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Abstract. Goulden, Jackson and Vakil observed a polynomial structure underlying one-part double Hurwitz 

numbers, which enumerate branched covers of CP1 with prescribed ramification profile over ∞, a unique 

preimage over 0, and simple branching elsewhere. This led them to conjecture the existence of moduli 

spaces and tautological classes whose intersection theory produces an analogue of the celebrated ELSV 

formula for single Hurwitz numbers. 

In this paper, we present three formulas that express one-part double Hurwitz numbers as intersection 

numbers on certain moduli spaces. The first involves Hodge classes on moduli spaces of stable maps to 

classifying spaces; the second involves Chiodo classes on moduli spaces of spin curves; and the third involves 

tautological classes on moduli spaces of stable curves. We proceed to discuss the merits of these formulas  

against a list of desired properties enunciated by Goulden, Jackson and Vakil. Our formulas lead to non- 

trivial relations between tautological intersection numbers on moduli spaces of stable curves and hints at  

further structure underlying Chiodo classes. The paper concludes with generalisations of our r esults to the 

context of spin Hurwitz numbers. 
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1 Introduction 
 

The enumeration of branched covers of Riemann surfaces dates back to Hurwitz [18] but has seen a revival 

in recent decades due to connections with moduli spaces of curves [11], integrability [27], and mathematical 

physics [4, 13]. One catalyst for this renaissance was the discovery of the ELSV formula, which expresses 

single Hurwitz numbers as tautological intersection numbers on moduli spaces of curves. 

The single Hurwitz number hg;µ is the weighted enumeration of connected genus g branched covers of CP1 

with ramification profile µ over ∞, such that all other ramification is simple and occurs over prescribed 

points of C∗. We attach the following weight to such a branched cover f . 

|Aut(µ)| 
 

|Aut(f )| × (2g − 2 + ℓ0 + ℓ∞)! 

 

(1) 

Here, ℓ0 and ℓ∞ denote the numbers of preimages of 0 and ∞, respectively. The expression 2g − 2 + ℓ0 + ℓ∞ 
appearing in the weight is thus equal to the number of simple branch points, as specified by the Riemann – 

Hurwitz formula. The group Aut(µ)  comprises permutations  of  µ  =  (µ1, . . . , µn)  that  leave the  tuple fixed, 

while the group Aut(f ) attached to the branched cover f  : C  → CP1  comprises Riemann surface 

automorphisms φ : C → C that satisfy f ◦ φ = f . The factor       1       appearing in equation (1) is natural 

from the perspective of enumerative geometry, while the other factors produce a normalisation that makes  

the structure of single Hurwitz numbers more transparent. For a more thorough introduction to Hurwitz 

numbers, we point the reader to the literature [24, 5]. 

The celebrated ELSV formula expresses single Hurwitz numbers as tautological intersection numbers on  

moduli spaces of stable curves in the following way. 

Theorem 1.1 (Ekedahl, Lando, Shapiro and Vainshtein [11]). For integers g ≥ 0 and n ≥ 1 with (g, n) /= (0, 1) 

or (0, 2), the single Hurwitz numbers satisfy 

 
hg;µ ,...,µ 

Yn µi   
∫ 

= i            
Σg 

Q k=0 (−1)kλk . (2) 

1 n 

i=1 
µi! Mg,n 

n 
i=1 (1 − µiψi) 

 
 

The integral in equation (2) is over the moduli space of stable curves Mg,n and yields a symmetric polyno- 

mial in µ1, . . . , µn of degree 3g − 3 + n. This polynomiality had previously been observed in small cases and 

conjectured in general by Goulden, Jackson and Vainshtein [15]. More generally, other “ELSV formulas” 

exist, which relate enumerative problems to intersection theory on moduli spaces, such as the formula for 

orbifold Hurwitz numbers of Johnson, Pandharipande and Tseng [22]. 

It is natural to consider double Hurwitz numbers hg;µ,ν,  which enumerate connected genus g  branched covers 

of CP1 with ramification profiles µ and ν over ∞ and 0, respectively, such that all other ramification is simple 

and occurs over prescribed points of C∗. The weight attached to such a branched cover is taken to be 

precisely as in equation (1). Although double Hurwitz numbers have received some attention in the literature, 

various open questions remain. In particular, the present work focuses on the compelling Goulden–Jackson– 

Vakil conjecture concerning one-part double Hurwitz numbers, which are defined as follows. 

Definition 1.2.  Let hone-part denote the double Hurwitz number h 
 

g;µ;ν , where ν is the partition with precisely 

one part, which is equal to |µ|. (For a partition µ, we use the standard notation |µ| = µ1 + µ2 + · · · + µℓ(µ), 

where ℓ(µ) denotes the number of parts of µ.) 
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g;µ1 ,...,µn 

 

Goulden, Jackson and Vakil proved that for fixed g and n, the one-part double Hurwitz number hone-part 

is a polynomial in µ1, . . . , µn. More precisely, it is of the form µ1 + · · · + µn multiplied by a polynomial of 
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g;µ 

g;µ1 ,...,µn 

degree 4g − 3 + n in which all monomials have the same parity of degree. Thus, they were led to conjecture 

the following, in direct analogy with the original ELSV formula for single Hurwitz numbers. 

Conjecture 1.3 (Goulden, Jackson and Vakil [16]). For integers g ≥ 0 and n ≥ 1 with (g, n) /= (0, 1) or (0, 2), 

there exists a moduli space Picg,n with classes Λ2k ∈ H4k(Picg,n) and Ψi ∈ H2(Picg,n) such that the one-part 
double Hurwitz numbers satisfy 

 
hone-part 

∫ 
= (µ1 + · · · + µn)      

Σg 

Q k=0 (−1)kΛ 
 

2k 
.
 

g;µ1 ,...,µn 
Picg,n 

n 
i=1 (1 − µiΨi) 

 
 

The space Picg,n and its classes Λ2k and Ψi are yet to be defined, but expected to satisfy several natural 

properties, which are listed in Section 4. For example, the polynomial structure of one-part double Hurwitz 

numbers suggests that Picg,n carries a virtual fundamental class of complex dimension 4g − 3 + n. Perhaps 

the most speculative of the aforementioned properties is the fact that Picg,n should be a compactification 

of the universal Picard variety Picg,n, the moduli space that parametrises genus g curves with n marked 

points equipped with a degree 0 line bundle. One would then expect that forgetful morphisms, ψ-classes 

and λ-classes on moduli spaces of stable curves Mg,n would have natural analogues that exhibit similar 

behaviour on Picg,n. 

Our main result is Theorem 3.1, which comprises three related formulas that serve as candidates for an  ELSV 

formula for one-part double Hurwitz numbers. Respectively, they express hone-part in terms of 

• Hodge classes on moduli spaces of stable maps to classifying spaces; 

• Chiodo classes on moduli spaces of spin curves; and 

• tautological classes on moduli spaces of stable curves. 

The proof of Theorem 3.1 is accomplished by specialising known results from the literature, particularly the 

work of Johnson, Pandharipande and Tseng on abelian Hurwitz–Hodge integrals [22], as well as the work 

of Popolitov, Shadrin, Zvonkine and the second author on Chiodo classes [25]. 

The current work provides a partial resolution to Conjecture 1.3. However, let us state from the outset 

that none of our formulas satisfies all of the desired properties enunciated by Goulden, Jackson and Vakil. 

In Section 4, we discuss the relative merits of these formulas against these properties. For example, one 

of our formulas expresses hone-part as an integral over M g,n+g .  Thus, the moduli space possesses the 

virtuous features of having the expected dimension 4g − 3 + n and not depending on the partition µ. On 

the other hand, it is not explicitly a moduli space of line bundles, as the universal Picard variety should be. 

Despite the previous remarks, it is conceivable that Theorem 3.1 may lead to a more satisfying resolution 

of the Goulden–Jackson–Vakil conjecture.  Furthermore,  our results have direct applications to intersec- tion 

theory on moduli spaces of curves. By invoking the obvious symmetry for double Hurwitz numbers hg;µ;ν  = 

hg;ν;µ, which exchanges ramification profiles over 0 and ∞, we are able to compare instances of 

the original ELSV formula for single Hurwitz numbers with instances of our formula for one-part double 

Hurwitz numbers. This leads to a non-trivial relation between intersection numbers on Mg,1 and Mg,d, 

stated as Theorem 5.1. It is natural to wonder whether such a result may be the shadow of a richer relation 

at the level of the cohomology of Mg,n. 

It is known from the work of Goulden, Jackson and Vakil that one can in fact write 

hone-part = (µ1 + · · · + µn)2g−2+n Pg,n(µ2, . . . , µ2 ), 

g;µ1 ,...,µn 1 n 

for some symmetric polynomial Pg,n of degree g [16]. We make the observation that such structure is not self-

evident from any of our ELSV formulas for one-part double Hurwitz numbers. So this polynomiality then 

suggests some further structure underlying the Chiodo classes that arise in our ELSV formulas and we leave 

the implications to future work. 
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One may consider analogues of the Hurwitz numbers above with the simple branch points replaced by branch 

points with ramification profile (r + 1, 1, 1, . . . , 1) for some fixed positive integer r. The work of 
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Okounkov and Pandharipande on the Gromov–Witten/Hurwitz correspondence suggests that it is geomet- 

rically natural to compactify such a count using so-called completed cycles and the resulting enumeration 

yields spin Hurwitz numbers [26]. Zvonkine conjectured an ELSV formula in the spin setting [30], and this 

conjecture was later generalised further to spin orbifold Hurwitz numbers [23]. These conjectures were ulti- 

mately resolved in a series of five papers involving the work of Borot, Dunin-Barkowski, Kramer, Popolitov, 

Shadrin, Spitz, Zvonkine and the second author [29, 25, 23, 2, 10]. This allows us to produce spin orbifold 

analogues of our results, with which we conclude the paper. 

