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We present a recursive quantum mechanical model for the fragmentation of a string stretched between a
quark and an antiquark with entangled spin states. The quarks are assumed to be produced in the eþe−

annihilation process via the exchange of a virtual photon and the correlations between their spin states are
described by a joint spin-density matrix. The string fragmentation process is formulated at the amplitude
level by using the splitting matrices of the recent stringþ 3P0 model of polarized quark fragmentation with
pseudoscalar and vector meson emissions and accounts for the systematic propagation of the spin
correlations in the fragmentation chain. The model is formulated as a recursive recipe suitable for a
Monte Carlo implementation. It reproduces the expected angular correlation, due to the Collins effect,
between back-to-back pseudoscalar and/or vector mesons. For the latter, this correlation also involves the
momenta of the decay products. We use the model for studying the sign of the Collins asymmetry for back-
to-back vector and pseudoscalar mesons.
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I. INTRODUCTION

The eþe− annihilation to hadrons is an important process
to study the hadronization of quarks and gluons in the
observed hadrons, a still poorly understood phenomenon of
the strong interactions. According to the factorization
theorem in quantum chromodynamics (QCD) [1], the cross
section can be factorized in the cross section for the
annihilation reaction eþe− → q1q̄1 and in the fragmenta-
tion functions (FFs) that describe the conversion of the
quark q1 and antiquark q̄1 in the observed hadrons.
Recently the eþe− annihilation has been used as a tool
to access the class of spin-dependent FFs. Examples are the
Collins function H⊥h

1q [2], which describes the fragmenta-
tion of a transversely polarized quark q1 in an unpolarized
hadron h, and the interference fragmentation function
(IFF) H∢hh

1q [3,4], which describes the fragmentation of a
transversely polarized quark q1 in a pair of unpolarized
hadrons hh.

In eþe− annihilation cross section, the spin-dependent
FFs give birth to azimuthal modulations in the distribution
of the observed hadrons. The amplitudes of these modu-
lations are referred to as asymmetries and provide access to
the spin-dependent FFs (for a review see, e.g., Ref. [5]).
The semi-inclusive annihilation process eþe− → h1h2X,
where one of the hadrons h1 or h2 is assumed to be
produced in the quark jet and the other in the antiquark jet,
allows one to measure the Collins asymmetry originated
from the coupling of two Collins FFs [5]. If two hadrons
are observed in each quark jet by the process eþe− →
ðh1h2Þðh̄1h̄2ÞX, the Artru-Collins asymmetry [6] appears,
which allows one to access the product of two IFFs. The
Collins asymmetries have been measured in eþe− by the
BELLE [7,8], BABAR [9,10] and BESIII [11] experiments,
whereas the Artru-Collins asymmetries have been mea-
sured by the BELLE experiment [12].
The eþe− asymmetry data have played a fundamental

role in the investigation of the partonic structure of the
nucleons. The data have been analyzed in combination with
the data from semi-inclusive deep inelastic scattering
(SIDIS) of leptons off transversely polarized nucleons on
the Collins asymmetries [2] and on the dihadron production
asymmetry [3,4] to extract the spin-dependent FFs and
the transversity parton distribution function (see, e.g.,
Refs. [13–20]). Transversity describes the transverse polari-
zation of quarks in a transversely polarized nucleon and is
the third parton distribution function needed to characterize
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the collinear partonic structure of the nucleon at leading
order.
This work is dedicated to the modeling of spin effects in

eþe− annihilation to hadrons with the final goal of
implementing the model in a Monte Carlo event generator
(MCEG). Recently, the spin effects have been implemented
for the simulation of the polarized SIDIS process in the
PYTHIA 8 MCEG [21,22] by the StringSpinner package
[23,24]. The simulation of the spin effects is based on
the stringþ 3P0 model of polarized hadronization [25–27],
which is implemented in StringSpinner. It is a quantum
mechanical extension of the Lund model [28] of string
fragmentation that includes the quark spin degree of free-
dom at the amplitude level. An analog MCEG for eþe−
annihilation with spin effects presently does not exist, the
main difficulty coming from the nonclassical (entangled)
correlation of the q1 and q̄1 spins.
Up to now, the stringþ 3P0 model has been applied to

the description of the recursive fragmentation of a string,
starting from one end drawn by a polarized quark or
antiquark without taking care of the polarization of the
object (quark or diquark) drawing the opposite end. Thus it
cannot be applied as it stands to eþe− annihilation where
both q1 and q̄1 are polarized, which is more in an entangled
fashion [29]. Here we extend the stringþ 3P0 model to the
description of the fragmentation of a string stretched
between a quark q1 and an antiquark q̄1 with entangled
spin states. The correlation between their spin states is
described by the means of a joint spin-density matrix of the
pair. The joint spin-density matrix is calculated assuming
the eþe− annihilation to be mediated by a virtual photon.
The model is however general and it does not depend on the
mechanism invoked for the production of the q1q̄1 pair. The
rules of the stringþ 3P0 model with emission of pseudo-
scalar (PS) mesons and vector mesons (VMs) [27] are used
to describe the hadron emissions from the quark and
antiquark ends of the string. To take into account the
quantum mechanical correlations between the two end
points of the string after hadron emissions we employ a
recipe inspired from the Collins-Knowles (CK) recipe
[30–32]. TheCKrecipe is applied to involve in the correlation
not only the momentum of a VM, but also the individual
momenta of its decay products. Finally we formulate a
recursive recipe for the simulation of the string fragmentation
of a q1q̄1 pair with correlated spin states that is suitable for a
Monte Carlo implementation. The recipe is applied to the
production of the two leading hadrons in eþe− → h1h2X
showing that it reproduces the expected modulations in the
azimuthal distribution of the hadrons [5,33].
Throughout the article we neglect gluon emissions from

