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a b s t r a c t 

Inspired by some recent results in elastodynamics of layered composites, we address here 

the problem of an antiplane elastic wave obliquely incident at the interface between a 

substrate and a periodic laminate with a quasicrystalline structure (generated by the Fi- 

bonacci substitution rule). The angles of refraction of the transmitted modes are computed 

by combining the transfer matrix method with the normal mode decomposition and eval- 

uating the direction of the average Poynting vector. It is shown that, with respect to a 

periodic classical bilayer, on the one hand, beyond a certain frequency threshold, high or- 

der Fibonacci laminates can provide negative refraction for a wider range of angles of inci- 

dence, on the other, they allow negative wave refraction at lower frequencies. The outcome 

strongly relies on the Floquet–Bloch dynamic analysis of this class of laminates that is per- 

formed thoroughly. It is revealed that the corresponding spectra have a self-similar char- 

acter linked to the specialisation of the Kohmoto’s invariant, a function of the frequency 

that was recently studied by the authors for periodic one-dimensional quasicrystalline- 

generated waveguides. This function is able to explain two types of scaling occurring in 

dispersion diagrams. The attained results represent an important advancement towards 

the realisation of multilayered quasicrystalline metamaterials with the aim to control neg- 

atively refracted elastic waves. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

In the last fifty years, several authors have shown that periodic multilayers can significantly affect the propagation of

elastic waves ( Hegemier and Nayfeh, 1973; Nemat-Nasser, 1972; Nemat-Nasser et al., 1975; Rudykh and Boyce, 2014; Shmuel

and Band, 2016; Sun et al., 1968 ). The promising properties revealed by these studies have inspired an extensive research

activity concerning the design of phononic composites based on both continuous and discrete (lattice-based) periodic media.

Several applications have been proposed for these structures including wave focussing ( Guenneau et al., 2007; Yang et al.,

2004 ), frequency filtering ( Khelif et al., 2003; Wang et al., 2004; Wu et al., 2009 ), negative refraction ( Chen et al., 2017;

Morvan et al., 2010; Zhang and Liu, 2004; Zhu et al., 2014 ), mode conversion ( Vines et al., 1999 ), beam splitting ( Roberts

et al., 1983, 1985 ) and beam steering ( Romanoni et al., 2009 ). The related literature is extremely vast and diversified and
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the most relevant results are summarized in some excellent review papers such as Hussein et al. (2014) ; Lee et al. (2012) ;

Pennec et al. (2010) and Srivastava (2015) . 

Recently, Nemat-Nasser (2015a,b) ; Srivastava (2016) ; Willis (2016) and Srivastava and Willis (2017) investigated a specific

elastic problem within this field: the oblique incidence of an antiplane shear wave at the interface between a substrate and

a periodic bilayer laminate. These studies suggested that, when the layering direction is perpendicular to the interface, it

is possible to use a laminate to induce negative refraction, a phenomenon that is generally observed when elastic waves

impinge tailored-designed micro-architected interfaces ( Brun et al., 2010; Jones et al., 2011; Sukhovich et al., 2008 ). More in

detail, the results provided by Willis (2016) show that, under some hypotheses, by assuming a determinate frequency for

the incident wave, the transmitted signal consists of coexisting positively and negatively refracted waves (beam splitting).

In order to avoid this splitting and to achieve single negatively refracted modes, it is necessary to couple the incident wave

with the laminate modes in the second Brillouin zone ( Srivastava, 2016 ). Depending on the characteristics of the elastic

substrate, a minimum wave frequency and a threshold angle of incidence can be determined to reach the second Brillouin

zone. 

In this paper, with the aim of deepening the understanding of negative refraction in elastic laminates, we study the

same problem of the transmission of an antiplane wave at a substrate-laminate interface by considering a class of two-phase

periodic layered composites whose unit cells, each of which is associated with an integer index (also called the ‘order’ of the

sequence), are generated according to the Fibonacci substitution rule ( Fibonacci laminates ). The reason is based on a recent

research on wave propagation of one-dimensional structured two-phase quasicrystalline rods ( Morini and Gei, 2018 ) which

has revealed intriguing dynamic properties when the location of phases are assigned following that law. More in detail, in

the present context the Fibonacci rule generates a particular subset of quasiperiodic laminates, classified as quasicrystalline

( Poddubny and Ivchenko, 2010 ). Morini and Gei (2018) have shown that the dynamic spectra of the analogous family of

one-dimensional rods are governed by an invariant function, the Kohmoto’s invariant, that is independent of the order and

depends only on the circular frequency. The Kohmoto’s invariant can explain two types of scaling featuring the general

layout of stop and pass bands for the family of rods, i.e. a local scaling and a global one, and the existence of ultrawide band

gaps that are common to all orders of the sequence. 

In the first part of the article, by applying the transfer matrix method ( Thomson, 1950 ), we derive the Floquet–Bloch

dispersion relation for this new class of layered composites. The computed dynamic spectra are characterised by a self-

similar layout of transition zones , which are ranges of frequency where the number of propagating modes in the laminate

depends on the transverse wave number; their location as functions of the frequency is similar to that of stop bands for

the one-dimensional quasicrystalline structured rods presented by Morini and Gei (2018) , therefore they display scaling laws

that can be studied with a specialisation of the Kohmoto’s invariant. 

The transmitted and reflected waves at the interface between elastic half space and the introduced class of laminates

are then analysed by means of the normal mode decomposition ( Srivastava and Willis, 2017 ). The Poynting vector and

group velocity for waves propagating through the laminate are evaluated and exploited to estimate the corresponding angles

of refraction. The attained results show that, concerning the possibility of obtain negative refraction, Fibonacci laminates

possess some properties that are not available in standard periodic two-phase materials. In particular, with respect to the

already investigated bilayer laminate: 

• beyond a certain frequency threshold, high-order Fibonacci laminates admit negative refraction for a wider range of

angles of incidence; in some cases, a negative refraction mode is attainable for any angle of incidence. The trend increases

monotonically at increasing order of the sequence; 

• by assuming the same angle of incidence for the impinging wave, using the proposed quasicrystalline composite it is

possible to produce a single transmitted negatively refracted wave at lower frequencies without the need to change the

materials composing the laminae as required for a simple bilayer ( Srivastava, 2016 ). This is achievable as propagating

modes in the second Brillouin zone become available at lower frequencies. 

A further interesting feature is that the position of transition zones varying the order of the sequence is governed in an

approximate way by two types of scaling, a local one and a global one. The latter may be used as a predicting tool to select

the most suitable laminate of the family that, in combination to a given substrate, may ensure the availability of a single

negatively refracted transmitted mode. 

The proposed methodology and the results obtained in this paper, though restricted to a particular choice of the materials

composing the two phases, suggest that Fibonacci –and, in general, quasicrystalline–laminates may be profitably employed

to conceive elastic metamaterial devices with the aim to realise flat lenses or focus waves in a circumscribed area to harvest

mechanical energy. 