The structure of the paper is as follows. 

• In Section 2, we briefly introduce the moduli spaces and associated cohomology classes that appear in  

our main result. The exposition is necessarily concise, serving only to recall the relevant definitions and 

notations. We include references to the literature for the reader seeking a more thorough treatment. 

• In Section 3, we state and prove the main result of the paper — Theorem 3.1 — which comprises three 

candidates for an ELSV formula for one-part double Hurwitz numbers. 

• In Section 4, we discuss the relative merits of our formulas against the list of properties sought by 

Goulden, Jackson and Vakil from an ELSV formula for one-part double Hurwitz numbers. We con- 

clude the section by observing that the polynomiality of one-part double Hurwitz numbers suggests 

some further structure underlying the Chiodo classes. 

• In Section 5, we use the symmetry that exchanges ramification profiles over 0 and ∞ to compare our 

results with the original ELSV formula. This produces new relations between tautological intersection 

numbers on moduli spaces of curves. The aforementioned argument is then generalised to the setting  

of orbifold Hurwitz numbers, by comparing with the Johnson–Pandhandripande–Tseng formula. 

• In Section 6, we perform some initial calculations that verify the main relation of the previous section  

in some low genus and low degree cases. 

• In Section 7, we present a generalisation of our main result to the spin setting, which in turn leads to 

new relations between tautological intersection numbers on moduli spaces of stable curves. Since the  

ideas involved are essentially those contained in previous sections, we keep the exposition brief and  

focus on presenting the relevant results without proof. 

 
2 Background 

In this section, we briefly introduce the algebro-geometric objects and corresponding notations required to 

state our main result. As usual, one can choose to work in terms of cohomology classes or their corres- 

ponding Chow classes instead. We have opted for the former and all cohomology is taken with rational 

coefficients. 

 

2.1 Tautological classes on moduli spaces of stable curves 

Let Mg,n be the moduli space of non-singular algebraic curves (C; p1, . . . , pn) of genus g, with n distinct 

marked points p1, . . . , pn ∈ C. The Deligne–Mumford compactification Mg,n is the moduli space of stable 

algebraic curves (C; p1, . . . , pn) of genus g, with n distinct non-singular marked points p1, . . . , pn ∈ C. A 
marked algebraic curve is stable if all of its singularities are nodes and there are finitely many automorphisms 

that preserve the marked points. 

The forgetful morphism π : Mg,n+1 → Mg,n forgets the point marked n + 1 and stabilises the curve, if 

necessary. There is a natural identification of the universal curve Cg,n with Mg,n+1, which allows us to 

define sections σ1, . . . , σn : Mg,n → Mg,n+1 corresponding to the marked points of the curve. The relative 

dualising sheaf L = K 
g,n+1 

⊗ π∗K−1 
Mg,n 

extends to the compactification the vertical cotangent bundle on 

Mg,n+1 ∼= Cg,n, whose fibre over (C, p) is the cotangent line T ∗C. 

• The ψ-classes are given by ψi = c1(σ∗L) ∈ H2(Mg,n) for 1 ≤ i ≤ n. 
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m  E = L(∗      1 g,n 

 i g,n 

g;a1 ,...,an 

k 1 n k 

g;a1 ,...,an 

g,n 

• The κ-classes are given by κ = π  (c  (E)m+1) ∈ H2m(M ) for m ≥ 0, where 
Σ 

σ (M )). 

• The λ-classes are given by λk = ck(Λ) ∈ H2k(Mg,n) for k ≥ 0. Here, Λ = π∗(L) denotes the Hodge 

bundle, whose fibre over [C] ∈ Mg,n is the g-dimensional vector space of holomorphic 1-forms on C. 

The study of the cohomology ring H∗(Mg,n) has received a great deal of attention although an explicit 

description is widely considered to be untractable at present. One can instead focus on the tautological rings 

R∗(Mg,n) ⊆ H∗(Mg,n), whose classes are geometrically natural in some sense. They are simultaneously 

defined for all g and n as the smallest system of Q-algebras closed under pushforwards by the natural 

forgetful and gluing morphisms between moduli spaces of stable curves. All of the classes defined above 

live in the tautological ring R∗(Mg,n). For a more thorough introduction to moduli spaces of stable curves 

and their tautological rings, the reader is encouraged to consult the literature [17]. 

 
2.2 Chiodo classes on moduli spaces of spin curves 

Σ 
For 2g − 2 + n > 0, consider a non-singular marked curve (C; p1, . . . , pn) ∈ Mg,n and let ωlog = ωC( pi) 

be its log canonical bundle. Fix a positive integer r, and let 1 ≤ s ≤ r and 1 ≤ a1, . . . , an ≤ r be integers 

satisfying the equation 

a1 + a2 + · · · + an ≡ (2g − 2 + n)s   (mod r). 

This condition guarantees the existence of a line bundle over C whose rth tensor power is isomorphic to 
ω⊗s(− 

Σ 
a p ).  Varying the underlying curve and the choice of such an rth tensor root yields a moduli 

log i  i 
space with a natural compactification M

r,s
 that was independently constructed by Chiodo [6] and 

g;a1 ,...,an r,s 
 

r,s 
 

Jarvis [20]. These works also include constructions of the universal curve π : Cg;a1 ,...,an  
→ Mg;a1 ,...,an  

and 

the universal rth root L → C
r,s 

. 

One can define psi-classes and kappa-classes in complete analogy with the case of moduli spaces of stable 

curves, as described previously. Chiodo’s formula then states that the Chern characters of the derived 

pushforward chk(R∗π∗L) are given by 

B (s/r) Σn     B (a /r) 

ch (r, s; a , . . . , a ) :=    k+1 κ  −     k+1     i ψk 

(k + 1)!  
i=1 

(k + 1)! i 

r Σ
r−1  

B
 (a/r) (ψ′)k + (−1)k−1(ψ′′)k 

+ 
2 

a=0 

    k+1 j 

(k + 1)! a∗ ψ′ + ψ′′ 
. (3) 

Here, Bm(x) denotes the Bernoulli polynomial, ja is the boundary morphism that represents the boundary 

divisor with multiplicity index a at one of the two branches of the corresponding node, and ψ′, ψ′′ are the ψ-

classes at the two branches of the node [7]. 

We will commonly use the class in H∗(M
r,s

 ) defined by 

Chiodog,n(r, s; a1, . . . , an) := c(−R∗π∗L) 
  Σ∞ 

= exp (−1)k(k − 1)! chk(r, s; a1, . . . , an) 
k=1 

 

More generally, we also use the notation 

  Σ∞   

. (4) 

Chiodo[x] (r, s; a1, . . . , an) := exp  
 

k=1 

(−x)k(k − 1)! chk(r, s; a1, . . . , an)  . 
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g;−1,...,−1 

It is natural and convenient to consider a1, . . . , an modulo r and we will do so throughout. This allows us, 

for example, to write statements such as Chiodog,n (r, s; −1, . . . , −1) ∈ H∗(M
r,s 

). 

There is a natural forgetful morphism 
 

r,s 
  

ǫ : Mg;a1 ,...,an 
→ Mg,n, 
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r 

which forgets the line bundle, otherwise known as the spin structure. It is an r2g-sheeted cover, unramified 

away from the boundary; however, ǫ in fact has degree r2g−1 due to the Zr symmetry of each rth root 

generated by a morphism multiplying by a primitive root of unity in the fibres. This forgetful morphism 

allows us to consider the pushforward of the Chiodo classes to moduli spaces of stable curves. 

 
2.3 Hodge classes on moduli spaces of stable maps to classifying spaces 

For G a finite group, let Mg;γ(BG) be the moduli stack of stable maps from a genus g marked curve 

(C; p1, . . . , pn) to the classifying space BG, with monodromy data γ = (γ1, . . . , γn), where γi is the mono- dromy 

around the marked point pi. 

There is a natural map ǫ  :  Mg;γ(BG) → Mg,n  that sends a stable map to the stabilisation of its domain curve. 

One can thus define psi-classes via the pullback construction 

ψi  = ǫ∗(ψi) ∈ H2(Mg;γ(BG)), for 1 ≤ i ≤ n. 

 

In the following, we are only interested in the case G  = Zr  for some positive integer r, in which case the 

monodromy data is given by a tuple (a1, . . . , an) of integers that we consider modulo r. The Hodge bundle Λ 

→ Mg;γ(BZr) associates to the map f  : [D/Zr] → BZr  the ρ-summand of the Zr-representation 

H0(D, ωD), where ρ : Zr → C∗ is the representation defined by 1 ›→ exp( 2πi ). We then define the Hodge 

classes as  

λk = ck(Λ) ∈ H2k(Mg;γ(BZr)), for k ≥ 0. 

 

3 ELSV formulas for one-part double Hurwitz numbers 

We are now in a position to state and prove our main result. The proof relies heavily on two results from 

the literature: the first is an ELSV formula for orbifold Hurwitz numbers using Hodge integrals on moduli  

spaces of stable maps, proved by Johnson, Pandharipande and Tseng [22]; the second is an alternative ELSV 

formula for orbifold Hurwitz numbers using Chiodo classes, proved by Popolitov, Shadrin, Zvonkine and 

the second author [25]. 

Theorem 3.1 (ELSV formulas for one-part double Hurwitz numbers). For integers g ≥ 0 and n ≥ 1 with 

(g, n) /= (0, 1) or (0, 2), the one-part double Hurwitz numbers satisfy the following formulas, where d = µ1 +· · ·+µn. 

