
Mathematical modeling of neuroblastoma 
associates evolutionary patterns with  
outcomes
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A new study deciphers the origin and 
evolution of childhood neuroblastoma using 
genome sequencing data, mathematical 
models and statistical inference, showing 
how neuroblastoma evolution is an accurate 
predictor of outcome.

In 1976, Peter Nowell1 proposed the clonal evolution model as a 
basic framework for understanding how cancers evolve over time.  
Körber et al.2 now use this model to shed light on the initiation and 
evolution of neuroblastoma, a rare childhood cancer that develops 
from immature nerve cells called neuroblasts3. These tumors present 
mostly in children under the age of 5, accounting for about 7% of all 
childhood malignancies. Patients with high-risk neuroblastoma have 
survival rates of about 50%, and early diagnosis and accompanying 
prompt treatment may assist in improving their outcomes.

According to the clonal evolution model, tumors start from a 
single cell and acquire somatic mutations; clonal expansions are trig-
gered by driver mutations that increase fitness — that is, the ability to 
produce surviving offspring in the current microenvironment1. There-
fore, if we track mutations as in species evolution, we can understand 
the underlying evolutionary process4. Körber et al.2 did this by using 
deeply sequenced bulk whole-genome data from two neuroblastoma 
cohorts (n = 100 patients and n = 86 patients) covering all clinical 
stages of the disease. The main challenge in this type of analysis is that 
the whole evolutionary process cannot be directly measured; instead 
some random sample of its outputs is measured.

Neuroblastomas sequenced in this work harbored point mutations 
and abundant copy-number alterations (CNAs) — gains and losses of 

genetic material that alter gene expression and contribute to genetic 
instability5. The authors found CNAs to be ubiquitous across the neu-
roblastoma cells (i.e., clonal), indicative of early acquisition of these 
changes4. They interpreted the mutational profiles of each neuro-
blastoma using a clever combination of mathematical models and 
statistical inference. First, they determined the temporal acquisition 
of segmental copy-number gains in chromosome regions 1q and 17q 
and of whole-chromosome amplifications of chromosomes 2, 7 and 
17. To do this, they use neutral mutations that accumulate linearly with
time6 to build a molecular clock and identify two evolutionary groups 
of neuroblastomas: one with gains temporally close to the most recent 
cell from which all the sequenced neuroblasts descend (most recent 
common ancestor (MRCA)), and another in which a premalignant  
earlier common ancestor (ECA) acquired most gains before progress-
ing to the malignant MRCA.

In the latter group, gains of regions 9 and 20q were timed after 
the ECA, indicating further evolution from the premalignant to the 
malignant state. Körber et al.2 compared molecular clocks among pri-
mary and relapse samples to describe prototypical models with early 
and late MRCAs. This implies that distinct disease trajectories exist 
for the growth of resected neuroblastoma. Indeed, 95% of early-MRCA 
neuroblastomas were explained by aneuploidy, with little contribution 
from point mutations, whereas 55% of the late-MRCA tumors showed 
prolonged genetic evolution due to multiple point mutations and other 
somatic changes. An interesting observation came from MRCAs of 
metastases resected after initial diagnosis, which were timed to origi-
nate around when the tumor started to grow from its MRCA, resembling 
multifocal tumors such as glioblastoma7.

Evolutionary trajectories can predict disease outcome8, and the 
authors used a discovery cohort to show that MRCA timing trans-
lates into an accurate predictor of both event-free survival and overall  
survival, improving over clinical variables and neuroblastoma-specific 
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Fig. 1 | Clonal evolution model for neuroblastoma development and evolution. Using sequencing data, Körber et al.2 classified neuroblastomas on the basis of their 
evolutionary features, showing that duration of evolution is an accurate predictor of outcome. SSNVs/Mb, somatic single nucleotide variants per megabase.
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in light of tumor evolutionary principles, finally using population  
genetics to quantify clonal expansion patterns in neuroblastomas. 
In my opinion, the best results of both mathematical modeling and 
machine learning are reached when the two approaches are intermixed. 
One possibility, for example, is to derive statistical distributions for 
quantities of interest using a mathematical model, and then utilize them 
to instantiate a machine learning algorithm15. In general, by linking the 
two approaches, one can attempt to extract and interpret statistical 
signals directly within a model that is interpretable, refutable and falsi-
fiable. One of the most rewarding consequences of these model-based 
paradigms could be the translation of tumor evolution statistics into 
clinical predictors. By comparing tumors in regard to how they evolve, 
and not just the mutations they have8, we might lay the ground for 
‘predicting’ tumor evolutionary dynamics, and stay one step ahead of  
cancer Fig. 1.
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features such as telomere maintenance and RAS/p53-pathway muta-
tions. The role of aneuploidy emerged clearly, with broader instability 
in late-MRCA tumors, which were also associated with worst prognosis, 
suggestive of a link between the duration of evolution and outcome. In 
this group, a clear role was also found for the acquisition of telomere 
maintenance mechanisms9, even if the timing with which TERT muta-
tions were acquired remained undetermined.

Finally, the authors gathered all of their information and developed 
a birth–death process model for the dynamics of neuronal precursors, 
ECA and MRCA. This population genetics model was parameterized 
from high-risk late-MRCA neuroblastomas, and intelligently linked  
to reproduce the incidence of the disease in the human population 
(~1 in 105 children). Using approximate Bayesian computation10, the 
authors inferred that these neuroblastomas acquire ~3.2 mutations per 
day, with oncogenic events triggering ECA–MRCA transitions once per 
million cell divisions. These estimates were calibrated against real time 
to position ECA origin within the first trimester of pregnancy, when the 
adrenal medulla forms from sympathetic neuroblasts, also suggest-
ing that about 1 in 10 cell divisions of ECAs results in tumor growth of 
neuroblastomas with acquired telomere maintenance mechanisms, 
consistent with the extensive cell death observed histopathologically.

Building on Nowell’s clonal evolution model1, the field of tumor 
evolution has recently emerged as a consolidated approach to under-
standing, from sequencing data, how cancer cells change over time 
and evolve in response to various selective pressures, such as genetic 
mutations, environmental factors and treatment.

Mathematical models based on differential equations and sto-
chastic processes have a longstanding history of successful applica-
tion in biology, especially in the fields of ecology and epidemiology11. 
Their direct application to cancer evolution is more laborious, how-
ever, because high-dimensional, noisy sequencing data are difficult 
to model, and the underlying evolutionary process is only partially 
observable and subject to various sources of sampling bias, in time and 
space. However, identifying statistical patterns from measurements 
with many dimensions, while resisting the effects of noise and other 
confounders, is a primary aim of real-world machine learning12. For this 
reason, cancer genomics needs machine learning, and algorithm-based 
signal deconvolution, feature selection and dimensionality reduction 
have become common tools of the field13. In this framework, combin-
ing mathematical encoding of the clonal evolution principles and 
advanced statistical models could prove invaluable14. The new work2  
is an example of this, as it interprets the statistical signal of mutations 
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	Fig. 1 Clonal evolution model for neuroblastoma development and evolution.