the quark and the antiquark. Such emissions transform the
q1 − q̄1 string into a broken line with corners at the gluons.
Besides, the gluons are polarized in correlation with the
spins of q1 and q̄1. The present formulation of the stringþ
3P0 model is insufficient for handling this situation. The

present work is, however, necessary before the generali-
zation of the stringþ 3P0 model to more general string
configurations, which deserves future works.
The article is organized as follows. In Sec. II we give the

main ingredients needed for the modeling of the spin effects
in eþe− annihilation. In Sec. III the different steps needed
to describe the fragmentation of a string stretched between
a quark pair with entangled spin state are discussed and the
final recursive recipe suitable for Monte Carlo implemen-
tation is given. The recipe is applied to the production of
two back-to-back hadrons in Sec. IV. Finally the conclu-
sions are drawn in Sec. V.

II. PHYSICS INGREDIENTS FOR MODELING
SPIN EFFECTS IN e+ e− ANNIHILATION

Following the factorization theorem [1], we factorize the
annihilation process eþe− → q1q̄1 → h1; h2;…; hN , where
h1; h2;…; hN are the final state hadrons, into a hard
subprocess, where the quark pair q1q̄1 is created in the
annihilation eþe− → q1q̄1, and a soft process q1q̄1 →
h1; h2;…; hN , where the quark pair hadronizes into the
final state hadrons. The framework for the description of
the hard subprocess is set up in Sec. II B from the
kinematical point of view and in Appendix A from the
dynamical point of view.
We describe the hadronization of the q1q̄1 pair by an

extension of the stringþ 3P0 model to the fragmentation of
a string stretched between q1 and q̄1, which have correlated
spin states. To this end in Sec. II Awe introduce the folded
unitarity diagram (Fig. 1) for the process eþe− → q1q̄1 →
hHX, where h and H are hadrons associated to the q1 and
q̄1 jets, respectively. The diagram is related to the cross
section of the process, which depends on the joint spin-
density matrix of the q1q̄1 pair and on the splitting
amplitudes for the recursive emissions of hadrons from
the quarks. The joint spin-density matrix of the q1q̄1 pair is
described in Sec. II C, while the splitting amplitudes, which

FIG. 1. Folded unitarity diagram for the reaction eþ↑e−↑ →
q1q̄1 followed by the splittings q1 → hþ X and q̄1 → H þ X0.
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are taken from the stringþ 3P0 model of Ref. [27], are
recalled in Sec. II D.

A. The unitarity diagram for e+ e − annihilation

1. Conventions for the figures

We represent the probability of a reaction by a pair of
Feynman-like diagrams, slightly shifted from each other: a
direct diagram with black arrow points for the amplitude
and a reversed diagram with white arrow points for the
complex conjugate amplitude (see, e.g., Fig. 1). This
representation is obtained by folding the standard, left-
right symmetrical, unitarity diagram. Gray blobs represent
subprocess amplitudes. Greek letters label the spin states of
fermions, Latin letters those of bosons. These letters are
primed for the conjugate amplitude.
Gray rectangles represent sources of initial particles or

detectors of final particles. A source is characterized by a
density or emittance1 matrix hλjρjλ0i and a detector by an
acceptance matrix [34] hλ0jηjλi. For an unpolarized source
(respectively, detector), the δλ;λ0 is represented by a U turn
⊂⊲−
▸− (respectively, −⊲−▸ ⊃) of the particle line inside the gray

rectangle. Also, the unit acceptance matrix is indicated by
ηU in the figures.

2. Elements of the unitarity diagram

To introduce the main ingredients required for the
description of eþe− annihilation, we start by the folded
unitarity diagram for the process eþe− → q1q̄1 → hHX
shown in Fig. 1. The hadron h is emitted in the quark
splitting q1 → hþ q2. The hadron H is emitted in the
antiquark splitting q̄1 → H þ q̄2. The fragmentation chains
initiated by the leftover quarks q2 and q̄2 are not shown
explicitly but summarized by acceptance matrices repre-
sented by gray boxes.
To the folded unitarity diagram is associated the two-

particle inclusive cross section

dσðeþ↑e−↑ → hHXÞ ∝ hλ2jTq2;h;q1 jλ1ihλ̄2jTq̄2;H;q̄1 jλ̄1i
× hλ1; λ̄1jM̂jλ−; λþiρe−λ−λ0−ρe

þ
λþλ0þ

hλ0−; λ0þjM̂†jλ01; λ̄01i
× hλ01jT†

q2;h;q1
jλ02ihλ̄01jT†

q̄2;H;q̄1
jλ̄02i

× hλ02jηðq2Þjλ2ihλ̄02jηðq̄2Þjλ̄2i; ð1Þ

where the repeated indices are summed over. The second
line in Eq. (1) expresses the production of the q1q̄1 pair
from the annihilation of the eþ and e−. It describes the
hard subprocess eþe− → q1q̄1. The first and third lines
describe the splittings q1 → hþ q2 and q̄1 → H þ q̄2 in
the amplitude and the complex conjugated amplitude,

respectively. The last line expresses possible further infor-
mation coming from the successive splittings of q2 and q̄2.
The meaning of the different components of the amplitude
is as follows.
The quantity M̂ indicates the quantum amplitude

associated to the hard process eþðλþÞe−ðλ−Þ →
q1ðλ1Þq̄1ðλ̄1Þ. We have labeled with λþ, λ−, λ1, and λ̄1
the helicities of eþ, e−, q1, and q̄1, respectively. The
quantum states jλ−; λþi and jλ1; λ̄1i indicate, respectively,
the two-particle helicity states jλ−i ⊗ jλþi and jλ1i ⊗ jλ̄1i.
M̂λ−λþ;λ1;λ̄1 ≡ hλ1; λ̄1jM̂jλ−; λþi is the helicity amplitude,
which can be calculated perturbatively using standard
methods. The expressions that we obtain are given for
completeness in Appendix A.
The quantities ρe

