdles. Epigenetic medicines currently authorized by the 
USFDA lack locus sensitivity and are non-selective in blocking distinct 
HDAC and DNMTs isozymes. Because of this, unwanted off-target events 
arise, resulting in severe drug toxicity and inability to elicit long-term 
response [66]. Furthermore, these epigenetic medications' limited 
permeability and solubility, along with their poor pharmacokinetic 
features, like lack of bioavailability and stability, are substantial barriers 
to their wider clinical uses [315]. In order to fully utilize the therapeutic 
potential of these medications, it is critical to improve drug delivery 
efficiency, increase drug stability and optimize target specificity. 
Because nanoscale delivery methods and prodrugs can promote tumor- 
targeted administration and cellular internalisation, boost bioavail-
ability and guard against early hydrolysis, also they have the capacity to 
treat some of the therapeutic difficulties that currently exist with 
epigenetic drugs [316]. Second-generation nucleoside analogues are 
now being evaluated to overcome the tolerability and stability problems 
[66]. Combining NPs packed with epigenetic-targeted drugs with 
chemotherapeutic drugs is evolving as a viable technique for achieving 
more therapeutic advantages while minimising negative effects 
[66,317]. Despite the fact that multiple clinical trials have demonstrated 
the potential of using NP delivery systems to target siRNAs in tumors 
and investigate their clinical efficacy in cancer treatment, further 
research is required to investigate bio - compatibility and pharmacoki-
netic profiles and effectiveness of current delivery carriers [318]. 

Epigenetic effect of nanomaterials is described in Fig. 5 in which they 
start cellular signalling which leads to genotoxicity, lipids peroxidation, 
cytotoxicity, apoptosis, miRNAs dysregulation along with altered 
expression of gene [319]. 

11.1. Conclusion and future perspectives 

Even though more precise mechanisms must be researched, it is 
commonly known that epigenetic activities are critical in both normal 
biochemical mechanisms and tumor pathways, and that epigenetic sta-
tus is often greatly changed during cancer onset. As a result, epigenome- 
targeted therapy appears to be a potential option for cancer therapy. 
Because of the complexities of cancer, epigenetic changes have affected 
a range of cancer properties, including oncogene expression along with 
tumor repressor genes, as well as cell signalling, that results in rapid 
cancer growth, infiltration, and metastases. There are several strategies 
and advancement to target epigenetic machinery. These include com-
bination therapy, adjuvant therapy, and probiotics, CRISPR Cas-9 edit-
ing, phytochemicals, Phototherapy, cold atmospheric plasma, 
nanocarriers and terahertz rays. All these novel therapeutic strategies 
lead to tackle drug resistance along with better treatment option with 

Table 4 (continued ) 

Gut microbiota and 
associated metabolites 

Epigenetic alterations Reported mechanisms Outcomes References 

H3K4me3 histone, GPR43 Binds to the promoter regions of inflammatory repressors 
and inhibits the cAMP-PKA-CREB expression level that 
contributes to HDAC overexpression. 

Prevents against colon cancer by 
regulating colonic inflammation. 

[300] 

HDAC3 Co-activation of ERRα Promote fat absorption and diet- 
induced obesity by programming 
diurnal metabolic cycles. 

[292] 

GPCRs, HDACs Inhibits HDACs and boosts acetylation of FOXP3 protein and 
expression of genes in CD4+T cells, increases Treg cell 
development in the extrathymic, and stimulates the 
production of GPCRs, β-defensin-2 and 3, represses STAT1 
and NF-κB activation. 

Anti-inflammatory action [283] 

pABA, DHPP and Vitamins HMTs, DNMTs Produces SAM, a methyl-donating substrate for HMTs and 
DNMTs. 

Nm [301,302]  
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high rate of cure and recovery. Epigenetic targeting appears to be a 
potential anticancer therapeutic method based on the results achieved. 
Many features of cancer onset are associated with epigenomes. It is 
required to have a deeper knowledge of the exact processes behind such 
modifications in various cancers. Meanwhile, improved therapy ap-
proaches, including a range of combinations, have yet to be developed. 
Epigenetic modifications lead to chemo-resistance. Hence it is necessary 
to consider epigenetic machinery while treating cancer. Terahertz rays 
and cold atmospheric plasma are novel targets and it is the need of hour 
to perform more research on these novel tools. Bacteria based therapy or 
probiotics is also very hot topic since 2020 in the field of oncology that is 
why their adjuvant and combination therapeutics would gain much 
attention in the future with high cure rate. More work is required on 
phytochemicals and CRISPR based therapy to deal with epigenetic al-
terations in cancer [212]. 
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[103] L. Simó-Riudalbas, M. Esteller, Targeting the histone orthography of cancer: drugs 
for writers, erasers and readers, Br. J. Pharmacol. 172 (11) (2015) 2716–2732. 

[104] P.A. Wade, Methyl CpG binding proteins: coupling chromatin architecture to gene 
regulation, Oncogene 20 (24) (2001) 3166–3173. 

[105] Q. Du, et al., Methyl-CpG-binding domain proteins: readers of the epigenome, 
Epigenomics 7 (6) (2015) 1051–1073. 

[106] S. Denslow, P. Wade, The human Mi-2/NuRD complex and gene regulation, 
Oncogene 26 (37) (2007) 5433–5438. 