2. Floquet–Bloch waves in periodic quasicrystalline laminates 

In this Section, we define the class of two-dimensional, two-phase laminates whose elementary cell is generated accord-

ing to the Fibonacci substitution rule. Preliminary results concerning propagation of Floquet–Bloch waves in this type of

layered media are reported. 
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Fig. 1. a) Elementary cells generated by Fibonacci sequences F 2 , F 3 and F 4 ; b) two-dimensional laminates assembled according to F 2 , F 3 and F 4 . Axis z 
is the out-of-plane direction. 

 

 

 

 

 

 

 

 

 

 

2.1. Fibonacci laminates: governing equations and dispersion relations 

Let us introduce a class of two-dimensional, two-phase quasicrystalline laminates with layering direction parallel to the

axis y (see Fig. 1 ). Each of its elements is composed of a repeated elementary cell where the two basic components, A and

B , are arranged in series according to the standard Fibonacci sequence, which is based on the following substitution rule: 

A → AB, B → A. (1) 

Repetition of the fundamental cells assures global periodicity along axis x and the possibility of applying the Floquet–Bloch

technique in order to study harmonic wave propagation in these systems ( Gei, 2010 ). 

The substitutive relation (1) implies that the finite Fibonacci sequence of the i −th order ( i = 0 , 1 , 2 , . . . ), here denoted by

F i , obeys the recursive rule 

F i = F i −1 F i −2 , (2) 

where the initial conditions are F 0 = B and F 1 = A . The total number of elements of F i corresponds to the Fibonacci number

n i , namely 

n i = n i −1 + n i −2 (i = 2 , 3 , 4 , . . . ) , (3)

with n 0 = n 1 = 1 ; moreover, lim i →∞ 

n i +1 /n i = σg , where σg = (1 + 

√ 

5 ) / 2 is the so-called golden mean ratio. 

For each phase, shear modulus μX , mass density ρX and thickness h X (here and henceforth, X ∈ { A, B }) are defined, and

the j -th layer composing the elementary cell occupies the domain x j < x < x j + h X ≡ x j+1 . Along x , the total length of cell F i 

is given by L i = n (A ) 
i 

h A + n (B ) 
i 

h B , where n (A ) 
i 

and n (B ) 
i 

are the number of elements A and B contained in the cell, respectively.

We now assume that an antiplane shear wave propagates in the laminate just described. The only non-zero component

of the displacement is taken to be u z ( x, y, t ), and within the j -th phase of the elementary cell it satisfies the wave equation

∂ 2 u z 
∂x 2 

+ 

∂ 2 u z 
∂y 2 

= 

1 

c 2 
∂ 2 u z 
∂t 2 

, (4) 

X 
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where c X = 

√ 

μX /ρX denotes the shear wave speed in the relevant materials. The solution to Eq. (4) has the form 

u z (x, y, t) = w (x ) exp [i(ωt − K x x − K y y )] , (5)

where ω is the circular frequency and the function w ( x ) is periodic with period L i . The antiplane displacement gives rise to

the non-vanishing stress components σ xz ( x, y, t ) and σ yz ( x, y, t ). Functions u z ( x, y, t ) and σ xz ( x, y, t ) are continuous across

all the interfaces and therefore, within the lamina j , they can be expressed as (
σxz (x ) 
u z (x ) 

)
= M X (x − x j ) 

(
σxz (x j ) 
u z (x j ) 

)
, (6)

where the dependency on y and t has been dropped and the transfer (or transmission ) matrix M X assumes the form 

M X (ξ ) = 

[
cos (q X ξ ) −μX q X sin (q X ξ ) 

sin (q X ξ ) / (μX q X ) cos (q X ξ ) 

]
, (7)

with q X = [(ω/c X ) 
2 − K 2 y ] 

1 / 2 . Therefore, by applying the Floquet–Bloch conditions on the boundary of the elementary cell,

we have (
σxz (L i ) 
u z (L i ) 

)
= M i 

(
σxz (0) 
u z (0) 

)
= exp (−i K x L i ) 

(
σxz (0) 
u z (0) 

)
, (8)

where M i is the global transmission matrix of the cell associated with the sequence F i : 

M i = 

n i ∏ 

p=1 

[ M X (h X ) ] p . (9)

Matrix M i is unimodular, i.e. det M i = 1 , and follows the recursion rule M i +1 = M i −1 M i , with M 0 = M B and M 1 = M A . Using

the former property and Eq. (8) , the following dispersion relation can be easily derived, 

cos ( K x L i ) = 

1 

2 
tr M i . (10)

By observing Eq. (10) , we deduce that all the information concerning wave propagation in a generic laminate is contained

in the trace of the corresponding transmission matrix. 

2.2. Trace recursive relations and Kohmoto’s invariant 

Let us now note that the transfer matrix (7) and the dispersion relation (10) are similar to those introduced by Morini and

Gei (2018) to study axial wave propagation in Fibonacci quasicrystalline-structured rods. In analogy with the approach de-

veloped in that paper, we can now use the unimodularity property of M i ( det M i = 1 ) to derive a recursive relation for the

traces tr M i . Introducing the notation t i = tr M i , for given ω and K y , the equation 

t i +1 = t i −1 t i − t i −2 (i = 2 , 3 , 4 , . . . ) (11)

is valid. Relationship (11) can be easily verified by specialising the expressions for the traces of unimodular 2 ×2 transfer

matrices of generalised Fibonacci chains derived by Kolar and Ali (1989) and Kolar and Nori (1990) in terms of Cheby-

shev polynomials of first and second kind. By means of the expression (11) , it can be also demonstrated (see Morini and

Gei, 2018 for more details) that the Kohmoto’s invariant 

I(ω, K y ) = t 2 i +2 + t 2 i +1 + t 2 i − t i +2 t i +1 t i − 4 

= 

(μ2 
A q 

2 
A (ω, K y ) − μ2 

B q 
2 
B (ω, K y )) 2 

μ2 
A 
q 2 
A 
(ω, K y ) μ2 

B 
q 2 
B 
(ω, K y ) 

sin 
2 
[
h A q A (ω, K y ) 

]
sin 

2 
[
h B q B (ω, K y ) 

]
(12)

is constant for any arbitrary triad of consecutive traces (t i +2 , t i +1 , t i ) . This means that the value of I ( ω, K y ) is independent

of the order i of the fundamental cell F i . This function is used here to describe the self-similar properties and scaling of

the dynamic spectra of Fibonacci laminates. In particular, a great relevance is assumed by the specialisation I 0 (ω) = I(ω, 0) ,

given by 

I 0 (ω) = 

(μA ρA − μB ρB ) 
2 

μA ρA μB ρB 

sin 
2 
(h A ω 

c A 

)
sin 

2 
(h B ω 

c B 

)
, (13)

which is analogous to that derived by Morini and Gei (2018) in their problem. The significance of case K y = 0 will be clarified

in Section 2.3 where the notion of transition zone will be introduced. 