−

λ−λ
0
−
and ρe

þ
λþλ0þ

, represented by the gray

boxes on the left of Fig. 1, are the spin-density matrices of
the e− and eþ, respectively. They contain the information
on the spin states of the beam particles. In the following we
assume the electron and positron to be unpolarized, i.e.
ρe

−

λ−λ
0
−
¼ δλ−λ0−=2 and ρe

þ
λþλ0þ

¼ δλþλ0þ=2.

The operator Tq2;h;q1, represented by the lowest gray disk
in Fig. 1, indicates the quantum amplitude for the splitting
of a quark q1 in a hadron h and a leftover quark q2. It will
be referred to as the splitting matrix. The matrix elements of
the splitting matrix are indicated by hλ2jTq2;h;q1 jλ1i, where
the index λ2 labels the spin state of the quark q2. We have
assumed for the moment the hadron h to be spinless
(a ¼ a0 ¼ 0). The same definitions apply to the splitting
matrix Tq̄2;H;q̄1 (second upper gray disk in Fig. 1) that
describes the splitting of the antiquark q̄1 in the hadron H
and the leftover antiquark q̄2. The corresponding matrix
elements are hλ̄2jTq̄2;H;q̄1 jλ̄1i, where λ̄2 labels the spin state
of q̄2. The hadron H is also taken to be spinless, for the
moment. The splitting matrices for the quark and antiquark,
taken from the stringþ 3P0 model in Ref. [27], are
described in detail in Sec. II D.
The quantity ηðq2Þ is the acceptance matrix of q2.

If quarkswere not confined, it could characterize a polarized
detector for q2. In reality it carries the spin information
coming “backward in time” from the analysis of particles
further produced in the fragmentation chain (for the defi-
nition and the use of the acceptance matrices see Ref. [34]).
The associated matrix elements are hλ02jηðq2Þjλ2i. If there is
no information coming from the future emissions of q2, or
equivalently if that information is integrated over, the
acceptance matrix is the identity matrix hλ02jηðq2Þjλ2i ¼
δλ0

2
λ2 . The acceptance matrix ηðq̄2Þ for the antiquark q̄2 has a

similar meaning. More rigorously, the acceptance matrices
ηðq2Þ and ηðq̄2Þ should be gathered in one 4 × 4 matrix
ηðq2; q̄2Þ, which takes into account the spin correlations
transmitted by closing the quark line. In this model we
neglect such correlations and decompose ηðq2; q̄2Þ ¼
ηðq2Þ ⊗ ηðq̄2Þ.1If not normalized to unit trace.
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The cross section in Eq. (1) can be further simplified to
obtain the expression

dσðeþ↑e−↑ → hHXÞ
∝ hλ1; λ̄1jM̂jλ−; λþiρe−λ−λ0−ρe

þ
λþλ0þ

× hλ0−; λ0þjM̂†jλ01; λ̄01i × hλ01jηðq1Þjλ1ihλ̄01jηðq̄1Þjλ̄1i
≡ jM̂j2Trq1q̄1 ½ρðq1; q̄1Þηðq1Þ ⊗ ηðq̄1Þ�: ð2Þ

The different pieces of the cross section are gathered to
define the spin-summed squared amplitude jM̂j2 associ-
ated to the hard subprocess, the joint spin-density matrix
ρðq1; q̄1Þ of the q1q̄1 pair (represented in Fig. 1 by the
rectangular domain A), and the acceptance matrices ηðq1Þ
for the initial quark q1 and ηðq̄1Þ for the initial antiquark q̄1.
The operation Trq1q̄1 indicates the trace over the spin
indices of q1 and q̄1.
The squared amplitude jM̂j2 is related to the cross

section of the hard scattering eþ↑e−↑ → q1q̄1 for not-
analyzed quarks, and it is given by

jM̂j2 ≡ hλ1; λ̄1jM̂jλ−; λþiρe−λ−λ0−ρe
þ
λþ;λ0þ

hλ0−; λ0þjM̂†jλ1; λ̄1i:
ð3Þ

It is represented by the folded unitarity diagram in Fig. 2.
Concerning the acceptance matrices ηðq1Þ and ηðq̄1Þ,

they can be obtained by comparing Eq. (2) with Eq. (1).
The expressions are

hλ01jηðq1Þjλ1i¼hλ01jT†
q2;h;q1

jλ02ihλ02jηðq2Þjλ1ihλ1jTq2;h;q1 jλ1i;
hλ̄01jηðq̄1Þjλ̄1i¼hλ̄01jT†

q̄2;H;q̄1
jλ̄02ihλ̄02jηðq̄2Þjλ̄1ihλ̄1jTq̄2;H;q̄1 jλ̄1i;

ð4aÞ

and, when written in matrix form, they are

ηðq1Þ ¼ T†
q2;h;q1

ηðq2ÞTq2;h;q1 ;