• Hodge classes on moduli spaces of stable maps to the classifying space BZd 

 
hone-part 

∫ 
= d2−g        

Σ∞ 

Q k=0 

 
 

(−d)kλk 
 

(5) 

g;µ1,...,µn 

 

 

• Chiodo classes on moduli spaces of spin curves 

Mg;−µ1 ,...,−µn (BZd) 
n 
i=1 (1 − µiψ̄i) 

 
hone-part 

∫ 
= d2−g        

Chiodo[d] (d, d; −µ1, . . . , −µn) 
gQ,n 

 

 
(6) 

g;µ1 ,...,µn 
d,d        g,n;−µ1 
,...,−µn 

n 
i=1 (1 − µiψi) 

 

• Tautological classes on moduli spaces of stable curves 

 
hone-part 

∫ 
= d2−g        

ǫ∗Chiodo[d] (d, d; −µ1, . . . , −µn) 
Qg,n 

 

 
(7) 

g;µ1 ,...,µn 
Mg,n 

∫ 

n 
i=1 

ǫ∗Chiodo[d] 

(1 − µiψi) 
(d, d; −µ1, . . . , −µn, 0, . . . , 0) 

= d2−g        

Mg,n+g 

g,n+gQ 
n 
i=1 (1 − µiψi) 

cg,n (8) 

M 
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(3g−3+n)! 

g;µ 

 

This last expression uses the class cg,n =  (2g−2+n)! ψn+1 · · · ψn+g  ∈ H2g(Mg,n+g). 

 
Proof. We begin with the notion of orbifold Hurwitz numbers hq-orbifold, which enumerate connected genus g 

branched covers of CP1 with ramification profile µ over ∞ and ramification profile (q, q, . . . , q) over 0, such 
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i  

⌊ µ 
/q⌋ ! 

q 

that all other ramification is simple and occurs over prescribed points of C∗. We take the weight attached 

to such a branched cover to be precisely as in equation (1). 

Johnson, Pandharipande and Tseng prove the following ELSV formula for orbifold Hurwitz numbers, ex- 

pressing them as intersection numbers on moduli spaces of stable maps to classifying spaces [22]. 

 

hq-orbifold 
Yn 

= q1−g+|µ|/q 
 (µ /q)⌊ µi/q⌋   

∫ 

Σ∞ 

Q k=0 

 
 

(−q)kλk 
 

(9) 

g;µ1,...,µn  

i=1 ⌊µi/q⌋! 
 

 

Mg;−µ1 ,...,−µn 
(BZq ) 

n 
i=1 (1 − µiψi) 

Now we simply make the observation that for d = µ + · · · + µ , we have hone-part = hd-orbifold. Specialising 

1 n g;µ g;µ 

the above formula to the case q  = d and using the fact that (µi/q)⌊µi/q⌋

 
i 

= 1 for µi ≤ q immediately 

yields equation (5). 

The following ELSV formula for orbifold Hurwitz numbers is implicit in the work of Popolitov, Shadrin, 

Zvonkine and the second author, by comparing Theorems 4.5 and 5.1 from [25] with r = s = q. 

Yn   (µ /q)⌊ µi/q⌋   ∫ ǫ Chiodo (q, q; −µ , . . . , −µ ) 

q-orbifold 
g;µ1 ,...,µn 

= q2g−2+n+|µ|/q  
 

i=1 

      i             ∗ 

⌊µi/q⌋! Mg,n 

g,n 
n 
i=1 

1 n 

(1 − µi ψi) 
(10) 

Again, we specialise to the case q = d, which removes the product of combinatorial factors preceding the 

integral.  

 one-part 

 

 d-orbifold 
∫ 

2g−1+n 

 
ǫ∗Chiodog,n(d, d; −µ1, . . . , −µn) 

 
 

hg;µ1 ,...,µn  
= hg;µ1 ,...,µn 

= d    
Qn    (1 − µi ψ ) 

Mg,n i=1 d     i 

One obtains equation (7) from this by multiplying each class of cohomological degree 2k in the integrand 

by dk. We compensate with a global factor of d−(3g−3+n). 

As Theorem 4.5 of [25] is obtained via the pushforward of Chiodo classes from the moduli space of spin 

curves, we immediately have equation (6). 

Finally, to prove equation (8), we invoke the dilaton equation for orbifold Hurwitz numbers [9, Theorem 20]. 

One can use equation (10) to express this in the language of Chiodo classes as follows. 

∫ 
      Chiodo[d] (d, d; −µ1, . . . , −µn, 0) · ψa1  · · · ψan ψn+1 

Mg,n+1 

g,n+1 1 

∫ 
= (2g − 2 + n)      

n 
 

Chiodo[d] (d, d; −µ1, . . . , −µn) · ψa1 · · · ψan
 

 

(11) 

Mg,n 

g,n 1 n 

Applying this dilaton equation g times demonstrates the equivalence of equations (7) and (8), which com- 

pletes the proof. □ 

 
4 Properties of the formulas 

In its original form, the Goulden–Jackson–Vakil conjecture — Conjecture 1.3 — predicts an ELSV formula 

with a particular structure, but leaves some room for freedom. Rather than prescribing the exact geometric  

ingredients, it describes desirable properties that they are expected to satisfy. In this section, we analyse these 

properties in turn and discuss the extent to which our proposed ELSV formulas satisfy them. We conclude  

the section with some remarks on how Theorem 3.1 suggests potential further structure underlying Chiodo 

classes. 

 

h Q 
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4.1 Primary properties 

Goulden, Jackson and Vakil predict an ELSV formula for one-part double Hurwitz numbers of the following 

form.  
hone-part 

∫ 
= (µ1 + · · · + µn)      

Σg 

Q k=0 (−1)kΛ2k 

g;µ1 ,...,µn 
Picg,n 

n 
i=1 (1 − µiΨi) 

They furthermore posit the following four “primary” properties, which are essentially taken verbatim from 

their paper [16, Conjecture 3.5]. 
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d,d 

 
  

Property 1. There is a moduli space Picg,n, with a (possibly virtual) fundamental class [Picg,n] of dimension 

4g − 3 + n, and an open subset isomorphic to the Picard variety Picg,n of the universal curve over Mg,n (where the 

two fundamental classes agree). 
 

Property 2. There is a forgetful morphism π : Picg,n+1 → Picg,n (fiat, of relative dimension 1), with n sections σi 

giving Cartier divisors ∆i,n+1 (1 ≤ i ≤ n). Both morphisms behave well with respect to the fundamental class: 

[Picg,n+1]  =  π∗[Picg,n],  and  ∆i,n+1  ∩ Picg,n+1   ∼=  Picg,n  (with  isomorphisms  given  by  π  and  σi),  inducing 

∆i,n+1  ∩ [Picg,n+1 ] =∼ [Picg,n]. 

Property 3. There are n line bundles, which over Mg,n correspond to the cotangent spaces of the first n points on 

the curve (i.e. over Mg,n they are the pullbacks of the “usual” ψ-classes on Mg,n). Denote their first Chern classes 

Ψ1, . . . , Ψn. They satisfy Ψi = π∗Ψi +∆i,n+1 (i ≤ n) on Picg,n+1 (the latter Ψi is on Picg,n), and Ψi ·∆i,n+1 = 0. 

Property 4. There are Chow (or cohomology) classes Λ2k (k = 0, 1, . . . , g) of codimension 2k on Picg,n, which are pulled 

back from Picg,1 (if g > 0) or Pic0,3; Λ0 = 1. The Λ-classes are the Chern classes of a rank 2g vector bundle isomorphic 

to its dual. 

Below, we briefly discuss the relative merits of the ELSV formulas obtained in Theorem 3.1 against the four 

properties above. 

Hodge classes on moduli spaces of stable maps to the classifying space BZd — equation (5). The 

moduli space Mg;−µ1 ,...,−µn (BZd) has dimension 3g − 3 + n rather than 4g − 3 + n. It can be equivalently 

described as a moduli space of principal Zd-bundles over stable curves [22]. This makes some thematic 

connection with the universal Picard variety, which is a moduli space of line bundles over stable curves.  

Goulden, Jackson and Vakil predict a fixed space Picg,n from which all one-part double Hurwitz numbers 
one-part 
g;µ1,...,µn with fixed g and n can be calculated. On the other hand, equation (5) uses a moduli space that 

depends on g and the tuple (µ1, . . . , µn). As a result, there is no obvious natural forgetful morphism that 

removes a marked point, even though there are natural psi-classes and lambda-classes. Observe that the 

classes λ0, λ1, λ2, . . . play the role of the Hodge classes in equation (9), the Johnson–Pandharipande–Tseng 

formula for orbifold Hurwitz numbers. 

Chiodo  classes  on  moduli  spaces  of  spin  curves  —  equation  (6).  The moduli space Mg,n;−µ1,...,−µn 
has 

dimension 3g − 3 + n rather than 4g − 3 + n. It shares some commonality with the Picard variety, since it is 
naturally a moduli space of line bundles over stable curves. Again, equation (6) uses a moduli space 

that depends on g  and the tuple (µ1, . . . , µn).  As a result, there is no obvious natural forgetful morphism that 

removes a marked point, even though there are natural psi-classes. The Chiodo classes have proved to be 

important in various contexts, such as in the spin-ELSV formula [30, 25] and the formula for the double 

ramification cycle [19]. In the former case, the Chiodo classes naturally take on an analogous role to the  

Hodge bundle in the original ELSV formula of equation (2). 

Tautological classes on moduli spaces of stable curves — equation (7). The moduli space Mg,n has 

dimension 3g − 3 + n rather than 4g − 3 + n and does not have a natural description as a moduli space 

of bundles on stable curves. Given that the Goulden–Jackson–Vakil conjecture is modelled on the ELSV 

formula, which also uses Mg,n, many of the remaining properties are satisfied. Namely, we have a forgetful  

morphism π : Mg,n+1 → Mg,n, natural sections σi with associated Cartier divisors, and psi-classes, with 
all these geometric constructions behaving well with respect to each other. 

