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Introduction

The following Support information includes two textual chapters (S1, S2) and three

figures (Fig. S1, Fig. S2, Fig. S3,). In Text S1 we describe the theory behind the

Bayesian inversion, reporting the posterior distribution equation. In Text S2 we explain

the second inversion performed on the shallowest part of the model to resolve the residual

after the first Bayesian inversion, discussed in Sec. 5 of the main text. In Fig. S1 the

results of the second inversion are reported, clarified in Text S2. In Fig. S2 we compare the

initial average crustal shear modulus with the shear modulus resulting after the inversion.

In Fig. S3 we show the depth differences between the base sediment, the Moho and the

Curie isotherm surfaces of the model before and after the inversion.
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S1. Joint Gravity and Magnetic Bayesian Inversion

The Bayesian inversion approach used to calculate the final 3D model is based on the

principles discussed in Sansó and Sampietro (2021) with extensions for simultaneous grav-

ity and magnetic field inversion as delineated in Sampietro et al. (2022). The algorithm

is not new and has been intensively tested with simulated and real data (see Sampietro

et al. (2021); Sampietro and Capponi (2021a,b); Capponi et al. (2022); Sampietro et al.

(2023); Sampietro and Capponi (2023)). We present core ideas here, and direct readers

seeking in-depth knowledge to the mentioned references.

The main advantage of the Bayesian inversion technique lies in its ability to estimate

the 3D distributions of both density and magnetic susceptibility, and concurrently recover

primary geological unit geometries within a specified area, while adhering to a set of

imposed constraints. In our solution, the investigated volume is modelled by a set of

discrete volumetric elements (voxels). For each voxel, denoted as Vi (where i ranges from

1 to N), we consider three unknowns: its density ρi, its magnetic susceptibility χi, and a

”label” Li assigning the voxel to a specific geological category (such as water, sediment,

crust, etc.) from a predetermined set. Note that while ρi and χi are continuous, Li is a

discrete variable, where each value represents a category. As a consequence, the vector of

all unknown parameters is represented as x = {ρi, χi, Li} for i = 1 . . . N . By leveraging

Bayes’ theorem in its classical form:

P (x|y) ∝ L(y|x)P (x) (S1.1)

we can deduce the posterior distribution P (x|y) for x, given observed data y. In the

above equation, L represents the likelihood, i.e. the probability of observing y when x is

given, while P (x) summarises our a-priori probability on x.
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This last term is derived by creating an initial model for x exploiting regional studies,

maps, scientific papers, seismic imaging, seismic velocities, well logs, etc. The same source

of information can also be used to determine the uncertainty of this preliminary model,

allowing us to create a prior probability function for P (x). In the case of the considered

joint gravity and magnetic field Bayesian inversion the posterior distribution is given by:

P (ρ, χ,L|∆go,∆Bo) ∝ exp{− (∆go − Agρ)
T C−1

∆g (∆go − Agρ)− (∆Bo −

− ABχ)
T C−1

∆B (∆Bo − ABχ)−
1

σ2
ρℓ

(ρ− ρℓ)
T (ρ− ρℓ)−

1

σ2
χℓ

(χ− χℓ)
T (χ− χℓ)−

− s2 (L, ℓo)− q2 (L)} · δ[ρℓ|3σ2
ρℓ
] (ρ) δ[χℓ|3σ2

χℓ
] (χ)

(S1.2)

Where ∆go and ∆Bo are the vectors of observed gravity and magnetic anomalies

respectively, with their associated error covariance matrices C∆g and C∆B. Ag and AB

are the forward modelling operators, converting densities and magnetic susceptibilities,

ρ and χ, into gravity anomalies and total magnetic field intensity, respectively. The

expected densities and their variability for the label ℓ are denoted by ρℓ and σ2
ρℓ
, while χℓ

and σ2
χℓ

are analogous terms for magnetic susceptibility. s and q are regularising factors

that act in geological unit terms.

Eq. S1.2 is complex due to its non-linearity, non-convexity, and the large number of

unknowns. This makes the visualisation or the sampling of the a-posteriori probability

extremely demanding from the computational point of view. Our chosen strategy is to

pinpoint the parameter sets ρ, χ, and L that maximise the posterior distribution. This is

achieved using a simulated annealing algorithm coupled with a Gibbs sampler, as detailed
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in Rossi (2017). For a comprehensive discussion on this optimisation approach, the readers

can consult Sections 9.6 and 9.7 of Sansó and Sampietro (2021).

Since the sampling process for ρ, χ, and L is probabilistic, the simulating annealing

process can be reiterated using different random seeds, analogous to performing indepen-

dent inversions. Each iteration yields a potentially distinct 3D model, ideally close to

the true maximum of the a-posteriori probability. Our ultimate output is deduced by

computing the modal label for each voxel and the mean values for density and magnetic

susceptibility. The variance in the values obtained further provides an estimate of the

precision of the model output.

S2. Gravity and Magnetic Inversion of the Shallower Layers

In the main text of Section 5, the gravity and magnetic field fitting after the inversion are

shown (Figs. 10c and 10d), i.e. the difference between the observed data and the effect of

the final 3D model. As pointed out in the text, the algorithm has been able to fit almost

completely the observations with residual of 7 mGal and 15 nT (in terms of standard

deviation). However, a set of localised anomalies is clearly visible in both the gravity

and magnetic field residuals. This is because the algorithm, given the regional constraints

in terms of considered geological units, uncertainties, and smoothness of geometries and

densities, was unable to properly fit the gravity data. In other words, these localised

residuals could also be seen as an indication that the regional a-priori modelling needs

to be locally improved in certain areas in order to fit the observed gravity and magnetic

field. This would require a careful analysis of possible local geological formation that is

beyond the scope of the current work. We therefore limit ourselves in estimating the order
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of magnitude (in terms of density and magnetic susceptibility) of possible sources that

explain the residuals. This has been done by exploiting again the Bayesian inversion. In

this case, however, we start from our final 3D regional model, fix all the geometries, and

allow changes only in the density and the magnetic susceptibility distributions in the first

10 km of the model. We note that in that specific scenario, in which no geometries are

involved in the inversion, the Bayesian algorithm is theoretically equivalent to a classical

Li-Oldenburg inversion Li and Oldenburg (1996, 1998). The results of this inversion as

average density and susceptibility distribution in the first 10 km are reported in Fig. S1
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Figure S1. Density (left) and magnetic susceptiblity (right) correction in the upper

10 km to the inverted model required to explain the gravity and magnetic residuals after

regional Bayesian inversion.

Figure S2. Comparison of the starting average crustal shear modulus (left) to the final

crustal shear modulus (right). The final shear modulus is found to be more homogeneous

over geologically coherent units.
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Figure S3. Depths of bottom sediments, Moho, and Curie isotherm surface (top to

bottom rows) resulting after the inversion (left) and difference between final and starting

models (right). Differences are calculated subtracting the final model from the initial

model.