ηðq̄1Þ ¼ T†
q̄2;H;q̄1

ηðq̄2ÞTq̄2;H;q̄1 : ð4bÞ
These matrices bring to the hard scattering the spin infor-
mation from the splittings of q1 and q̄1. The diagrammatic

representation of ηðq1Þ is shown in Fig. 3 for h of arbitrary
spin. For the spinless case, a ¼ a0 ¼ 0, ηðhÞ ¼ 1. ηðq1Þ is
also indicated in Fig. 1 by the rectangular domain B.
A similar diagram can be drawn for ηðq̄1Þ.
From Eq. (2) one can obtain the cross section for single

hadron production eþe− → hX by taking ηðq̄1Þ ¼ 1q̄1 . It is

dσðeþe− → hXÞ ∝ jM̂j2Tr½ρðq1Þηðq1Þ�; ð5aÞ

where

ρðq1Þ ¼ Trq̄1ρðq1; q̄1Þ ð5bÞ

is the spin-density matrix of q1 obtained by the partial trace
over the spin indices of q̄1. It is represented in Fig. 2 by the
domain B. The cross section in Eq. (5a) is represented by
the full diagram of Fig. 2 but removing the U-turn in the
lower-right gray rectangle and the upper index U for ηðq1Þ.
It is well known that the single hadron production in eþe−
cannot be used for studying transverse spin effects due to
the fact that the quark (and the antiquark) is unpolarized, as
can be seen from Eqs. (5b) and (11).
Independently of ρðq1Þ, the reaction in Eq. (5a) has been

used for the study of the spin alignment of VMs in hadronic
Z0 decays [35–37] and recently has gained interest in the
context of the phenomenology of the transverse-momen-
tum-dependent spin-averaged FFs [38].

B. The hard scattering

The kinematics of the hard scattering eþðpþÞe−ðp−Þ →
q1ðk1Þq̄1ðk̄1Þ, where in the parentheses we have indicated
the four-momentum of each particle, is shown in Fig. 4 in
the center of mass system (c.m.s.). As already mentioned in
the introduction, we neglect the gluon radiation from the
quarks. The four-momenta are given by

p∓ ¼
ffiffiffi
s

p
2

ð1;∓ sin θ; 0;� cos θÞ;

k1 ¼
ffiffiffi
s

p
2

ð1; 0; 0; βqÞ; k̄1 ¼
ffiffiffi
s

p
2

ð1; 0; 0;−βqÞ: ð6Þ

FIG. 2. Folded unitarity diagram for the reaction eþ↑e−↑ →
q1q̄1. ηU is the unit 2 × 2 acceptance matrix. Rectangle A:
hjM̂j2iρðq1; q̄1Þ. Domain B: hjM̂j2iρðq1Þ [Eq. (5a)].

FIG. 3. Derivation of the acceptance matrix ηðq1Þ from ηðq2Þ
and ηðhÞ≡DðhÞ. It applies to Eqs. (4a) and (4b), taking
ηðhÞ ¼ 1.
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The electron mass is neglected as it is much smaller than
the considered values of the center of mass energyffiffiffi
s

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ ·p−

p
. θ is the angle between the p− and k1.

The quantity βq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

q=s
q

is the velocity of the quark

and mq is the quark mass.2

The hard scattering differential cross section is related to
the squared matrix element in Eq. (3) by dσ̂=d cos θ ¼
3βqjM̂j2=ð32πsÞ, where the factor 3 is included to account
for the number of quark colors. Using the expressions for
the helicity amplitudes in Appendix A, we obtain the
known angular distribution [39]

dσ̂ðq1q̄1Þ
d cos θ

¼ 3πα2

2s
e2qβq½1þ cos2θ þ ð1 − βqÞ2sin2θ�: ð7Þ

In the c.m.s., we introduce the so-called helicity frames
of the quark and the antiquark. They are the reference
systems attached to the quark and the antiquark that are
introduced when calculating the helicity amplitudes in
Appendix A.3 We represent the quark helicity frame
(QHF) with the set of axes fx̂q1 ; ŷq1 ; ẑq1g and the antiquark
helicity frame (AHF) with the set of axes fx̂q̄1 ; ŷq̄1 ; ẑq̄1g.
The axes are defined to be

ẑq1 ¼
k1

jk1j
; ŷq1 ¼

p− × ẑq1
jp− × ẑq1 j

; x̂q1 ¼ ŷq1 × ẑq1 ;

ẑq̄1 ¼
k̄1

jk̄1j
; ŷq̄1 ¼

p− × ẑq̄1
jp− × ẑq̄1 j

; x̂q̄1 ¼ ŷq̄1 × ẑq̄1 : ð8Þ

The helicity frames of the quark and the antiquark are
shown in Fig. 4. The two frames share their x axes, whereas

the other axes are the opposite. The four-momenta given in
Eq. (6) are expressed in the QHF.
Considering a generic vector v with azimuthal angle

ϕðQHFÞðvÞ and polar angle θðQHFÞðvÞ measured in the QHF,
and azimuthal angle ϕðAHFÞðvÞ and polar angle θðAHFÞðvÞ
measured in the AHF, the relations among the angles
expressed in the two frames are

ϕðAHFÞðvÞ ¼ 2π − ϕðQHFÞðvÞ;
θðAHFÞðvÞ ¼ π − θðQHFÞðvÞ: ð9Þ

These relations are useful to express observables in the
same reference system and will be used in Sec. IV.