Property 4 asks for the analogues of the Hodge classes to arise as Chern classes of vector bundles and to 

exhibit nice behaviour under pullback. In this case, the Chiodo classes are indeed defined as Chern classes,  

but of the virtual vector bundle −R0π∗L + R1π∗L.  When one of these two terms vanishes, one obtains 

an actual vector bundle whose rank can be computed by the Riemann-Roch formula. The Chiodo classes 

ǫ∗Chiodog,n(r, s; a1, . . . , an) do behave well under pullback, since they are known to form a semi-simple 

cohomological field theory with flat unit for 0 ≤ s ≤ r [25]. 

The moduli space of curves Mg,n seems the natural space for an ELSV formula, especially from the point 

of view of topological recursion. Indeed, a fundamental theorem of Eynard states that the quantities pro- 

h 
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g;µ1 ,...,µn 

duced by topological recursion can be expressed as tautological intersection numbers on moduli spaces 

of curves [12]. One-part Hurwitz numbers may be generated via topological recursion in a somewhat non- 

standard way. Typically, all numbers of a given enumerative geometric problem are produced from the same 

spectral curve data used as input to the topological recursion. In this case, however, the numbers hone-part 

for fixed |µ| may be generated by the spectral curve for orbifold Hurwitz numbers given by the following 

data [3, 9]. 

Σ = CP1 x(z) = ze−z
|µ| 

y(z) = z|µ| B(z , z ) = 
 dz1 dz2 

 

1     2 
(z1 − z2)2 

 

Therefore, the totality of one-part double Hurwitz numbers is stored in an infinite discrete family of spectral  

curves, instead of a single one. In particular, two such numbers are produced by the same spectral curve if  

and only if they depend on partitions of equal size. In recent work with Borot, Karev and Moskovsky, we 

prove that double Hurwitz numbers in general are governed by the topological recursion, using a family 

of spectral curves that are coupled with formal variables [1]. A consequence of this work is an ELSV-type 

formula for double Hurwitz numbers and it would be interesting to consider the implications for one-part 

double Hurwitz numbers, although we do not pursue that line of thought here. 

Tautological classes on moduli spaces of stable  curves  — equation  (7).  The moduli space Mg,n+g  has the 

predicted dimension 4g − 3 + n. Although it does not arise naturally as a moduli space of line bundles,  we 

observe the following interplay between the uncompactified moduli space Mg,n+g and the universal Picard 

variety. Consider an algebraic curve Cg of genus g ≥ 1 and a fixed point p ∈ Cg. For each positive 
integer m, there is a map from the symmetric product ΣmCg to the Jacobian Jac(Cg) defined by sending the 

Σm tuple of points (x  , . . . , x   ) to the divisor x − m · p. Note that this morphism is not canonical, since 
1 m i=1   i 

it depends on the choice of p ∈ Cg.  For the particular case of m = g, any such map defines a birational 

equivalence between ΣgCg and Jac(Cg). For our context, this argument should be adapted to curves with 

marked points, excluding the diagonal, but we do not intend to study this relation in detail. We simply  

remark that each element of Mg,n+g can be seen as an element (Cg; p1, . . . , pn) of Mg,n equipped with g 

extra distinct points. Fixing an extra point p ∈ Cg, these g points may be used to determine a degree 0 line 

bundle on Cg. 

We admit that equation (7) may seem unnatural, as it is possible to equivalently express the formula simply 

in terms of Mg,n. Expressing it in terms of Mg,n+g, however, allows one to match the powers of d — 

and therefore the degree in µ1, . . . , µn — with equal degree cohomology classes, as one might expect from 

the original ELSV formula. One presumes that the desire for an ELSV formula on a space of dimension 

4g − 3 + n in the Goulden–Jackson–Vakil conjecture is mainly motivated by such degree considerations. 

 

4.2 Secondary properties 

We summarise and briefly address other expected properties of an ELSV formula for one-part double Hur- 

witz numbers, collected from discussions throughout the paper of Goulden, Jackson and Vakil [16]. 

Property A. The classes Λ2k ∈ H4k(Picg,n) are “tautological”. (See [16, paragraph after Conjecture 3.5].) 

To interpret this statement, one would need to define the word “tautological” for any moduli space under 

consideration that is not a moduli spaces of curves. The proposed ELSV formulas of equations (7) and (8) 

use pushforwards of Chiodo classes to Mg,n or Mg,n+g, and these classes are evidently tautological by 

Chiodo’s formula for the Chern characters chk(R∗π∗L), given in equation (3). 

Property B. There exists a morphism ρ : Picg,n  → Mg,n  such that ρ∗Λ2g  = λg.  (See [16, Conjecture 3.13].) 

We do not have such a relation but instead find Chiodo classes appearing in place of the Hodge classes of 

the original ELSV formula. The Chiodo classes appear with various parameters, but one does recover the 

usual Hodge class λg as the degree g part of ǫ∗Chiodog,n(1, 1; 1, . . . , 1). 

Property C. The definition of the moduli space Picg,n and the associated Ψ-classes and Λ-classes should make evident 

the fact that string and dilaton contraints govern the intersection numbers of its Λ-classes. 
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g;µ1 ,...,µn 

g;µ1 ,...,µn 

|µ| 

The string and dilaton equations are stated in [16, Proposition 3.10],  though we restate them below using the 

language of the present paper. Observe that the evaluations on the left sides of the equations use the 

polynomiality of the one-part double Hurwitz numbers. 

h 
one-part 
g;µ1,...,µn,µn+1 

i 

 
µn+1=0 

= (µ1 + · · · + µn) hone-part 

∂ 
 

 

∂µn+1 

 

one-part 
g;µ1 ,...,µn,µn+1 

 

 
µn+1=0 

 

one-part 
g;µ1 ,...,µn 

It is not clear at present how these relate to the formulas of Theorem 3.1. 
 

Property D. The low genus verifications in g = 0 and in g = 1 correspond with the spaces Pic0,n = M0,n and 

Pic1,n = M1,n+1. (See [16, Proposition 3.11].) 

Our fourth ELSV formula in equation (8) does indeed match this result. 

Property E. The formula should make evident the fact that hone-part is a polynomial in µ1, . . . , µn . Moreover, it 

should be possible to deduce that this polynomial only contains monomials of degrees 2g − 2 + n to 4g − 2 + n. 

Deducing the polynomiality of one-part double Hurwitz numbers from Theorem 3.1 is not straightforward, as 

the dependence of the Chiodo classes on its parameters still remains for the most part rather mysterious. The 

best available result in this direction is the following, due to Janda, Pandharipande, Pixton and Zvonkine [19, 

Proposition 5]:  the degree d  part of the class r2d−2g+1ǫ∗Chiodog,n(r, s; a1, . . . , an)  is polynomial in r  for 

sufficiently large r. Here, “sufficiently large” is meant with respect to the parameters a1, . . . , an, whereas 

in our case, r = |µ| is intrinsically linked to the parameters µ1, . . . , µn. Moreover, a computational and 

conceptual difficulty arises from the fact that Chiodo classes do not in general vanish in degree higher than  

g, unlike Hodge classes. Nevertheless, one might conceivably be able to prove the desired polynomiality of 

one-part double Hurwitz numbers via a careful analysis of the stable graph expression for Chiodo classes 

by Janda, Pandharipande, Pixton and Zvonkine [19, Corollary 4]. 

 

4.3 Further remarks and corollaries of the main theorem 

The formulas of Theorem 3.1 do not provide an immediate explanation for the polynomiality of one-part 

double Hurwitz numbers, unlike the the original ELSV formula for single Hurwitz numbers. However, in  the 

case of one-part double Hurwitz numbers, there is a clear combinatorial explanation for the polynomi- ality 

[16]. So rather than seeking a geometric explanation, we propose that one should instead study the  

implications of polynomiality for the geometry of moduli spaces. 

As mentioned in Section 1, Goulden, Jackson and Vakil proved that one-part double Hurwitz numbers satisfy 

hone-part = (µ1 + · · · + µn)2g−2+n Pg,n(µ2, . . . , µ2 ), (12) 

g;µ1 ,...,µn 1 n 

for some symmetric polynomial Pg,n of degree g [16], explicitly obtained as 

Qn S(tµ ) 
Pg,n(µ2, . . . , µ2 ) = [t2g].    i=1 i (13) 

1 n S(t) 

for S(x) = sinh(x/2)/(x/2). Note that both S(x) and 1/S(x) are holomorphic even functions near x = 0. 

Combined with Theorem 3.1, this implies that 

∫ 
|µ|     ǫ∗ChiodogQ,n

(|µ|, |µ|; −µ1, . . . , −µn) 
 

Mg,n 

n 
i=1 (1 − µi  ψi) 

is a polynomial in µ1, . . . , µn of degree 2g that is moreover invariant under the symmetries µi ↔ −µi for all 

1 ≤ i ≤ n. Let us remark that this behaviour is a priori unexpected. As mentioned earlier, the class 

h 

h = (2g − 2 + n) h 
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ǫ∗Chiodog,n(r, s; a1, . . . , an) exhibits certain polynomial behaviour in r for sufficiently large r [19]. In our 

case, r = |µ| is intrinsically linked to the parameters µ1, . . . , µn and the polynomiality we observe is actually 

in the parameters µ1, . . . , µn. The invariance µi ↔ −µi is perhaps even more surprising. For instance, even 
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d 

2 

m 

1 

considering the Chiodo class with the parameter r set sufficiently large, this symmetry changes ai into r − ai 
in the class parameters. This in turn transforms the coefficient of the psi-class terms in Chiodo’s formula for 
chk(r, s; a1, . . . , an) via Bk+1( ai ) ›→ Bk+1( r−ai ) = (−1)k+1Bk+1( ai ), thus introducing a change of sign 

r r r 

for even degrees k that must be compensated by the other summands of the formula in a non-trivial way. 