[107] B.A. Buck-Koehntop, et al., Molecular basis for recognition of methylated and 
specific DNA sequences by the zinc finger protein kaiso, Proc. Natl. Acad. Sci. 109 
(38) (2012) 15229–15234. 

[108] G.J. Filion, et al., A family of human zinc finger proteins that bind methylated 
DNA and repress transcription, Mol. Cell. Biol. 26 (1) (2006) 169–181. 

[109] W.A. Pastor, L. Aravind, A. Rao, TETonic shift: biological roles of TET proteins in 
DNA demethylation and transcription, Nat. Rev. Mol. Cell Biol. 14 (6) (2013) 
341–356. 

[110] C. Chen, et al., Deciphering arginine methylation: tudor tells the tale, Nat. Rev. 
Mol. Cell Biol. 12 (10) (2011) 629–642. 

[111] M. Schapira, et al., WD40 repeat domain proteins: a novel target class? Nat. Rev. 
Drug Discov. 16 (11) (2017) 773–786. 

[112] R. Sanchez, M.-M. Zhou, The PHD finger: a versatile epigenome reader, Trends 
Biochem. Sci. 36 (7) (2011) 364–372. 

[113] M.A. Dawson, T. Kouzarides, B.J.J.N.E.J.o.M. Huntly, Targeting epigenetic 
readers in cancer, N. Engl. J. Med. 367 (7) (2012) 647–657. 

[114] P. Filippakopoulos, S. Knapp, Targeting bromodomains: epigenetic readers of 
lysine acetylation, Nat. Rev. Drug Discov. 13 (5) (2014) 337–356. 

[115] B.J. Klein, et al., in: Crosstalk Between Epigenetic Readers Regulates the MOZ/ 
MORF HAT Complexes 9, 2014, pp. 186–193, 2. 

[116] E. Damiani, et al., in: Targeting Epigenetic ‘Readers’ With Natural Compounds for 
Cancer Interception 25, 2020, p. 189, 4. 

[117] N.J. Porter, D.W. Christianson, Structure, mechanism, and inhibition of the zinc- 
dependent histone deacetylases, Curr. Opin. Struct. Biol. 59 (2019) 9. 

[118] H. Jing, H. Lin, Sirtuins in epigenetic regulation, Chem. Rev. 115 (6) (2015) 
2350–2375. 

[119] R.H. Houtkooper, E. Pirinen, J. Auwerx, Sirtuins as regulators of metabolism and 
healthspan, Nat. Rev. Mol. Cell Biol. 13 (4) (2012) 225–238. 

[120] E. Zhao, et al., The roles of sirtuin family proteins in cancer progression, Cancers 
11 (12) (2019) 1949. 

[121] R.S. Gil, P. Vagnarelli, Protein phosphatases in chromatin structure and function, 
Biochim. Biophys. Acta, Mol. Cell Res. 1866 (1) (2019) 90–101. 

[122] S.L. Tinsley, B.L. Allen-Petersen, PP2A and cancer epigenetics: a therapeutic 
opportunity waiting to happen, NAR Cancer 4 (1) (2022), zcac002. 

[123] B. Hoermann, et al., Dissecting the sequence determinants for dephosphorylation 
by the catalytic subunits of phosphatases PP1 and PP2A, Nat. Commun. 11 (1) 
(2020) 1–20. 

[124] J.A. Harrigan, et al., Deubiquitylating enzymes and drug discovery: emerging 
opportunities, Nat. Rev. Drug Discov. 17 (1) (2018) 57–78. 

[125] N.A. Snyder, G.M. Silva, Deubiquitinating enzymes (DUBs): regulation, 
homeostasis, and oxidative stress response, J. Biol. Chem. 297 (3) (2021). 

[126] F.E. Reyes-Turcu, K.H. Ventii, K.D. Wilkinson, Regulation and cellular roles of 
ubiquitin-specific deubiquitinating enzymes, Annu. Rev. Biochem. 78 (2009) 
363–397. 

[127] X.I. Ambroggio, et al., JAMM: a metalloprotease-like zinc site in the proteasome 
and signalosome, PLoS Biol. 2 (1) (2004), e2. 

[128] J.A. Schmid, et al., Histone ubiquitination by the DNA damage response is 
required for efficient DNA replication in unperturbed S phase, Mol. Cell 71 (6) 
(2018) 897–910, e8. 

[129] P. Bruno, et al., LSD1: more than demethylation of histone lysine residues, Exp. 
Mol. Med. 52 (2020) 1–12. 

[130] Y. Meng, et al., Jumonji domain-containing protein family: the functions beyond 
lysine demethylation, J. Mol. Cell Biol. 10 (4) (2018) 371–373. 

[131] K. Wang, et al., Role of the epigenetic modifier JMJD6 in tumor development and 
regulation of immune response, Front. Immunol. (2022) 1043. 

[132] S. Yamaguchi, M. Kaneko, M. Narukawa, Approval success rates of drug 
candidates based on target, action, modality, application, and their combinations, 
Clin. Transl. Sci. 14 (3) (2021) 1113–1122. 

[133] S. Pushpakom, et al., Drug repurposing: progress, challenges and 
recommendations, Nat. Rev. Drug Discov. 18 (1) (2019) 41–58. 

[134] K. Takahashi, et al., Preleukaemic clonal haemopoiesis and risk of therapy-related 
myeloid neoplasms: a case-control study, Lancet Oncol. 18 (1) (2017) 100–111. 
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