C. The joint spin-density matrix of the q1q̄1 pair

In the annihilation eþe− → γ� → q1q̄1, the virtual pho-
ton has spin one and has a nonzero tensor polarization. In
addition to a specific θ dependence, this induces correla-
tions among the spin states of q1 and q̄1, which can be
encoded in the joint spin-density matrix ρðq1; q̄1Þ of the
q1q̄1 system.
The expression for the density matrix ρðq1; q̄1Þ can be

obtained from Eq. (2), and it is

ρðq1; q̄1Þ ¼ ðjM̂j2Þ−1M̂λ−λþ;λ1 λ̄1ρ
e−
λ−λ

0
−
ρe

þ
λþλ0þ

M̂�
λ0−λ0þ;λ

0
1
λ̄0
1

× jλ01; λ̄01ihλ1; λ̄1j

≡ 1

4
Cq1q̄1αβ σq1α ⊗ σq̄1β : ð10Þ

In the second equality the density matrix is decomposed
along a basis spanned by the tensor product of the Pauli
matrices σq1α ¼ ð1q1 ; σq1x ; σq1y ; σq1z Þ for the quark and σq̄1β ¼
ð1q̄1 ; σq̄1x ; σq̄1y ; σq̄1z Þ for the antiquark. The indices α and β
take the values 0, x, y, and z. The matrix 1q1 (1q̄1) indicates
the identity matrix in the spin space of q1 (q̄1). The
superscript q1 (q̄1) indicates the projection of the vector
of Pauli matrices σ ¼ ðσx; σy; σzÞ along the axes of the
QHF (AHF). The coefficients Cq1q̄1αβ introduced in the third
line in Eq. (10) express the correlations between the spin
states of q1 and q̄1 and will be referred to as the correlation
coefficients. They can be obtained by taking the trace of
Eq. (10) with σq1α ⊗ σq̄1β . The joint spin-density matrix is

normalized such that Cq1q̄100 ¼ 1, and the factor 1=4 assures
that Trq1;q̄1ρðq1; q̄1Þ ¼ 1.
The nonvanishing correlation coefficients can be calcu-

lated using the first line in Eq. (10) and the helicity
amplitudes in Table I (see Appendix A). We obtain for
the decomposed density matrix

FIG. 4. Kinematics of the annihilation process eþe− → q1q̄1 in
the c.m.s. Also shown are the axes of the helicity frames of the
quark and the antiquark.

2The quark mass is not neglected to account for the mass of
charm quarks that is not negligible when compared to the center
of mass energy of the BESIII experiment. Taking the mass of the
charm quark to be mc ≃ 1.5 GeV=c2, the velocity of charm
quarks in the c.m.s. at the BESIII energy is expected to be
βq ≃ 0.55.

3The definition of the helicity frame can be found, e.g., in
Ref. [40]. See also Ref. [33].
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ρðq1;q̄1Þ¼
1

4

�
1q1 ⊗1q̄1−

2−ð2−β2qÞsin2θ
2−β2qsin2θ

σq1z ⊗σq̄1z

þð2−β2qÞsin2θ
2−β2qsin2θ

σq1x ⊗σq̄1x þ β2qsin2θ

2−β2qsin2θ
σq1y ⊗σq̄1y

þð1−β2qÞ1=2sin2θ
2−β2qsin2θ

ðσq1x ⊗σq̄1z −σq1z ⊗σq̄1x Þ
�
: ð11Þ

This expression takes into account the nonvanishing quark
mass through the dependence on the quark velocity βq. If
the terms depending on the quark mass are neglected,
the expression in Eq. (11) is the same as in Ref. [29] when
only the terms arising from the exchange of the γ� are
considered.
The joint density matrix in Eq. (11) is not separable,

meaning that it cannot be expressed as ρðq1; q̄1Þ ¼P
i wiρiðq1Þ ⊗ ρiðq̄1Þ with positive weights wi and density

matrices ρiðq1Þ for the quark and ρiðq̄1Þ for the antiquark.
This is the general case that holds also for other processes,
e.g., the Z0 boson decay Z0 → q1q̄1 or the Higgs boson
decay H0 → q1q̄1. The case of a separable density matrix,
e.g., as in the decayW� → q1q̄1 in the massless quark limit
owing to the fact that the W� bosons couple left-handed
particles, can be considered as one exception.

D. The splitting matrix of the string+ 3P0 model

We describe the hadronization q1q̄1 → h1; h2;…; hN in
the string fragmentation framework by using the stringþ
3P0 model in Ref. [27]. The spacetime picture of the
hadronization of the q1q̄1 pair in the c.m.s. is depicted in
Fig. 5. After being produced at the spacetime point

indicated by O, the quark and the antiquark propagate in
opposite directions stretching a straight string between
them. The string axis is the quark-antiquark axis in the
c.m.s., and we take the ẑ axis along the quark momentum.
In the string fragmentation model, the hadronization can be
viewed as the iteration of the elementary quark splitting
q1 → hþ q2 (top right part of Fig. 5), where the emitted
hadron h ¼ ðq1q̄2Þ can be either a PS meson or a VM
(baryons and heavier hadronic states are not yet included in
the stringþ 3P0 model). The leftover quark q2 propagates
the spin information to the next splitting q2 → h0 þ q3, etc.
We indicate the four-momenta of q1, h and q2 by k1, p
and k2, respectively. Momentum conservation implies
p ¼ k1 − k2.
The four-momentum of h is parametrized by introducing

the longitudinal splitting variable Zþ ¼ pþ=kþ1 , the trans-
verse momentum pT and the transverse energy ε2h ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