As far as scaling is concerned, on the basis of the recursive relation (11) , Morini and Gei (2018) studied the variation of

the triad of consecutive traces (t i +2 , t i +1 , t i ) = ( ̃  x i , ̃  y i , ̃  z i ) from one cell to another as the evolution of the nonlinear discrete

map 

T ( ̃  x i , ̃  y i , ̃  z i ) = ( ̃  x i +1 , ̃  y i +1 , ̃  z i +1 ) = ( ̃  x i ̃  y i − ˜ z i , ˜ x i , ˜ y i ) . (14)
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For any given value of the frequency, the points obtained by iterating the map (14) are all confined on the three-dimensional

Kohmoto’s surface whose equation in the continuous three-dimensional space O ̃  x ̃  y ̃ z is ˜ x 2 + ˜ y 2 + ̃  z 2 − ˜ x ̃  y ̃ z − 4 = I 0 (2 π f ) (we

focus here on the case K y = 0 , relevant for our study). Each Kohmoto’s surface possesses six saddle points connected through

a closed (periodic) orbit generated by a six-cycle transformation obtained by applying six times map (14) . The ‘discrete’ tra-

jectory traced by the point (t i +2 , t i +1 , t i ) = ( ̃  x i , ̃  y i , ̃  z i ) at increasing index on the Kohmoto’s surface is then studied as a small

perturbation of the periodic orbit with map (14) linearised about the six saddle points. The derived linearised transformation

has one eigenvalue equal to one and an additional pair of them given by 

κ±
0 ( f ) = 

1 

4 

(√ 

4 + (4 + I 0 (2 π f )) 
2 ± (4 + I 0 (2 π f )) 

)
2 . (15) 

In both Morini and Gei (2018) and Gei (2010) it is shown that the quantity κ+ 
0 

( f ) ( 
√ 

κ+ 
0 

( f ) ) governs the local scaling

occurring between localised ranges of the spectrum of cell F i and that of F i +6 ( F i +3 ). In particular, in frequency ranges

where the local scaling is valid, a pass band, say { f B 
i +6 

− f A 
i +6 

} , in the diagram of cell F i +6 centred at a given value of the

frequency f ∗ is related to the pass band { f B 
i 

− f A 
i 
} in the diagram of cell F i centred almost about the same value of f ∗ by the

following scaling law 

f B i +6 − f A i +6 ≈
f B 
i 

− f A 
i 

κ
, (16) 

where κ = κ+ 
0 

( f ∗) . Similarly, with λ = 

√ 

κ, it is 

f B i +3 − f A i +3 ≈
f B 
i 

− f A 
i 

λ
. (17) 

2.3. Dispersion curves and transition zones 

The dispersion relation (10) is valid for generic complex values of ω and K y . On the basis of this equation, we can easily

deduce that K x is real when tr M i ≤2, and purely imaginary when tr M i > 2 (no complex values of K x are found for antiplane

waves propagating in purely elastic laminates) If K x is a real solution to (10) , then ±(K x + 2 rπ/L i ) (r ∈ N ) is also a solution.

For a real and positive circular frequency, a wave propagates along axis y for real and positive values of K y , whilst it is

evanescent if the same quantity is purely imaginary. We now show that for Fibonacci laminates of any order, there is a real

and positive value K̄ y such that K x is purely imaginary and the corresponding wave is propagating along the axis y if K y > K̄ y ,

but is evanescent along x . For this purpose, in Fig. 2 the real and imaginary parts of the normalized wave vector component

K x L i are plotted against real values of K y L i for laminates F 2 to F 5 . Following Nemat-Nasser (2015a) , we assume throughout

the paper that the materials of phases A and B are polymethyl–methacrylate (PMMA) and steel, respectively, therefore the

relevant parameters are μA = 3 GPa, μB = 80 GPa, ρA = 1180 kg/m 

3 , ρB = 80 0 0 kg/m 

3 , whereas the thicknesses of the two

layers are h A = 3 mm and h B = 1 . 3 mm. A fixed value of the frequency f = ω/ (2 π) = 220 kHz was selected, and only purely

real and positive values for K y are taken into account as the interest lies here on propagating signals. Re( K x L i ) has been

restricted to the first Brillouin zone, namely 0 < Re( K x L i ) < π , but the analysis can be extended to the subsequent zones. By

observing the plots in Fig. 2 , we note that the normalized limit values are K̄ y L 2 ≈ 2 . 21 , K̄ y L 3 ≈ 5 . 24 , K̄ y L 4 ≈ 8 . 22 , K̄ y L 5 ≈
9 . 25 for F 2 , F 3 , F 4 and F 5 , respectively. The detection of those values is in perfect agreement with the results obtained

by Srivastava (2016) for two-phase periodic laminates, whose fundamental cell corresponds to F 2 in our work. Numerical

computations demonstrate that K̄ y depends upon the frequency under consideration and increases with f . 

Fig. 2 also shows that below K̄ y , there can be several real K y solutions for a given real K x (and also more than one real

K y ’s for a given imaginary K x ). At fixed frequency, the number of such real K y solutions tends to increase with the generation

index i of the composite. For instance, in the case here illustrated ( f = 220 kHz), we have one real K y for F 2 , two for F 3 ,

three for F 4 and five for cells generated by F 5 . This is also clearly illustrated in Figs. 3 , 4 and 5 , where the iso-frequency

contour lines for real pairs ( K x L i , K y L i ) in the first Brillouin zone are reported for cells F 2 , F 3 and F 4 , respectively, and by

observing the plotted curves, we can note that at rising frequencies, the number of solutions K y corresponding to any given

K x increases, as well. Henceforth, the number of real solutions K y corresponding to a given real value of K x at frequency f in

an arbitrary periodic cell F i will be denoted by N 

f 
i 
. 

Let us focus our attention now on dispersion curves corresponding to f = 270 kHz in Fig. 3 (blue dashed lines). We note

that in the range 2.15 ≤K x L 2 ≤π there are two real K y L 2 (corresponding to two propagating modes, i.e. N 

f 
2 

= 2 ) while for

0 ≤K x L 2 < 2.15 only one real K y L 2 is found (one single propagating mode, N 

f 
2 

= 1 ). According to this property, f = 270 kHz

belongs to the second transition zone of cell F 2 . A transition zone is a frequency range in which N 

f 
i 
depends on the value of

K x L i . The t -th transition zone is that where N 

f 
i 
switches from t − 1 to t . For F 2 , the first transition zone is 

1 0 < f < 93 kHz,

the second one is 262 < f < 296 kHz, and the third one 522 < f < 546 kHz. For F 3 , the first, second and third transition zone

correspond to ranges 0 < f < 63 kHz, 132 < f < 161 kHz and 264 < f < 282 kHz, respectively. It is worth to remark that a limit of

the transition zone corresponds to a frequency where a real solution branch K y ‘emerges’ from K y = 0 at either K x L i = 0 or
1 Values of frequencies are rounded to the unit. 
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Fig. 2. Real (solid lines) and imaginary (dashed lines) parts of K x L i plotted against K y L i for Fibonacci laminates F 2 to F 5 at frequency f = 220 kHz. All 

values of K y assumed in the calculations are real. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K x L i = π . This justifies the introduction of the invariant function (13) that will be used to study the self-similar properties

of transition zones reported in red in the diagram of Fig. 11 for laminates F 2 –F 6 . 