Moreover, we can use the actual generating series for one-part Hurwitz numbers in terms of hyperbolic 

functions of formulae (12) and (13) in combination with our main Theorem 3.1 to obtain generating series 

for particular integrals of Chiodo classes. We do so for the particular cases of µ = (1d) and of µ = d. 

For µ = (1d), equation (13) turns into Pg,d(1, . . . , 1) = [t2g].S(t)d−1, and therefore by equation (12) and 

Theorem 3.1 we obtain the following evaluation. 

Proposition 4.1. For all positive integers d, for 2g − 2 + d > 0 we have the following generating series for integrals 

of Chiodo classes:  
1 + d · Σ ∫ 

t2g        ǫ∗Chiodog,d(d, d; −1, . . . , −1) 
= S(t)d−1.

 

 
g=1 

 
Mg,d 

Qd 

i=1 (1 − ψi ) 

 

On the other hand, for µ = (d) and d > 1, equation (13) turns into 

 

(2g)!Pg,1(d2) = (2g)![t2g]. 

 
S(dt) 

= 
S(t) 

 

d−1 

Σ2 

 
d−1 

 
k2g = 

( 
2p2g(1, 2, 3, . . . , d−1 ) for d odd, 

21−2gp2g(1, 3, 5 . . . , d − 1) for d even, 

 

(14) 

k=−  2 

where p2g is the usual power sum of homogeneous degree 2g. Let us recall the classical Faulhaber formula 
 

1 Σ2g    
B+ N 2g+1−k Σ∞     

B+  x 

p2g(1, 2, 3, . . . , N ) =     k ,     m xm = . (15) 

(2g)!  

k=0 k!  (2g + 1 − N )! m! 
m=0 1 − e−x 

Notice that the numbers B+ are Bernoulli numbers which differ from the Bernoulli numbers Bm we use 

throughout the paper just for the case B+ = 1/2 (instead of Bm = −1/2) and all the others coincide. 

Moreover, notice that Faulhaber formula proves that p2g(1, 2, 3, . . . , N ) is manifestly a polynomial in N , and 

that moreover of degree 2g + 1. In order to use Faulhaber formula for even d , we can simply observe that 

p2g(1, 3, 5, . . . , 2N − 1) = p2g(1, 2, 3, . . . , 2N ) − 22gp2g(1, 2, 3, . . . , N ). 

For d = 1 instead, we get P2g(1) = δg,0 = p2g(0). Now, combining equation (14) with equation (12), 

Theorem 3.1 for µ = (d), and the considerations above we obtain the following statement. 

Proposition 4.2. For g ≥ 1 we have the following evaluations of integrals of Chiodo classes: 

For all odd positive integers d > 1 we have: 

∫ 
ǫ∗Chiodo[d] (d, d; d) 2   d − 1 Σ2g    

B+ (d − 1)2g+1−k 

d ·       g,1 = p2g 1, 2, 3, . . . , = k , (16) 

Mg,1 (1 − ψ1) (2g)! 2 
k=0 

k!  22g−k(2g + 1 − k)! 

for all even positive integers d we have: 

∫ 
ǫ∗Chiodo[d] (d, d; d) 21−2g Σ2g    

B+ d2g+1−k 
  

1 − 2k−1 
  

d ·       g,1 
=

 p2g(1, 3, 5, . . . , d − 1) =     k          , (17) 

Mg,1 (1 − ψ1) (2g)! 
k=0 k!  (2g + 1 − k)! 22g−1 
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k 
for p2k the power sum and B+ the Bernoulli numbers with the convention defined above. For d = 1 the first statement 

for odd d actually still holds with the convention that 

∫ 
The discussion above for d = 1 instead gives the well-known Λ(−1) = 0 for all g  ≥ 1 (notice for 

Mg,1(1−ψ1) 

instance that Proposition 4.1 for d = 1 recovers the same result, but it can be immediately obtained from 

ELSV formula). 
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  g,d  

d! 

5 Comparing ELSV formulas past and present 

In this section, we compare the original ELSV formula in equation (2) for single Hurwitz numbers and our 

new ELSV formula in equation (7) for one-part double Hurwitz numbers. Specialising these formulas in a 

particular way results in rather non-trivial relations between tautological intersection numbers. 

 

5.1 Exchanging ramification profiles 

Let us begin by specialising the following two ELSV formulas. 

(i) First, consider the original ELSV formula in equation (2) for single Hurwitz numbers, with the tuple 

(µ1, . . . , µn) set to the 1-tuple (d). 

dd ∫ Σg (−1)kλ 

hg;d =          k=0 k 

d!  Mg,1 1 − dψ1 

 

(ii) Second, consider the new ELSV formula in equation (7) for one-part double Hurwitz numbers, with 

the tuple (µ1, . . . , µn) set to the d-tuple (1, 1, . . . , 1). 

 
hone-part 

∫ 
= d2−g        ǫ∗Chiodo[d] (d, d; −1, . . . , −1) 

g;1,1,...,1 
 
 

Now we simply note the equality 

 

Mg,d 

Qd 

i=1 (1 − ψi) 

h = 
1 

hone-part    ,  g;d d!    g;1,1,...,1 

which uses the symmetry that exchanges ramification profiles over 0 and ∞. In other words, both sides enu- 

merate genus g branched covers of CP1 with ramification (d) over one point, ramification profile (1, 1, . . . , 1) 

over another point, and simple branching elsewhere. The factor of  1 on the right side of the equation is 

to compensate for the factor |Aut(µ)| that appears in the weighting attached to a branched cover, given 

in equation (1). This allows us to compare the two ELSV formulas and obtain the following relation. 

Theorem 5.1. For integers g ≥ 0 and d ≥ 1 with (g, d) /= (0, 1) or (0, 2), we have 

∫ Σg (−1)kλ 1 
∫ 

ǫ∗Chiodo[d] (d, d; −1, . . . , −1) 

             k=0 k  
=     

 

  g,d . (18) 

Mg,1 1 − dψ1 dd+g−2 
Mg,d 

Qd 
i=1 (1 − ψi) 

∫ 
In the case g = 0, the left side is to be interpreted via the usual convention: 

 

1 =  1 . 
  

M0,1 1−dψ1 d2 

 

Observe that the left side of equation (18) is inherently polynomial in d, while the right side is not. At present, 

it is not clear how to argue that the right side is polynomial in d without invoking Theorem 5.1 itself. 

 

5.2 Another proof of Proposition 4.1 

Finally, we recall a result of Faber and Pandharipande [14, Theorem 2], which can be expressed as 

Σ∞ ∫ 
Σg 

(−1)kλ  
sinh(x/2) 

1 + 
g=1 

d2t2g        

Mg,1 

      k=0 k  
= S(dt)d−1, S(x) = 

1 − dψ1 
. 

x/2 

Notice that combining this with Theorem 5.1 immediately produces a generating series for the integrals 
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appearing on the right side of equation (18): 

Σ∞ 
1 

∫ ǫ∗Chiodo[d] (d, d; −1, . . . , −1) 

1 + t2g          
  g,d 

= S(dt)d−1. 

 
g=1 

dd+g−4 
 

Mg,d 

Qd 

i=1 (1 − ψi) 

 

This obtained generating series is equivalent to the statement of Proposition 4.1 after the normalisation of the 

variable t ›→ t/d and the extraction of 3g − 3 + d powers of d, and therefore provides another proof of it via 

Faber-Pandharipande theorem. 
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q 

q 

g,d/q 

This is not surprising at all: in fact Goulden-Jackson-Vakil polynomiality result of equation (12) and equa- 

tion (13) provides a generalisation of Faber-Pandharipande theorem (restrict to it, as expected, for µ = (1d)), 

as it can be seen applying the classical ELSV formula. However, the theorem of Faber and Pandharipande 

was derived (shorty) before ELSV formula and hence also before Goulden-Jackson-Vakil polynomiality: its 

proof relies on independent methods and therefore a different proof of Proposition 4.1 can be obtained this 

way. 

 

5.3 Generalisation to the double orbifold case 

The strategy used to derive Theorem 5.1 may be pushed further to yield a more general statement involving 

q-orbifold Hurwitz numbers. Let us proceed by specialising the following two ELSV formulas. 

(i) First, consider the ELSV formula in equation (10) for q-orbifold Hurwitz numbers, with the tuple 

(µ1, . . . , µn) set to the 1-tuple (d), where d is a multiple of q. 

dd/q    ∫ ǫ Chiodo (q, q; q) 

hq-orbifold = q2g−1              ∗ g,1 

g;d (d/q)! Mg,1 1 − d ψi 

 

(ii) Second, consider the new ELSV formula in equation (7) for one-part double Hurwitz, with the tuple 

(µ1, . . . , µn) set to the tuple (q, q, . . . , q) with d parts. 

∫ 
hone-part = d2−g ǫ∗Chiodo[d] (d, d; −q, . . . , −q) 

 
 

g;q,q,...,q    
Mg,d/q 

  Qd/q 

i=1(1 − qψi) 

Now we simply note the equality  
hq-orbifold = 

1 

 

hone-part    , 

g;d 
 

(d/q)! g;q,q,...,q 

which again uses the symmetry that exchanges ramification profiles over 0 and ∞. This allows us to compare 

the two ELSV formulas and obtain the following relation. 