T

p
, M being the hadron mass. The light-cone

components for a generic four-vector v are defined as
v� ¼ v0 � vz. The transverse momentum is pT ¼ ðpx; pyÞ
and we have pT ¼ k1T − k2T.
The model describes the elementary splitting in momen-

tum and spin space by the means of the splitting matrix [27]

Tq2;h;q1ðM2; Zþ;pT;k1TÞ ¼ Cq2;h;q1DhðM2Þ
�
1 − Zþ
ε2h

�
a=2

e−bLε
2
h=ð2ZþÞN−1=2

a ðε2hÞfTðk2
2TÞΔðk2TÞΓh;sh û

−1=2
q1 ðk1TÞ: ð12Þ

The coefficient Cq2;h;q1 describes the splitting in flavor
space and it is based on the wave function of h in isospin
space. The function jDhðM2Þj2 gives the invariant mass
distribution of h. For a fixed meson mass it is a delta
function centered on the nominal squared mass m2

h, while

for a resonance it is a relativistic Breit-Wigner function
with mass and width fixed to their nominal values (more
details can be found in Ref. [27]). The factors involving the
Zþ variable describe the distribution of the longitudinal
momentum of h, which depends on the free parameter bL.

TABLE I. The calculated expressions for ð4πα=sÞ−1M̂λ−;λþ;λ1;λ̄1
for the allowed combinations of helicities when taking into
account the quark mass and neglecting the electron mass.

Results for ð4παÞ−1M̂λ−;λþ;λ1;λ̄1

ðλ1; λ̄1Þ
ðλ−; λþÞ þþ þ− −þ −−

þ− sin θ=γq −ð1þ cos θÞ −ð1 − cos θÞ sin θ=γq
−þ − sin θ=γq −ð1 − cos θÞ −ð1þ cos θÞ − sin θ=γq

FIG. 5. Spacetime picture of the string fragmentation of the
q1q̄1 pair. Also shown are the spacetime points where the string
breaks via a quark-antiquark pair in the relative 3P0 state and
where quarks couple to the hadrons.
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The function Naðε2hÞ depends on the squared transverse
energy of h and plays the role of a normalization factor for
the Zþ-dependent part of the splitting amplitude squared.
It is given by N−1

a ðε2hÞ ¼
R
1
0 dZþZ−1þ ½ð1 − ZþÞ=ε2h�a ×

expð−bLε2h=ZþÞ. The function fT provides the transverse
momentum cutoff for the quarks created at string breaking
and it is taken to have the exponential form fTðk2

2TÞ ¼
expð−bTk2

2T=2Þ, with bT being a free parameter.
The last three terms of Eq. (12) express the spin

dependence of the splitting amplitude. ThematrixΔðk2TÞ ¼
μþ iσ · ðẑq1 × k2TÞ ¼ μþ iσq1z σ · k2T parametrizes the 3P0

wave function of the q2q̄2 pair produced at the string
breaking (see Fig. 5) and it depends on the complex mass
μ. The latter can in principle depend on the flavor of q2 and
on k2

2T, but it is taken to be flavor and k
2
2T independent. The

imaginary part ImðμÞ is responsible for transverse spin
effects, e.g. the Collins effect and the dihadron production
asymmetry, while Imðμ2Þ ¼ 2ReðμÞImðμÞ is responsible for
longitudinal spin effects, e.g., the jet-handedness [25]. The
matrix σT ¼ ðσx; σyÞ is thevector of Paulimatriceswith only
transverse components.
The matrix Γh;sh projects the spin state of the q1q̄2 pair

onto the spin state of the hadron h (see Fig. 5), and it is
referred to as the coupling matrix. It is given by

Γh;sh ¼
�
σz if h ¼ PS;

GL1V�
L þ GTσTσz · V�

T if h ¼ VM;
ð13Þ

where V ¼ ðVT; VLÞ is the linear polarization vector of the
VM. In the case of VM emission, the coupling matrix
depends on the complex coupling constants GL and GT,
which describe the coupling of q1 and q2 with a VM
having longitudinal and transverse polarization with
respect to the string axis, respectively. Only the combina-
tions fVM¼2jGTj2þjGLj2j, fL ¼ jGLj2=ð2jGTj2 þ jGLj2Þ

and θLT ¼ argðGL=GTÞ are, however, relevant. The param-
eter fVM gives the ratio between the probability of
producing a VM and the probability of producing a PS
meson in the elementary splitting. The parameters fL and
θLT govern the fraction of longitudinally polarized VMs in
each splitting and their oblique polarization, respectively.
In the present model, due to the particular choice for

Naðε2hÞ [26], the function ûq1ðk1TÞ does not depend neither
on k1T nor on the polarization state of q1 [27]. The latter
can be decomposed as

ûq1 ¼
X
h

ûq1;h;

ûq1;h¼jCq2;h;q1 j2ðjμj2þhk2TifTÞ
�
1 if h¼PS;

fVM if h¼VM;
ð14Þ

where we have defined hk2TifT ¼
R
d2kTk2Tf

2
Tðk2TÞ=R

d2kTf2Tðk2TÞ. The ratio ûq1;h=ûq1 gives the relative prob-
ability of producing the hadron species h in the elementary
splitting.
Due to the left-right (LR) symmetry [28] the string

fragmentation process can be viewed equivalently as
the iteration of the elementary splitting q̄1 → H þ q̄2 of
the antiquark q̄1 in the emitted hadron H ¼ ðq̄1q2Þ and the
leftover antiquark q̄2 (top left part of Fig. 5). To describe the
elementary splitting of an antiquark we indicate by k̄1 and
k̄2 the four-momenta of q̄1 and q̄2 and by P the four-
momentum of H. The transverse momenta of q̄1, H and q̄2
are indicated by k̄1T, PT and k̄2T, respectively. Momentum
conservation in the splitting implies PT ¼ k̄1T − k̄2T.
The splitting matrix for the antiquark splitting was not

given in Ref. [27]. It can however be obtained from Eq. (12)
using the LR symmetry, and it is