The modes illustrated in Figs. 3, 4 and 5 represent waves propagating along both x and y directions at a determinate

frequency in Fibonacci laminates. Fig. 6 shows that at a given frequency, any real value of K x L i is associated with an infinite

number of purely imaginary K y solutions of the dispersion relation (10) . These imaginary solutions correspond to an infinite

number of waves travelling along x , but decaying exponentially along y (evanescent waves). 

In ( Willis, 2016 ), shear waves in the bilayer F 2 are studied, and plots similar to those sketched in Fig. 3 are provided.

For this unit cell, when there are two real solutions of K y associated with the same K x , the branch of the dispersion relation

corresponding to the lower K y has negative x −component of the group velocity. The analysis of the wave energy flux and

Poynting vector reported by Srivastava (2016) shows that the achievement of negative group velocity components along axis

x is crucial in order to observe negative refraction of elastic waves at the interface between a substrate and a laminate.

For this reason, further in the paper we will study the group velocity of shear waves transmitted at the interface between

substrates and quasicrystalline laminates, as for example those associated with the dispersion relations in Figs. 3, 4 and 5 .

In particular, we will investigate the transmission through the interface of propagating modes characterised by wave vector

component K x L i belonging to the second Brillouin zone. The reported numerical results will show that this property allows

us to use the Fibonacci laminates to obtain pure negative wave refraction at lower frequencies with respect to the case of

standard two-phase periodic laminates. 

3. Wave transmission and negative refraction 

The methods to investigate transmission across and reflection at the interface between an elastic substrate and a qua-

sicrystalline laminate of shear waves are now developed. Negative refraction is revealed under appropriate conditions and

some specific filtering properties of these materials are compared with those of periodic 1-D phononic structures studied

by Willis (2016) and Srivastava (2016) . 

3.1. Normal mode decomposition 

Let us consider the problem of an elastic substrate with shear modulus μ0 and mass density ρ0 occupying the half-space

y < 0 and bonded to a Fibonacci laminate with layering direction parallel to the axis y and occupying the region y > 0 (see

Fig. 7 ). An antiplane wave is incident at the interface y = 0 from the homogeneous substrate with the incident angle θ . This
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Fig. 4. Iso-frequency contours for real K x L 3 and K y L 3 for the laminate F 3 : a) frequency range f = 0 − 270 kHz; b) frequency range f = 270 − 330 kHz. 

Frequency values in kHz are reported onto the pertinent lines. 
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Fig. 5. Iso-frequency contours for real K x L 4 and K y L 4 for the laminate F 4 : a) frequency range f = 0 − 270 kHz; b) frequency range f = 270 − 330 kHz. 

Frequency values in kHz are reported onto the pertinent lines. 

 

 

wave generates an infinite number of both transmitted and reflected modes. A finite number of these are propagating waves

whereas the remaining are evanescent waves. We now introduce the following expressions for the incident, transmitted, and

reflected fields, respectively: 

u inc z = A exp [ i ( ωt − K 0 x cos θ − K 0 y sin θ ) ] , (18) 

u trans z = 

∞ ∑ 

� =0 

T � w � ( x ) exp 
[
i 
(
ωt − K x x − K ( 

� ) 
y y 

)]
( � ∈ N ) , (19) 

u ref z = 

∞ ∑ 

m = −∞ 

R m 

U m 

( x ) exp 
[
i 
(
ωt − K 0 x sin θ + κ( m ) 

y y 
)]

( m ∈ Z ) , (20) 
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Fig. 6. Real (solid lines) and imaginary (dashed lines) parts of K x L i plotted against imaginary K y L i for Fibonacci laminates F 2 to F 5 at frequency 
f = 220 kHz. 

Fig. 7. Schematic of the problem of an antiplane wave approaching the interface between an elastic substrate and a Fibonacci laminate F 4 . 

 

 

where w � ( x ) is the modeshape, U m 

(x ) = exp (−i2 mπx/L i ) , K x = K 0 sin θ and 

κ(m ) 
y = [ K 2 0 − (K 0 sin θ + 2 mπ/L i ) 

2 ] 1 / 2 . (21)

According to the dispersion properties illustrated in the previous section, the real value K x = K 0 sin θ is associated with a

finite number ( N 

f 
i 
) of modes propagating along y and to an infinite number of evanescent modes along the same axis. 
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By imposing the continuity of displacement u z and shear stress σ yz at the interface y = 0 , we obtain 

2 N ∑ 

� =0 

T̄ � w � (x ) −
N ∑ 

m = −N 

R̄ m 

U m 

(x ) = 1 , (22) 

μ(x ) 
2 N ∑ 

� =0 

K (� ) y T̄ � w � (x ) + μ0 

N ∑ 

m = −N 

κ(m ) 
y R̄ m 

U m 

(x ) = μ0 K 0 cos θ, (23)

where T̄ � = T � /A and R̄ m 

= R m 

/A . By applying the orthogonality conditions involving the modeshapes w � ( x ) introduced by

Srivastava (2016) , we can now transform (22) and (23) into a system of 2(2 N + 1) equations in 2(2 N + 1) variables, of the

form [
[ Q 1 ] [ Q 2 ] 
[ Q 3 ] [ Q 4 ] 

]
{ c } = { d } , (24) 

where { c } = [ ̄T 0 , . . . , T̄ 2 N , R̄ −N , . . . , R̄ N ] 
T . The non-zero elements of the submatrices [ Q k ] are given by 

[ Q 1 ] pp = 

∫ L i 
0 

w p μw 

∗
p dx, [ Q 2 ] ps = −

∫ L i 
0 

U s −N μw 

∗
p dx, (25) 

[ Q 3 ] pp = K (p) y 

∫ L i 
0 

w p μw 

∗
p dx, [ Q 4 ] ps = μ0 κ

(s −N) 
y 

∫ L i 
0 

U s −N μw 

∗
p dx (26)

( [ Q 1 ] ps = [ Q 3 ] ps = 0 for p 
 = s ), where an asterisk indicates the complex conjugate and the elements of the vector { d } are 

d p = 

⎧ ⎨ 

⎩ 

∫ L i 
0 μw 

∗
p dx (p = 0 , 1 , . . . , 2 N) , 

μ0 K 0 cos θ
∫ L i 
0 w 

∗
p−2 N−1 dx (p = 2 N + 1 , 2 N + 2 , . . . ) . 

(27) 

The energy flux corresponding to the considered antiplane harmonic wave is given by the time averaged real part of the

Poynting vector, whose components are the following 

P x = 

1 

2 
Re 

[
ωμ

(
K x | ̃  u z | 2 + i ̃  u 

′ 
z ̃  u ∗z 

)]
, P y = 

1 

2 
Re 

[
ωμK y | ̃  u z | 2 

]
, (28) 

where, considering an arbitrary transmitted mode � , ̃  u z = T̄ � w � (x ) and a dash denotes differentiation with respect to x .