∫ ǫ Chiodo 
 

(q, q; q) 
∫ ǫ∗Chiodo[d] (d, d; −q, . . . , −q) 

q2g−1dd/q 
 

 M 

  ∗ g,1 = d2−g 

1 − d ψi M 
g,d/q Qd/q (1 − qψ ) 

g,1 q g,d/q i=1 i 

Performing the substitutions q = a and d = ab leads to the following result. 

Theorem 5.2. For integers g ≥ 0 and a, b ≥ 1 with (g, b) /= (0, 1) or (0, 2), we have 

∫ ǫ Chiodo (a, a; a) 1 
∫ 

ǫ∗Chiodo[b] (ab, ab; −a, . . . , −a) 

         ∗ g,1 
=       

  g,n 
.
 

Mg,1 1 − bψi bb+g−2 Mg,b 
Qb 

i=1 (1 − ψi) 

 

Following a suggestion of Sergey Shadrin, we can push the strategy used to derive Theorems 5.1 and 5.2 

even further. Consider positive integers p and q, as well as a positive integer d that is a multiple of them both. 

The symmetry that exchanges ramification profiles over 0 and ∞ leads to the following equality of 

degree d orbifold Hurwitz numbers. 
hq-orbifold hp-orbifold 

   g;p,p,...,p =   g;q,q,...,q 

(d/p)! (d/q)! 

Each side of this equation may be expressed as a specialisation of the the orbifold ELSV formula in equa- 

tion (10) to obtain the following generalisation of Theorem 5.2. 
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Theorem 5.3. Let p < q be positive integers and d a multiple of them both. For integers g ≥ 0 and d ≥ 1 with 

(g, d/p), (g, d/q) /= (0, 1) or (0, 2), we have 
∫ 

1 ǫ∗Chiodo(q, q; −p, . . . , −p) 
 

 2g−2+ d + d    
 

  

Qd/p p 

(d/p)! p p   q Mg,d/p 

 
= 

i=1(1 − q ψi) 

1 
 

 

 
  

 
(q/p)⌊ q/p⌋      d/q 

∫ 

 

 ǫ∗Chiodo(p, p; −q, . . . , −q) 
Q . 

2g−2+ d + d ⌊q/p⌋! d/q q 
(d/q)! q p       q Mg,d/q i=1(1 − p ψi) 
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6 Verification in low genus 

The goal of this section is to check by hand some of the first cases of the relations between tautological  

numbers obtained in the previous section. We will focus on Theorem 5.1, computing explicitly both sides for 

genus zero and all d, as well as for genus one and d = 1. Also, higher d cases have been tested by means of 

the Sage package admcycles, see [8]. 

 

Genus 0 

 
Let us verify equation (18) in genus zero. Recall that, for the unstable cases (g, n) = (0, 1) and (0, 2), integrals 

of weighted psi-classes are taken by the usual convention to be 

∫ ∫ 
1 1 1 1 

1 − xψ 
 

= 
x2 

and    = . (1 − xψ )(1 − yψ ) x + y 

M0,1 1 M0,2 1 2 

In genus zero, the Hodge bundle Λ is trivial, so equation (18) reads 

∫ 
      

1 
= 

 
 

1 
∫ 

ǫ∗Chiodo[d] (d, d; −1, . . . , −1)       . (19) 
 

 

M0,1 1 − dψ1 dd−2 
M0,d 

Qd 
i=1 (1 − ψi) 

 

The left side of equation (19) is simply 1 , using the unstable calculation mentioned previously. So let us now 

compute the right side for d ≥ 3. In genus zero, the geometric situation is rather simple. Even though the 

Chiodo class is defined a priori as 
 

c(−R∗π∗L) = c(−R0π∗L + R1π∗L), 

the result of [21, Proposition 4.4] guarantees that R0π∗L vanishes in genus zero. Hence, the Chiodo class 

becomes the Chern class of an actual vector bundle, and thus, vanishes in degree higher than its rank. For the 

general Chiodo class Chiodog,n(r, s; a1, . . . , an), the Riemann–Roch theorem for line bundles gives 

(2g − 2 + n)s − 
Σn a 

   i=1   i 
− g + 1 = h0 − h1. 

r 

After substituting g = 0, r = s = d = n, ai = d − 1, and setting h0 = 0, we find that the rank is equal to 

(d − 2)d − d(d − 1) 
 

d 

 
+ 1 = 0. 

Therefore, the Chiodo class in this case contributes only in degree zero, so it must be equal to 1. The 

pushforward then produces a global factor of d−1. Therefore, the right side of equation (19) is equal to 

∫ 
1 1 1 1 

·       Q = 
Σ d − 3 = 

1 
dd−3 =  

1 
, 

dd−2  
0,d 

d 
i=1 (1 − ψi) dd−1  

a1+···+ad=d−3 
a1, . . . , ad dd−1 d2 

which completes the verification. Note that we have used here the well-known formula for psi-class intersec- 

tion numbers in genus zero [17]. 

 

Genus 1 

 
Let us consider equation (18) in genus one, which can be expressed as 

d  M 



24 
 

24 

∫ ∫ 1 − λ 
ǫ∗Chiodo[d] (d, d; −1, . . . , −1) 

dd−1              1    =       
  1,d . (20) 

 

M1,1 1 − dψ1 
 

M1,d 

Qd 

i=1 (1 − ψi) 

The left side is immediately computed as dd−1 · d−1 . 
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d 

d 

The calculation of the right side of equation (20) for general d is computationally intensive. One difficulty 

lies in the fact that, whereas the Hodge class vanishes in degree higher than the genus, such vanishing for  the 

Chiodo class cannot be guaranteed. At present, it is unclear whether such vanishing may arise in our case, in 

which the Chiodo class parameters are tuned in a particular way. 

We will proceed by computing the contribution of the degree zero and degree one terms from the Chiodo  

class. These are the only terms that contribute to the right side of equation (20) in the case d = 1, since 

M1,1 has dimension one. This will allow us to check equation (20) only in the case d = 1 and may convince 

the reader that further checks require significant computation or new ideas. 

Our computations will rely on the following result [11, Theorem 2.3]. 

Lemma 6.1. For µ1 + · · · + µn = d, we have 

∫ " 
Σn 

# 
Q 

1 
=   

1    
dn − (j − 2)! dn−j e  (µ  , . . . , µ  )   , 

   
M1,n 

n 
i=1 (1 − µiψi) 24 j=2 

j 1 n 

where ej  denotes the jth elementary symmetric polynomial. 

 

Right side of equation (20): degree zero 

 
The degree zero part of the Chiodo class is simply equal to 1, although a global factor of d arises from the 

pushforward to the moduli space of curves. So the contribution of the Chiodo class in degree zero can be  

calculated using Lemma 6.1 to obtain 

∫ " 
Σd  # 

d 
 

M1,d 

Qd 

i=1 

1 d 
= 

(1 − ψi) 24 
dd − 

 

 

j=2 

(j − 2)! dd−j    
d
 
j 

. (21) 

 
 

Right side of equation (20): degree one 

 
Chiodo’s formula of equation (3) asserts that the first Chern character associated to the Chiodo class of equa- 

tion (20) equals 

 

ch1(d, d; d − 1, . . . , d − 1) = 

" 
1 

2!   
B2(1) κ1 − 

Σd 

 
i=1 

 
B2( d−1 ) ψi + 

d 
dΣ−1 

 

2 
a=0 

# 

B2( a ) ja∗1 

1 Σd d2 − 6d + 6 d 
dΣ−1  

d2 − 6ad + 6a2 

= 
12 

κ1 −  
i=1 

12 d2 
ψi + 

4  
a=0 

6d2 
ja∗1. 

This allows us to express the degree one contribution of the right side of equation (20) as follows. 

∫ d ǫ κ d2 − 6d + 6 
∫
 ǫ ψ 1 dΣ−1 ∫ ǫ j 1 

—       Q 
∗  1 +       Q 

∗    1 
− (d2 − 6ad + 6a2)      Q  

∗  a∗ 

12  M 1,d 
d 
i=1 (1 − ψi) 12 M 1,d 

d 
i=1 (1 − ψi) 24 

a=0 M1,d 
d 
i=1 (1 − ψi) 

We now proceed to compute each of the three summands above separately. The evaluation of the first 

summand amounts to compute 
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d2 
∫ 

κ 
—       Q 

1
 

 

d2 Σ 
= − 

 

∫ 
      ψa1 · · · ψad ψ2 . 

12  M 
 
1,d 

d 
i=1 (1 − ψi) 12 

a1+···+ad=d−1 

1 
M1,d+1 

d d+1 

Note that an extra factor of d arises from the pushforward of the class κ1 from the moduli space of spin 
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curves. Using Lemma 6.1, we calculate the first summand as follows. 

d2 Σ 
− 

 

∫ 
      ψa1 · · · ψad ψ2 

12 
a1+···+ad=d−1 

1 
M1,d+1 

d d+1 

−d2 =   
"  Σd

 

µ2 

 
µ + µ 

 d+1 dΣ+1 
− 

 
(j − 2)! 