Tq̄2;H;q̄1ðM2; Z−;PT; k̄1TÞ ¼ Cq̄2;H;q̄1DHðM2Þ
�
1 − Z−

ε2H

�
a=2

e−bLε
2
H=ð2Z−ÞN−1=2

a ðε2HÞfTðk̄2
2TÞΔðk̄2TÞΓH;sH û

−1=2
q̄1 ðk̄1TÞ; ð15Þ

where it is Δðk̄2TÞ ¼ μþ iσ · ðẑq̄1 × k̄2TÞ ¼ μþ iσq̄1z σ · k̄2T.
It is the same expression as Eq. (12) with the substitu-
tions q1 → q̄1, h → H, q2 → q̄2 and Zþ → Z−, and
fk1T;pT;k2Tg → fk̄1T;PT; k̄2Tg. The variable Z− is de-
fined as Z− ¼ P−=k̄−1 (see Fig. 5).

III. THE POLARIZED FRAGMENTATION
OF A STRING WITH ENTANGLED QUARKS

The stringþ 3P0 model has been applied to the fragmen-
tation of a string stretched between a quark q1 on the one end
point and an antiquark q̄1 (or a diquark) on the other end

point, where only the quark polarization is considered
[25–27]. The fragmentation chain is thus developed from
the quark toward the other endpoint, and the spin information
is propagated only from the quark side.
In this section we extend the stringþ 3P0 model of

Ref. [27] to the fragmentation of a string stretched between
q1 and q̄1 with correlated spin states as described by the
joint spin-density matrix ρðq1; q̄1Þ. This development is
needed for the Monte Carlo simulation of eþe− annihilation
to hadrons including the quark spin effects. The final
recursive recipe for the simulation of eþe− annihilation
is given in Sec. III B.
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A. The steps of the fragmentation chain

1. Hadron emission from the quark end

Pseudoscalar meson emission. We start by considering the
emission of a PS meson h from the quark end of the string,
i.e. by the splitting q1 → hþ q2. The emission of h is
described by the probability distribution of emitting the
hadron with a given four-momentum. This is obtained
neglecting the information coming from the q̄1 end.
Inserting in Eq. (2) the expression of ηðq1Þ given in
Eq. (4a) and imposing ηðq̄1Þ ¼ 1q̄1 and ηðq2Þ ¼ 1q2 ,4 we
obtain the probability distribution

dPðq1 → h ¼ PSþ q2; q1q̄1Þ
dZþZ−1þ d2pT

≡ Fq2;h;q1ðZþ;pT;k1T; Cq1q̄1Þ
¼ Trq2q̄1 ½Tq2;h;q1ρðq1; q̄1ÞT†

q2;h;q1
�; ð16Þ

where we have defined Tq2;h;q1 ¼ Tq2;h;q1 ⊗ 1q̄1 . The prob-
ability distribution is thus obtained by acting with the
splitting matrix Tq2;h;q1 on the quark spin subspace of the
joint spin-density matrix, with the identity matrix 1q̄1 on the
antiquark spin subspace (there is yet no information about
the emissions from the q̄1 end) and by taking the trace over
the quark and antiquark spin indices. This is represented by
the diagram in Fig. 6, ignoring here the buckle to DUðhÞ.
The differential probability dPðq1 → h ¼ PSþ q2Þ in the
first line in Eq. (16) is divided by the phase space
element dZþZ−1þ d2pT.
The function Fq2;h;q1ðZþ;pT;k1T; Cq1q̄1Þ will be referred

to as the splitting function. It describes the energy-
momentum sharing between h and q2; it depends on the
splitting variable Zþ and on the transverse momentum pT,
given the value of the transverse momentum k1T of q1 and
the values of the correlation coefficients Cq1q̄1 that imple-
ment the spin correlations between the two string end
points. The explicit expression of the splitting function for
PS meson emission is obtained inserting in Eq. (16) the
Eqs. (12)–(14). The result is (here it depends on k1T ¼ 0,
but for iterations of the splitting we will have knT ≠ 0)

Fq2;h¼PS;q1ðZþ;pT;k1T;Cq1q̄1Þ

¼ ûq1;h
ûq1

�
1−Zþ
ε2h

�
a
e−bLε

2
h=ZþN−1

a ðε2hÞf2Tðk2
2TÞ

jμj2 þk2
2T

jμj2 þ hk2TifT
× ð1þ âðk2TÞCq1q̄1x0 sinϕq1

k2
− âðk2TÞCq1q̄1y0 cosϕq1

k2
Þ: ð17Þ

The first line describes the splitting in flavor space, the
distribution of the Zþ variable and the distribution of
the modulus of the transverse momentum k2T of q2, while
the second line gives the distribution of the azimuthal angle
ϕq1
k2

of k2T. The azimuthal angle ϕq1
k2

is measured in the
QHF. The azimuthal distribution of k2 has a modulation
whose amplitude depends on the correlation coefficients of
the string end points times the analyzing power â [see
Eq. (17)]. The latter is given by