Willis (2016) demonstrated that v g x = ∂ ω/∂ K x = 〈P x 〉 / 〈 E〉 and v g y = ∂ ω/∂ K y = 〈P y 〉 / 〈 E〉 , where E is the total energy density

and 〈 · 〉 denotes the space average performed over the elementary cell of the laminate. As a consequence, we can estimate

the angle of refraction corresponding to all the considered transmitted propagating modes: 

θ trans = arctan 

[
v g x 
v g y 

]
= arctan 

[ 〈P x 〉 
〈P y 〉 

]
. (29) 

By substituting expressions (28) in Eq. (29) and recalling that ˜ u z = T̄ � w � (x ) , it can be easily demonstrated that the angle

of refraction associated with an arbitrary mode depends only on the modeshape w � ( x ), being not influenced by the trans-

mission coefficient T̄ � . Moreover, by observing the form of the components of the Poynting vector, it is important to note

that: i.) for a positive K y , the component P y is always positive, and therefore, according to Eq. (29) , a negative value of the

refraction angle is certainly connected to a negative value of P x ; ii.) the contribution to P y linked to the imaginary values

of K y is zero, and consequently we do not need to account for the evanescent modes in the estimation of the angles of

refraction. 

3.2. Analysis of refraction, reflection and scaling 

The transmission of the incoming wave at the interface of different substrate-quasicrystalline laminate pairs is now stud-

ied in detail. This section is composed of four subsections, each of which addresses a specific aspect: refracted modes (3.2.1) ,

an analysis of modes that are reflected (3.2.2) , self-similarity and scaling of the diagram collecting transition zones for a Fi-

bonacci family of laminates (3.2.3) and the conditions to achieve the transmission of a single negatively-refracted mode

(3.2.4) . 

3.2.1. Refracted modes 

We now use Eqs. (28) and (29) to study wave refraction across the interface of different substrate–quasicrystalline lam-

inate pairs. The wave number K 0 characterising the incident wave depends on the frequency and the properties of the

substrate and is given by K 0 = ω 

√ 

ρ0 /μ0 . Therefore, the component K x can be evaluated through 

K x = K 0 sin θ = 2 π f 

√ 

ρ0 

μ0 

sin θ . (30) 
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Fig. 8. Normalised wave vector component K x L i plotted against the angle of incidence for Fibonacci laminates F 2 to F 5 . A substrate of aluminium has been 

assumed, and the horizontal dashed lines denote the limits of the different Brillouin zones. Different frequencies, whose values in kHz are reported onto 

the pertinent lines, are considered. 
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Fig. 9. Incident vs refraction angles plots for Fibonacci laminates F 2 (left) and F 3 (right) bonded to an aluminium substrate for five different frequencies, 

whose values in kHz are reported onto the pertinent lines. 

 

 

 

 

 

 

 

 

 

 

 

By multiplying Eq. (30) to the length of an arbitrary Fibonacci cell L i and assuming that 0 ≤ θ ≤π /2, we deduce that the

normalized wave vector of the incident wave K x L i belongs to the range 0 ≤ K x L i ≤ 2 π f L i 
√ 

ρ0 /μ0 . For an aluminium substrate

( ρ0 = 2700 kg/m 

3 , μ0 = 26 GPa) and for four Fibonacci elementary cells ( F 2 to F 5 ), K x L i is reported in Fig. 8 as functions of

the incident angle for different values of f . The horizontal dashed lines indicate the limits of the different Brillouin zones,

each spanning a range of width π along the vertical axis. We observe that as the generation index of the cell increases, the

values of K x L i related to the same frequency increases as well. This means that for a given frequency, if we compare two

laminates designed according to two different indices i , the higher order one allows access to the second (and if needed to

the third) Brillouin zone for a wider range of angles of incidence. 

By recalling the Floquet–Bloch analysis reported in Section 2 and the results illustrated in Figs. 3, 4 and 5 , for each value

of K x L i corresponding to a given frequency and an arbitrary angle of incidence in the interval 0 ≤ θ ≤π /2, as for example

those reported in Fig. 8 , we have N 

f 
i 

real solutions of the laminate dispersion relation. These real solutions correspond to

modes propagating in the laminate, and the associated angles of refraction are plotted against θ in Fig. 9 for laminates F 2 and

F . 
3 
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Several frequencies have been analysed in the calculations. For f = 120 kHz there is only one curve for both F 2 and F 3 

(magenta curves) showing that only one transmitted mode is available for both layouts at this frequency. This is consis-

tent with diagram in Fig. 11 , where f = 120 kHz is between the first and the second transition zone for both laminates.

Conversely, for both f = 300 and 330 kHz (black and red lines), two and three curves are detected for F 2 and F 3 cells,

respectively (note that in the latter case one of the curves is almost coincident with the horizontal axis). In Fig. 11 , the

two frequencies are just after the second (third) transition zone for F 2 ( F 3 ). As a consequence, the values of K x L 2 and K x L 3 
associated with f = 300 and 330 kHz and with any arbitrary angle of incidence corresponds to two real values of K y L 2 and

to three real values of K y L 3 , and then to two refraction angles for F 2 and three for F 3 . 

By looking at the curves corresponding to f = 285, 300 and 330 kHz for laminates F 3 in Fig. 9 , we can also observe that

for a certain value of the angle of incidence θ ∗ they change sign (positive to negative or vice versa). In this case, θ ∗ is the

value for which K x L 3 = π, whilst for an arbitrary F i cell the angle is determined by the analogous condition K x L i = π . On the

basis of the graphs of Fig. 8 , we can deduce that for a wave with θ < θ ∗, the dimensionless component of the wavenumber

K x L i lies in the first Brillouin zone, whereas when θ > θ ∗, K x L i belongs to the second or one of the subsequent Brillouin
zones. Eq. (30) leads to the following expression 

θ inv 
q = arcsin 

(
q 

2 f L i 

√ 

μ0 

ρ0 

)
(q = 1 , 2 , 3 , . . . ) . (31) 

The general formula (31) provides the critical angle of incidence θ inv 
q corresponding to K x L i = qπ . For θ = θ inv 

q , the value of

the normalised wave number K x L i transitions from the q -th Brillouin zone to the ensuing one, and then the refraction angle

changes sign. According to this definition, the curves reported in Fig. 9 change sign at θ ∗ = θ inv 
1 

. By observing the curves for

f = 270 and 285 kHz (blue and brown lines), we also note that cell F 2 allows negative refraction only for θ > 65 ° and θ > 30 °,
respectively, whereas the layout F 3 admits the same phenomenon for any value of θ . Consequently, for these frequencies,
high-order Fibonacci laminates allow negative refraction for a wider range of angles of incidence. Moreover, according to the

definition introduced in Section 2.3 , both f = 270 kHz and f = 285 kHz belong to a transition zone. Indeed, for f = 270 kHz

considering the cell F 2 we have N 

f 
2 

= 1 for θ < 65 ° and N 

f 
2 

= 2 for θ > 65 °, whereas observing the results corresponding to

F 3 , it is N 

f 
3 

= 3 for θ < 20 ° and N 

f 
3 

= 2 for θ > 20 °. Consequently, f = 270 kHz belongs to the second transition zone for

laminates F 2 and to the third one for F 3 . Similarly, f = 285 kHz belongs to a transition zone (i.e. the second one) for F 2 ,

but it does not for F 3 : indeed, in this case for any angle of incidence, N 

f 
3 

= 3 (note that for both f = 270 kHz and f =
285 kHz in the case of F 3 one of the curves in Fig. 9 is almost coincident with the horizontal axis). 