  Σd  
µ + µ 

 d+1−j # 
e (µ , . . . , µ ) 

12 · 24 

2 

d+1 

"  

 

i=1 

   Σd 

i d+1 
 

 d−1 

 
Σd+1 

 
j=2 

"  

 

i=1 

i 

 
   Σd 

d+1 j 1 
 

 d−1−j 

d+1  

µ1=···=µd=1 

−d 
= 

12 · 24 

d + 1 

2 
µi 

i=1 
− 

j=2 

(j − 2)! 
d + 1 − j 

2 
µi 

i=1 

ej(µ1, . . . , µd) 

  
d + 1 − j 

+ 
1 

   Σd 

i=1 

 d−j 

µi 

## 

ej−1(µ1, . . . , µd) 
µ1=···=µd=1 

" 
2 dΣ+1   # 

−d 
= 

12 · 24 

d + 1 

2 
dd−1 −  

 

j=2 

(j − 2)! 
d + 1 − j 

2 
dd−1−j     d 

j 

d + 1 − j 
+ 

1 
dd−j d 

j − 1 
(22) 

 

The evaluation of the second summand can be written as follows, using the fact that the pushforward 

produces a factor of d1. 

d2 − 6d + 6 
∫ 

ǫ ψ d(d2 − 6d + 6) 
∫ 

ψ 

      Q 
∗   1 =       Q 

1
 

12 M 1,d 
d 
i=1 (1 − ψi) 12 

" 
d(d2 − 6d + 6) 

M1,d 

∫ 

d 
i=1 

(1 − ψi) 

∫ # 
1 1 

= 
12 

Qd 
 

—     (1 − ψ ) Qd (1 − ψ ) 

 
Setting all µi = 1 in Lemma 6.1, we get 

∫ 

M1,d 

 
 

" 
Σd 

i=1 i 
 
 

    # 

M1,d i=2 i 

 
 

M1,d 

Qd 

i=1 

1 1 
= 

(1 − ψi) 24 
dd − 

 

 

j=2 

(j − 2)! dd−j    
d 

, 
j 

and similarly, setting all µi = 1 with the exception of µ1 = 0, we have 

∫ 
 

M1,d 

 
Qd 

i=2 

 
1 

(1 − ψi) 

" 

= 
1   

(d − 1)d − 
24 

Σd 

 
j=2 

 
(j − 2)! (d − 1)d−j 

 # 
d − 1 

. 
j 

Therefore, the second summand of the degree one contribution is 

" 2 Σd   # 

d(d — 6d + 6) 

12 · 24 
dd − (d − 1)d − 

 

 

j=2 

(j − 2)! dd−j    d 

j — (d − 1)d−j 
d − 1 

j 
. (23) 

 

For the third summand, we adopt the language of stable graphs, as per the Janda–Pandharipande–Pixton– 
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Zvonkine formula for the pushforward of the Chiodo class [19, Corollary 4]; we refer the reader to their paper 

for further details. The calculation of the class ǫ∗ch1(d, d; d − 1, . . . , d − 1) on M1,d requires contributions 

from the two types of stable graphs pictured below. In both cases, the number of leaves in total is d and the 

leaves are labelled with the Chiodo class parameter d − 1. The label a ∈ {0, 1, . . . , d − 1} on the half-edge 

matches the multiplicity index a  appearing in Chiodo’s  formula and this forces the incident  half-edge  to be 

labelled by d − a, according to the local edge condition. The pushforward of a Chiodo class to Mg,n 

introduces a factor of d2g−1−h1 (Γ)  for the stable graph Γ, where h1 denotes the first Betti number.  Thus, 

we obtain the extra contribution of d1 from the stable graph on the left and d0 for the stable graph on the 

right. 

Let us proceed by analysing the contribution of the stable graph on the left. The local vertex condition requires 

that the sum of the labels of the half-edges adjacent to any given vertex is 0 modulo d. This imposes the 

constraint that the number of leaves on the genus 1 vertex is a, so the number of leaves on the genus 
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a 

  

d − 1 

d − 1 
 
 

d − 1 

 

1 
a d − a 

0
 

d − 1 

d − 1 
 
 

d − 1 

d − 1 

d − 1 
 
 

d − 1 

 

a 
 

0 

d − a 

 

0 vertex is d − a. The stability condition requires the genus 0 vertex to have valence at least 2, which then 

rules out a = d − 1. 

Note that, for each fixed a, this stable graph can be obtained in 
  d     

ways, which correspond to the choices of 

markings of the leaves on the genus one vertex. Multiplying by the factor d1 from the pushforward, the 

contribution resulting from this type of stable graph is as follows. 

 
dΣ−2    ∫ ! ∫ ! 

ψ0 ψ0 

— 
d 

(d2 − 6ad + 6a2)   
d

 
24 a Qa 

a+1 
(1 − ψi) 

 

d−a+1 Qd−a
(1 − ψ ) 

 

a=0  
dΣ−2 

M1,a+1 i=1 

    " 
M0,d−a+1 

aΣ+1 

i=1 i 

 # 

= − 
d 

(d2 − 6ad + 6a2)   
d

 
24 a 

a=0 

aa+1 −  

 

j=2 

(j − 2)! aa+1−j    
a

 
j 

(d − a)d−a−2 (24) 

 

Now let us analyse the contribution of the stable graph on the right. Observe that any labelling of the half-

edges with a and d − a automatically satisfies the local vertex condition. As previously mentioned, the 

pushforward produces a factor of d0 in this case. The integration pulls back to the space M0,d+2, without 

psi-classes attached to the branches of the desingularized node, so the contribution resulting from this type  

of stable graph is as follows. 

 ∫ 
1  

dΣ−1 

— (d2 − 6ad + 6a2) 

 
0 
d+1 Q 

 
0 
d+2 

! 
1  

dΣ−1   = − d2 − 6ad + 6a2 dd−1 = − 
1 

dd (25) 

24 
a=0 

 
 

M0,d+2 

d 
i=1 (1 − ψi) 24 24 

a=0 

 

Finally, the total degree zero and one contribution on the right side of equation (20) is obtained by adding 

the results of equations (21) to (25), and we obtain the following. 

" 
Σd  # 

d   
dd − 

24 

 

 
j=2 

(j − 2)! dd−j    
d

 
j 

" 
2 Σd+1   # 

d 
− 

12 · 24 

d + 1 

2 
dd−1 −  

 
j=2 

(j − 2)! 
d + 1 − j 

2 
dd−1−j     d 

j 

d + 1 − j 
+ 

1 
dd−j d 

j − 1 

d(d2 
+ — 6d + 6) 

" 
Σd 

dd − (d − 1)d − 
 
(j − 2)! 

  

dd−j    d 
 

— (d − 1)d−j d − 1 
  # 

12 · 24 
dΣ−2 

j=2 

 " 

j j 
aΣ+1  # 

— 
d 

(d2 − 6ad + 6a2)   
d

 
24 a 

a=0 

aa+1 −  

 

j=2 

(j − 2)! aa+1−j    
a

 
j 

(d − a)d−a−2 − 
1 

dd. (26) 
24 

ψ ψ 
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24 

 
 

Verification for d = 1 

 
Specialising the four lines of equation (26) to the case d = 1, we obtain 

1 1 
− + 

24 12 · 24 

1 1 
− 

12 · 24 24 

 
= 0. 

On the other hand, we earlier computed the left side of equation (20) to be dd−1 · d−1 , which also vanishes for 

d = 1, as expected. The computation for d ≥ 2 a priori requires higher degree calculations of the Chiodo 
class, which in turn requires many more stable graph contributions. 
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7 Generalisation to the spin case 

Some of the work of Goulden, Jackson and Vakil [16] was generalised to the spin Hurwitz setting by Shadrin, 

Spitz and Zvonkine [28], who deduce polynomiality for one-part spin double Hurwitz numbers and conjecture 

an ELSV-type formula. In this section, we state generalisations of our earlier results – namely, Theorems 3.1 

and 5.2 — to the spin setting, thus addressing the conjecture of Shadrin, Spitz and Zvonkine. 

The double Hurwitz number hg;µ,ν may be interpreted as a relative Gromov–Witten invariant of CP1, in which 

the simple branch points correspond to insertions of τ1. For a positive integer r, one can more generally define 

the r-spin Hurwitz number analogously as a relative Gromov—Witten invariant of CP1, where the branching 

away from 0 and ∞ corresponds to insertions of τr. This is described in the work of 

Okounkov and Pandharipande on the Gromov–Witten/Hurwitz correspondence [26], as well as in the work 

of Shadrin, Spitz and Zvonkine in their work on double Hurwitz numbers with completed cycles [28]. 

We focus on the q-orbifold r-spin Hurwitz numbers, which may be defined as the following relative Gromov– 

Witten invariants of CP1. 

(r!)m 
∫

 
hq-orbifold,r-spin  =     

ev∗(ω)ψr · · · ev∗ (ω)ψr 

g;µ1 ,...,µn 
m! [M 

 
g,m 

1 1 m m 
(CP1;µ,(q,...,q))]vir 

Here, Mg,m(CP1; µ, (q, . . . , q)) denotes the space of stable genus g maps to CP1 relative to 0 and ∞ with 

respective profiles µ and (q, q, . . . , q), with m marked points where m =  1 (2g − 2 + n + |µ|/q). As usual, evi  
is the evaluation map and we integrate over the virtual fundamental class. 

Morally, this counts connected genus g branched covers of CP1 with ramification profile µ over ∞, rami- 

fication profile (q, q, . . . , q) over 0, and order r branching elsewhere. The q-orbifold Hurwitz numbers are 

recovered when r = 1 and  the  single  Hurwitz numbers  thereafter by  setting  q  =  1.  The  definition  of the 

Gromov–Witten invariant takes into account stable maps, in which the domain curve may be nodal 

and components can map with degree zero. At the level of monodromy representations, such invariants 

may be described elegantly via factorisations into completed cycles in the symmetric group. This has been  

thoroughly described by Okounkov and Pandharipande [26]. 

Zvonkine conjectured a polynomial structure for spin Hurwitz numbers akin to that for single Hurwitz  

numbers [30]. He furthermore posited an ELSV formula expressing spin Hurwitz numbers as intersection  

numbers on moduli spaces of spin curves. Kramer, Popolitov, Shadrin and the second author expressed a 

more general conjecture for orbifold spin Hurwitz numbers [23]. This stronger conjecture has now been 

proved by Dunin-Barkowski, Kramer, Popolitov and Shadrin [10]. 