3.2.2. Reflected modes 

The real parts of the dimensionless wave numbers κ(m ) 
y L i (different indices m are considered), corresponding to the

modes reflected at the interface [see Eq. (20) ], are plotted against the angles of incidence for an aluminium substrate and

laminates represented by F 2 to F 5 in Fig. 10 . Incident waves of frequencies f = 120 kHz and f = 270 kHz are assumed for

the calculations. According to the representation of the reflected wave field (20) , each one of these real parts is associated

with a reflected mode propagating in the substrate, whereas if κ(m ) 
y L i is imaginary the corresponding waves are evanescent.

We can observe that for a fixed value of the incident wave frequency, the number of propagating reflected modes increases

at increasing order of the cell. Alternatively, at a given elementary cell F i , a higher number of propagating reflected modes

for higher incident frequencies is found. By looking at the curves, we note that for any Fibonacci cell and any value of

the frequency there exists at least one propagating mode, corresponding to m = 0 . This can be easily explained by recalling

Eq. (21) and specialising it to m = 0 . This leads to κ(0) 
y L i = K 0 L i cos θ = 2 πL i 

√ 

ρ0 /μ0 cos θ . As a consequence, in order to have
reflectionless negative refraction using a Fibonacci laminate, it is always required that the amplitude R 0 of the mode m = 0

vanishes for some ranges of incident frequencies or incident angles. This is a sufficient condition in the cases where the

only propagating reflected wave is that associated with m = 0 , which occurs if 

0 < f L i 

√ 

ρ0 

μ0 

(1 − sin θ ) < 1 . (32) 

Conversely, if we have f L i 
√ 

ρ0 /μ0 (1 − sin θ ) ≥ 1 , as for cases of laminates F 3 , F 4 and F 5 reported in Fig. 10 , several ad-

ditional reflected waves can propagate in the substrate, and then in order to obtain reflectionless wave propagation it is

required that the amplitudes of all these modes are zero, i.e. R m 

= 0 . Furthermore, also in cases where the reflectionless

conditions are verified, the real consistency of the evaluated reflected and transmitted fields should be checked through the

balance of the energy flow at the interface, following the procedure proposed by Srivastava (2016) and Willis (2016) . The

cases analysed further in the paper do not encompass reflectionless phenomena. 

3.2.3. Self-similarity and scaling of the transition zone layout 

The arrangement of the transition zones, that are sketched in red, for laminates designed according to cells F 2 to F 6 is

reported in Fig. 11 as a function of the frequency. The number written on each complementary grey range of frequencies

denotes the number of propagating modes N 

f 
i 
that is constant in the interval. When coupled to the substrate, each of these

propagating modes has a different angle of refraction. 



L. Morini et al. / Journal of the Mechanics and Physics of Solids 124 (2019) 282–298 293 

F2

m 0

m 0

f 120 kHz
f 270 kHz

0 20 40 60 80
0.0

0.5

1.0

1.5

2.0

2.5
Re

Κ y
m

L 2
F3m 0

m 0

m 1

0 20 40 60 80
0

1

2

3

4

Re
Κ

ym
L 3

F4

m 0

m 0

m 1

m 2
0 20 40 60 80

0

1

2

3

4

5

6

θ (Degrees) θ (Degrees)

θ (Degrees) θ (Degrees)

Re
Κ y

m
L 4

F5

m 0

m 0

m 1

m 2 m 3
m 1

m 1

0 20 40 60 80
0

2

4

6

8

10

Re
Κ y

m
L 5

Fig. 10. Real part of the normalised wave vector component κ(m ) 
y L i , corresponding to the modes reflected at the interface, plotted against the angle of 

incidence for Fibonacci laminates F 2 to F 5 for frequencies f = 120 kHz (dashed lines) and f = 270 kHz (solid lines) of the incident wave. A substrate of 

aluminium has been considered. 

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7

1 2 3 4

1 2F2

F3

F4

F5

F6

10 11 12

12 13 14 15 16 17 20

0 100 200 300 400 500

f kHz

Fig. 11. Diagram reporting, in the grey zones, the number N f 
i 
of real solutions K y of the dispersion relation for cells F 2 to F 6 as a function of the frequency. 

Transition zones are highlighted in red. Blue rectangles contain transition zones affected by local scaling. The covered range of frequencies (0 ≤ f ≤543 kHz) 

corresponds to the pseudo-period of the Kohmoto’s invariant I 0 (2 π f ). For each cell, the black, dashed vertical line marks the minimum frequency to have a 

transmitted wave in the second Brillouin zone. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 



294 L. Morini et al. / Journal of the Mechanics and Physics of Solids 124 (2019) 282–298 

F2

0 100 200 300 400 500
2

1

0

1

2

3

f kHz

Re
K

xL
2

,I
m

K
xL

2

F3

0 100 200 300 400 500

2

1

0

1

2

3

f kHz

Re
K

xL
3

,I
m

K
xL

3

F4

0 100 200 300 400 500

4

2

0

2

4

f kHz

Re
K

xL
4

,I
m

K
xL

4

F5

Re KxLi
Im KxLi

0 100 200 300 400 500

4

2

0

2

4

6

8

f kHz

Re
K

xL
5

,I
m

K
xL

5

Fig. 12. Real (solid lines) and imaginary (dashed lines) parts of K x L i plotted against the frequency f for Fibonacci laminates F 2 to F 5 by assuming K y = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us observe the sets of transition zones enclosed by blue rectangles in Fig. 11 . It is easy to note that, starting from the

top, they are all composed of a single large transition zone followed by a thinner one almost centered at the same value

of the frequency. Then, a pair and sets of three and five zones come next in order. The pattern is typically self similar and

analogous to that highlighted by Gei (2010) and Morini and Gei (2018) for quasicrystalline-generated structural waveguides.

Self similarity is governed by a local scaling whose factor can be obtained by analysing the specialised Kohmoto’s invariant

I 0 ( ω) (13) overseeing transverse wave propagation in the laminate (i.e. K y = 0 ). As discussed in Section 2.2 , in this case the

transfer matrix (7) and dispersion relation (10) assume a form similar to that derived by Morini and Gei (2018) with traces

t i following the recursive relation (11) . Consequently, for K y = 0 the dispersion curves reported in Fig. 12 for laminates F 2 to

F 5 and the associated stop/pass band distribution possess the same features of those obtained in ( Morini and Gei, 2018 ). In

the same figure, by assuming K y = 0 , the real and imaginary parts of K x L i are sketched against the frequency for the interval

0 ≤ f ≤543 kHz that corresponds to the pseudo-period of function I 0 (2 π f ). The layout of the dispersion curves reveals that

for any cell F i the position of pass bands coincide with that of transition zones reported in Fig. 11 . 

Eqs. (16) and (17) can be employed to analyse the scaling occurring within some frequency ranges of the stop/pass band

layout associated with the dispersion curves reported in Fig. 12 , and then in the transition zone diagram of Fig. 11 . As an

example, let us consider the seventh transition zone in the plot for F 5 in Fig. 11 . We can easily note that it coincides with

the seventh pass band { f B 
5 

− f A 
5 
} of F 5 centred at f 

∗ = 273 . 25 kHz in Fig. 12 . Numerical calculations yield f B 
5 

− f A 
5 

= 7 . 50

kHz and λ = 4 . 80 . By using the relationship (17) , we finally get f B 2 − f A 2 ≈ ( f B 5 − f A 5 ) λ = 35 . 99 kHz, which is in very good

agreement with the value provided by the actual computations (i.e. f B 
2 

− f A 
2 

= 35 . 91 kHz). The same scaling behaviour is

detected by comparing the seventh and fifteenth transition zones of F 6 , centred at f 
∗ = 148 . 27 kHz and f ∗ = 402 . 32 kHz,

respectively, to the second and fourth of F 3 , respectively. In the former case, λ = 28 . 18 , the actual range f B 3 − f A 3 measures

28.81 kHz whereas the scaling provides f B 
3 

− f A 
3 

≈ ( f B 
6 

− f A 
6 
) λ = 28 . 75 kHz; in the latter, λ = 136 . 61 , scaling predicts f B 

3 
−

f A 
3 

≈ ( f B 
6 

− f A 
6 
) λ = 14 . 34 kHz whereas on the diagram, f B 

3 
− f A 

3 
= 14 . 36 kHz. Both comparisons are very accurate. 

A second type of scaling, called global scaling in Morini and Gei (2018) , exhibits in the diagram of Fig. 11 . For a reason

that will be clarified in the next subsection, we consider the range of frequencies from zero to the upper boundary of

the second transition zone and denote by �g f i this interval for the sequence F i . In an approximate way, the global scaling

makes the connection between �g f i and �g f i +3 ( �g f i +6 ) as �g f i ≈ λ̄�g f i +3 ( �g f i ≈ κ̄�g f i +6 ) where λ̄ ( ̄κ) is the average

of parameter λ ( κ) on �g f i +3 ( �g f i +6 ) and is based on the similar behaviour of trace t i ( ω) with t i +3 ( ̄λω) ( t i +6 ( ̄κ ω) ), the

latter with a scaled argument. As an example, in the plot of Fig. 11 , �g f 3 = 162 kHz and �g f 6 = 36 kHz, so that their ratio

is equal to 4.50, whereas λ̄ turns out to be λ̄ = 4 . 46 . Moreover, as �g f 2 = 297 kHz and �g f 8 = 14 . 8 kHz, their ratio is equal

to 20.07 that must be compared with λ̄ = 18 . 05 . 
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It is important to remark that the scaling analyses here reported are restricted to the laminate whose phases (i.e. PMMA

and steel) match those employed by Nemat-Nasser (2015a) ; Srivastava (2016) ; Willis (2016) and that, as suggested by

Morini and Gei (2018) , the ranges of frequencies where the two scalings are meaningful may change significantly depending

on the properties of the two components of the composite. An interesting application to explore in a future study is the case

of canonical Fibonacci laminates 2 , for which at some well-defined frequencies (i.e. the canonical frequencies) the trajectories

on the Kohmoto’s surface correspond to the closed orbits pinpointed by the six saddle points and then the local scaling is

therein more accurate. 

3.2.4. Transmission of a single negatively-refracted mode 

In the diagram reported in Fig. 11 , for each F i , the black dashed line marks the minimum frequency required to have

at least one value of the dimensionless wave vector component K x L i in the second Brillouin zone for the laminate-substrate

pair studied so far (PMMA-steel laminate bonded to an aluminium substrate). These values, indicated henceforth as f min 
i 

,

correspond exactly to the short-dashed black curves reported in Fig. 8 that approach the second Brillouin zone ( K x L i = π )

for θ = π/ 2 , leading, through Eq. (30) , to f min 
i 

= 

√ 

μ0 / (2 L i 
√ 

ρ0 ) . 

The possibility of having a real K x L i in the second Brillouin zone at the interface is crucial in order to induce only a

single negatively-refracted wave in the laminate. Indeed, the data reported in Fig. 9 (left) for F 2 show that if K x L i evaluated

using expression (30) is limited to the first Brillouin zone, the transmitted propagating pattern consists of either a positively

refracted mode or a pair of positively and negatively-refracted waves. In order to have only one mode propagating in the

laminate with a negative refraction angle, we need to set up a value for K x L i in the second Brillouin zone and, at the same

time, to select an elastic substrate for which f min 
i 

< 

˜ f i , where ˜ f i is the highest frequency of the second transition zone. This

additional condition is due to the fact that for f < 

˜ f i just one transmitted mode –or at least one– is available for some

values of K x L i and two for the remaining values. As a consequence, a Fibonacci laminate F i can transmit a single negatively-

refracted mode should the frequency of the incident wave belongs to the interval f min 
i 

≤ f ≤ ˜ f i . 

By observing Fig. 11 , we can easily note that frequencies f min 
i 

marked by the dashed line are larger than ˜ f i for all the

layouts considered until now. Therefore, the condition f min 
i 

≤ f ≤ ˜ f i is not met: the aluminium substrate cannot be used for

this purpose. 

In Fig. 13 , the values of f min 
i 

associated with different substrates are compared with those of ˜ f i for laminates up to F 6

composed of the same phases (PMMA and steel) as above. In addition to aluminium, iron ( ρ0 = 7860 kg/m 

3 , μ0 = 52 . 5 GPa),

copper ( ρ0 = 8940 kg/m 

3 , μ0 = 44 . 7 GPa), nylon ( ρ0 = 1150 kg/m 

3 , μ0 = 4 GPa) and polyethylene ( ρ0 = 930 kg/m 

3 , μ0 =
0 . 117 GPa) substrates are considered. We note that also for iron f min 

i 
> 

˜ f i , therefore a wave travelling in this material can-

not be converted in a single negatively-refracted mode by means of the quasicrystalline laminates under investigation. Con-

versely, relative soft substrates such as polyethylene and nylon are associated with values of f min 
i 

such that f min 
i 

< 

˜ f i , and
2 The properties of the two phases A and B in order to assemble a canonical Fibonacci laminate can be inferred from the analogous study on 1-D 

quasicrystalline waveguides performed by Morini and Gei (2018) . 
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Fig. 14. Angles of refraction corresponding to an incident angle θ = 20 ◦ plotted versus the frequency for Fibonacci laminates F 2 to F 5 . A polyethylene sub- 
strate ( ρ0 = 930 kg/m 

3 , μ0 = 0 . 117 GPa) has been assumed. Curves for F 4 and F 5 are interrupted when approaching the horizontal line as this corresponds 

to the condition K x L 4 = K x L 5 = 2 π for which the values of K x L 4 and K x L 5 leave the second Brillouin zone and enter the third. F 2 coincides with the case 

studied by Srivastava (2016) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

then waves with f min 
i 

≤ f ≤ ˜ f i propagating in these media can be potentially converted in one single mode with negative

refraction angle using the laminates at hand. 