Theorem 7.1 (Zvonkine’s q-orbifold r-spin ELSV formula). Fix positive integers q and r. For integers g ≥ 0 

and n ≥ 1 with (g, n) /= (0, 1) or (0, 2), the q-orbifold r-spin Hurwitz numbers satisfy 
(2g−2+n)q+

Σn       µ      Yn ⌊ µi/qr⌋  ∫ 

q-orbifold,r-spin 2g−2+n   i=1   i (µi/qr) ǫ∗Chiodog,n(qr; q; −µ1, . . . , −µn) 
 

 

hg;µ ,...,µ = r (qr) qr            Qn µ . 
1 n 

i=1 ⌊µi/qr⌋! Mg,n i=1 (1 − i  ψi) 

 

The work of Goulden, Jackson and Vakil for double Hurwitz numbers was generalised by Shadrin, Spitz and 

Zvonkine [28] to derive a polynomial structure for double spin Hurwitz numbers. It is then natural to define 

one-part double spin Hurwitz numbers as follows. 

Definition 7.2.  Let h(r),one-part denote the double spin Hurwitz number hr-spin, where ν is the partition with 
g;µ 

precisely one part, which is equal to |µ|. 

g;µ;ν 

 

The polynomiality derived by Shadrin, Spitz and Zvonkine then leads one to conjecture an ELSV formula 

for these numbers.  The arguments used in the present paper lift naturally to the spin setting. We present spin 

analogues for our main results below, without proof, since the arguments parallel those used earlier. 
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Theorem 7.3 (ELSV formulas for one-part double spin Hurwitz numbers). Fix a positive integer r. For integers 

g ≥ 0 and n ≥ 1 with (g, n) (0, 1) or (0, 2), the one-part double spin Hurwitz numbers satisfy the following 

formulas, where d = µ1 + · · · + µn. 
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M 

r    

   

• Chiodo classes on moduli spaces of spin curves 

∫ 
h(r),one-part  = r2g−2+n(dr) 

2g−1+n −(3g−3+n)        
 

 
ChiodogQ,n

(dr, d; −µ1, . . . , −µn) 
 

 

 

 
(27) 

g;µ ,...,µ n 
1 n dr,d 

g,n;−µ i=1 (1 − µiψi) 

 

• Tautological classes on moduli spaces of stable curves 
∫ 

(r),one-part 
g;µ ,...,µ = r2g−2+n (dr) 2g−1+n −(3g−3+n) 

ǫ∗Chiodog,n(dr, d; −µ1, . . . , −µn) 
Qn (28) 

1 n 
Mg,n i=1 (1 − µiψi) 

Remark 7.4. Theorem 7.3 generalises Theorem 3.1, but lacks ELSV formulas on the moduli space of stable 

maps to the classifying space BZd, as well as on the moduli space Mg,n+g. Regarding the former, the 
d,d 
g,n;−µ1 ,...,−µn 

 

appearing in equation (6) bears a close relation with the moduli space 

Mg;−µ1 ,...,−µn (BZd) appearing in equation (5).  On the other hand, the spin case that we consider in 

this section requires the more general class Chiodog,n(dr, d; −µ1, . . . , −µn), in which the first two paramet- 

ers do not match unless r = 1. In that case, the relation to moduli spaces of stable maps to the classifying 

space BZd is not expected. Regarding the latter, one should be able to compute a dilaton equation for the 

Chiodo classes involved in equation (28) by combining the topological recursion techniques and results of [9] 

and [25]. This would then allow us to obtain an ELSV formula for one-part double spin Hurwitz numbers on 

the space Mg,n+g, analogous to equation (8) of Theorem 3.1. However, such a computation transcends the 

goal of this paper, so we do not perform it here. 

 

The exchange of ramification profiles used in Section 5 can be invoked in the spin setting via the equation 
 

q-orbifold,r-spin 
g;p,...,p = 

(d/p)! 

p-orbifold,r-spin 
g;q,...,q . 

(d/q)! 

This leads directly to the following non-trivial relation between tautological intersection numbers on moduli 

spaces of curves, which generalises Theorem 5.3. 

Theorem 7.5. Let p < q be positive integers and d a multiple of them both. For integers g ≥ 0 and d ≥ 1 with 

(g, d/p), (g, d/q) /= (0, 1) or (0, 2), we have 

 
rd/p 

∫ 
ǫ∗Chiodo(qr, q; −p, . . . , −p) 

 
 2g−2+ d + d    

 

  

Qd/p p 

(d/p)! p p   q Mg,d/p i=1(1 − qr ψi) 

rd/q 
= 

 
(q/pr)⌊ q/pr⌋   

  d/q 

∫ 
 

  

 ǫ∗Chiodo(pr, p; −q, . . . , −q) 
Q  

2g−2+ d + d ⌊q/pr⌋! d/q q 
(d/q)! q p       q Mg,d/q i=1(1 − pr ψi) 

 
7.1 Evaluations of Chiodo integrals from the spin case 

It is very natural to ask whether the type of polynomiality found by Goulden, Jackson, and Vakil  in [16] for 

one-part Hurwitz numbers of equation (12) and equation (13) has a spin counterpart.  In particular, one could 

wonder whether that would give raise to statements involving generating series of Chiodo integrals (i.e. the 

spin counterparts of Proposition 4.1 and Proposition 4.2), and if so one would expect them to be again in 

terms of hyperbolic functions. 

r 

h 

moduli space M 

h h 

. 



34 
 

The spin counterpart of the polynomiality can easily be recovered from a semi-infinite wedge calculation (see 

e.g. [28, Example 4.5]) and it reads: 

Yb Yn    z
n−1 

 
2g − 1 + n 

h(r),one part  = [zr . . . zr].db−1 S(dz ) S µ z   ) [b] , b = , (29) 
 

g,µ 1 b 
j=1 

j 

i=1 

i [b] 
S(z [b]) r 

 

for z 

 
 

[b] 
Σb 

j=1 

Σ 
zj, d = 

 

 
i=1 µi, and S(x) = sinh(x/2)/(x/2) as before. Combining this with Theorem 7.3 

we immediately obtain the following. 

= 
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i 

h = d 

       g,n 

Proposition 7.6.  Let r be a positive integer. For integers g ≥ 0 and a partition µ of length n such that 2g−2+n > 0, 

let d be the size of µ. Then we have: 
∫ 

ǫ∗Chiodo[dr](dr, d; −µ1, . . . , −µn) d3g−4+n Yb Yn    zn−1 

Qg,n 
 

 

= [zr . . . zr]. 
 

S(dz ) S µ z   ) [b] 
 

Mg,n 
n 
i=1 (1 − µiψi) rA(r) 1 b 

j=1 
j 

i=1 
i [b] S(z [b]) 

for A(r) = 1 − g + b and b = (2g − 1 + n)/r. 

One can indeed immediately specialise the proposition above to the cases µ = (1d) and µ = (d), obtaining 

this way statements which for r > 1 generalise Proposition 4.1 and Proposition 4.2, respectively. However, as 

the formulae do not structurally simplify, we prefer not to write them out explicitly. Instead, we would like to 

point out that Proposition 7.6 provides an explicit power-series expansion computation, easily software- 

implementable, to evaluate any Chiodo integral of the form 
∫ 

ǫ∗Chiodo[r]  (r, s; r − µ1, . . . , r − µn) 
Q 

 

 
, for 

Σ 
µi = s and s|r. (30) 

Mg,n 

n 
i=1 (1 − µiψi) 

 

i=1 

 

A Data 

We provide some calculations of one-part double Hurwitz numbers up to genus five below as polynomials 

in the parts, using the notation µ = (µ1, . . . , µn) and d = µ1 + · · · + µn. The original paper [16, Corollary 

3.3] also provides these polynomials up to genus five, expressing them instead in terms of the coefficients 

S2j = 
Σ 

µ2j − 1. These calculations have been however re-computed by means of cut and join equation 
as an independent check. Note the structure hone-part = d2g−2+nP (µ2, . . . , µ2 ), for P a symmetric 

g;µ1 ,...,µn 

polynomial of degree 2g, mentioned in Section 1. 

one-part n−2 
0;µ 

g,n 1 n g,n 

one-part dn 
2 2 2 

h1;µ = 
24 

(µ1 + µ2 + · · · + µn − 1) 
 

one-part dn+2      Σ 
4

 
 

 

Σ Σ 2   2 2 

h2;µ = 
5760  

3
 

µi + 10 µi µj − 10 µi  + 7 

one-part dn+4 Σ 
6

 
 

 

Σ Σ 4   2 2  2   2 Σ Σ Σ 4 2   2 2 

h3;µ = 
967680 

3
 

µi + 21 µi µj + 70 µi µjµk  − 21 µi − 70 µi µj + 49 µi − 31 

one-part dn+6 Σ Σ 8 6  2 Σ Σ Σ Σ 4   4 6 4   2 4 
h4;µ = 

464486400 
5

 
Σ 

µi + 60 
Σ 

µi µj + 126 
  

µi µj − 60 µi − 420 µi µj + 294 µi 

+ 980 µ2µ2 − 620 µ2 + 381 
i  j i 

 
one-part dn+8 Σ Σ 10 8  2 Σ Σ Σ 6   4 8 6  2 

h5;µ = 
122624409600 
Σ 

3 µi   + 55 
Σ 

µi µj + 198 
Σ 

µi µj − 55 
Σ 

µi − 660 
Σ 

µi µj 

Σ 

— 1386 µ4µ4 + 462 µ6 + 3234 µ4µ2 − 2046 µ4 − 6820 µ2µ2 + 4191 µ2 − 2555 

i  j i i  j i i  j i 
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