It becomes clear now that the global scaling studied in the previous subsection can be a useful tool to predict for which

quasicrystalline laminate F i (when coupled to a given elastic substrate) the condition f min 
i 

< 

˜ f i is met, assuring one single

negative refracted mode. 

The angles of refraction corresponding to propagating modes transmitted at the interface between a polyethylene sub-

strate and a PMMA-steel composite are reported as functions of the frequency in Fig. 14 where we have assumed the

constant value θ = 20 ◦. The curves for F 4 and F 5 are interrupted approaching the horizontal axis as, with the increase of

the frequency, this corresponds to K x L 4 = K x L 5 = 2 π . At this value, both K x L 4 and K x L 5 leave the second Brillouin zone and

enter the third. This plot again shows that high-order Fibonacci cells admit transmission of one single negatively-refracted

mode at relatively low frequencies in contrast to the a laminate F 2 (as studied by Srivastava (2016) ; Willis (2016) and

Srivastava and Willis (2017) ) that admits the same phenomenon only for f > 120 kHz. This means that, considering the same

angle of incidence, high order quasicrystalline laminates yield single negatively-refracted modes at lower frequencies with

respect to standard two-phase periodic laminates. More precisely, by considering an arbitrary angle of incidence θ , and as-
suming that the condition f min 

i 
≤ f ≤ ˜ f i is satisfied, a laminate F i can provide a single negatively-refracted mode for waves

whose frequencies belong to the range √ 

μ0 

ρ0 

1 

2 L i sin θ
< f < 

√ 

μ0 

ρ0 

1 

L i sin θ
. (33) 

The condition (33) can be easily derived through Eq. (30) . Accordingly, if we have f > 

√ 

μ0 /ρ0 / (L i sin θ ) , then K x L i > 2 π ,

and the normalized wave vector switches from the second to the third Brillouin zone, and the refraction angle changes

sign becoming positive. Similarly, an incident wave with frequency f min 
i 

≤ f ≤ ˜ f i and satisfying the condition (33) can be

converted into a single negatively-refracted mode if the angle of incidence lays in the interval θ inv 
1 

< θ < θ inv 
2 

, where θ inv 
1 

and θ inv 
2 

are given by the general relation (31) , yielding 

arcsin 

(
1 

2 f L i 

√ 

μ0 

ρ0 

)
< θ < arcsin 

(
1 

f L i 

√ 

μ0 

ρ0 

)
. (34) 

In agreement to what we have observed in Fig. 9 , for θ > arcsin 

(√ 

μ0 
ρ0 

/ ( f L i ) 
)

the dimensionless wave vector component

K x L i enters the third Brillouin zone, and then the corresponding refraction angle goes from negative to positive. 

Plots of the refracted displacement amplitude field u trans z (x, y ) , Eq. (19) , for a representative case of the coupling between

the laminate and a polyethylene substrate are sketched in Fig. 15 . In this figure, the wavefronts related to a 100 kHz signal

approaching, with an angle θ = 20 ◦, the interface between a polyethylene substrate and Fibonacci laminates F 2 and F 3 are

reported. Only one transmitted mode is available in both systems (see Fig. 14 , f = 100 kHz). We can recognise the negative
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Fig. 15. Two-dimensional contour plots illustrating the displacement amplitude of the refracted wave u trans z (x, y ) , Eq. (19) , of an antiplane signal of fre- 

quency f = 100 kHz and incident angle θ = 20 ◦ at the interface between a polyethylene substrate and laminates F 2 (left) and F 3 (right). Negative refraction 
is achieved on the right-hand panel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

refraction for the wave propagating in cell F 3 , whereas for F 2 a positive one is obtained. It is worth to remark that the

studied angle of refraction θ trans does not correspond, however, to that formed by the normal to the average refracted

wavefront as the former traces the direction of the energy flux (see also Nemat-Nasser (2015a) ). In the reported case, the

use of both Poynting vector and group velocity components provide, through Eq. (29) , θ trans = 15 . 33 ◦ and θ trans = −16 . 87 ◦,
respectively for the left and right-hand side of the figure, in agreement with the data reported in Fig. 14 . 

4. Conclusions 

Fibonacci laminates are a family of two-phase multilayered composites whose layouts, each associated with an integer

index, are generated following the Fibonacci substitution rule. They are a subset of the more general class of quasicrystalline

laminates. The main goal of the article is to address the problem of negative refraction of antiplane shear waves transmitted

at an interface between an elastic substrate hosting the incoming signal and one of those laminates, arranged such that the

layering direction is orthogonal to the interface. 

To achieve the objective, in the first part, a dispersion analysis for Fibonacci laminates is carried out adopting the classical

Floquet–Bloch technique. In particular, number and properties of propagating modes are revealed for each layout at varying

frequency. A key property of the dispersion diagrams is the occurrence of particular ranges of frequencies, called transition

zones, where the number of propagating modes depends on the frequency itself. 

In the second part of the paper, transmission of antiplane waves across the substrate-laminate interface is addressed

by applying the normal mode decomposition technique to couple the response of the composite to the properties of the

substrate. The angle of refraction is estimated through the evaluation of the Poynting vector. The conclusions can be sum-

marised as follows: 

– with respect to the classical bilayer, Fibonacci laminates can transmit negatively-refracted waves for a wider range

of angles of incidence, with a trend that increases monotonically at increasing index; in some cases, negative refraction is

attainable for any angle of incidence; 

– by assuming the same angle of incidence for the impinging wave, using the proposed quasicrystalline composite it

is possible to produce a single transmitted negatively-refracted wave at lower frequencies without the need to change the

materials composing the laminae as required for a simple bilayer. This is achievable as propagating modes in the second

Brillouin zone become available at lower frequencies. The ranges of frequencies and incidence angles at which this property

can be achieved are reported and discussed in detail; 

– the global scaling studied by exploiting the properties of the Kohmoto’s invariant may be used as a predicting tool to

select the most suitable laminate of the family that, in combination to a given substrate, may assure the availability of a

single negatively-refracted transmitted mode. 

The outcomes of this research, though restricted to a particular combination of the materials of the two phases, indicate

that quasicrystalline laminates may broaden the possibilities of using multilayers as building blocks for the construction of

metamaterials able to transmit negatively-refracted waves. 
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