âðk2TÞ ¼
2ImðμÞk2T
jμj2 þ k2

2T
: ð18Þ

To recall the meaning of â, we consider the fragmenta-
tion of a quark with polarization vector Sq1 ¼ ðSq1T;Sq1LÞ,
where Sq1T and Sq1L are the transverse and longitudinal
polarizations with respect to the string axis. As shown in
Ref. [27], the splitting function for the emission of a PS
meson has a similar expression as Eq. (17) but the third line
is substituted with 1 − âSq1T · k̃2T. The distribution of the
azimuthal angle of k2T is characterized by the modulation
sinðϕq1

k2
− ϕSq1

Þ, which is transferred to the hadron and is
responsible for the Collins effect. Comparing with Eq. (17),
one can see that the coefficients Cq1q̄1x0 and Cq1q̄1y0 play the role
of the x and y components of the transverse polarization
vector Sq1T. Note however that due to Eq. (11) these
coefficients are zero for the primary quark-antiquark pair
q1q̄1, so the last line of Eq. (17) is just equal to unity. This
will be no more the case in the iterations, i.e. after the first
quark or antiquark splitting.

Vector meson emission. If the quark end of the string emits a
VM instead of a PS meson, the acceptance matrix ηðq1Þ is
more explicitly represented by the diagram of Fig. 3 than by
the rectangle B in Fig. 1. This diagram represents the
probability of the processq1 → h ¼ VMþ q2. The splitting
matrix in Eq. (12) can be decomposed as Ta

q2;h¼VM;q1
Va and

the VMcoupling in Eq. (13) as ΓaVa, where the label a ¼ x,
y, z indicates the components of the polarization vectorV of
the VM in the QHF.

FIG. 6. Diagrammatic representation of the splitting functions
in Eqs. (16) and (20).

4This assumption bears on the fact that, for large enough
invariant mass of the remaining q2q̄1 system, the spin information
decays along the quark fragmentation chain of this system [see
Eqs. (31) and (32) of Ref. [26]].
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Following Fig. 3, the acceptance matrix ηðq1Þ after the
emission of a VM can be written as

ηðq1Þ ¼ T†a0
q2;h¼VM;q1

ηðq2ÞTa
q2;h¼VM;q1

Da0;a; ð19Þ

where the matrix D with elements Da0a ¼ ha0jDjai is the
decay matrix that implements the information about the
decay products of the VM (see Sec. III A 2). The decay
matrix is an acceptance matrix that replaces the trivial one
ηðhÞ ¼ 1 of the PS case. If the decay of the meson is not
analyzed or the angular distribution of the decay products is
integrated over, the decay matrix is the identity matrix
Da0a ¼ δa0a.
Inserting Eq. (19) in Eq. (2), the probability distribution

for the emission of a VM from the quark end of the string is
obtained by taking ηðq̄1Þ ¼ 1q̄1 and ηðq2Þ ¼ 1q2 . This leads
to the probability distribution for a nonanalyzed VM:

dPðq1 → h ¼ VMþ q2; q1q̄1Þ
dM2dZþZ−1þ d2pT

≡ Fq2;h;q1ðM2; Zþ;pT;k1T; Cq1q̄1Þ
¼ Trq2q̄1 ½Ta

q2;h¼VM;q1
ρðq1; q̄1ÞT†a

q2;h¼VM;q1
�; ð20Þ

where we have defined Ta
q2;h¼VM;q1

¼ Ta
q2;h¼VM;q1

⊗ 1q̄1 .
Equation (20) is represented by the diagram in Fig. 6.
Compared to the PS case in Eq. (17), the splitting function
for VM emission depends additionally on the invariant
mass squared M2 of the meson, which is not fixed. The
invariant mass is included also in the phase space factor to
account for the mass distribution of the resonance. As
indicated in the third line in Eq. (20) a summation over the
polarization states of the VM is understood.
Inserting in Eq. (20) the splitting matrix (12) with the

VM coupling (13) and ûq1 from (14), we obtain the
following expression for the splitting function for VM
emission:

Fq2;h¼VM;q1ðM2; Zþ;pT;k1T; Cq1q̄1Þ

¼ ûq1;h
ûq1

jDhðM2Þj2
�
1 − Zþ
ε2h

�
a
e−bLε

2
h=ZþN−1

a ðε2hÞ

× f2Tðk2
2TÞ

jμj2 þ k2
2T

jμj2 þ hk2TifT
ð1 − âðk1TÞfLCq1q̄1x0 sinϕq1

k2

þ âðk1TÞfLCq1q̄1y0 cosϕq1
k2
Þ: ð21Þ

The structure of the splitting function and the meaning of
the different pieces is the same as in the PS meson case in
Eq. (17). The differences are the introduction of the
invariant mass distribution jDhðM2Þj2 and the amplitudes
of the modulations in the azimuthal angle ϕq1

k2
in the third

and last lines. As shown in Ref. [27], for VM production
the amplitudes of the modulations in the distribution of ϕq1

k2

are the opposite to those of the PS case, and they are
reduced by the factor fL [cf. with the last line in Eq. (17)].

2. The polarized decay of the vector meson

The VM has been emitted. Now we consider its decay.
The spin-density matrix of h can be calculated by inserting
Eq. (19) in Eq. (2), imposing ηðq̄1Þ ¼ 1q̄1 and ηðq2Þ ¼ 1q1 ,
and freeing the polarization indices of the meson. The
result is

ρaa0 ðhÞ ¼
Trq2q̄1 ½Ta

q2;h¼VM;q1
ρðq1; q̄1ÞT†a0

q2;h¼VM;q1
�

Tr½…�

¼ Cq1q̄1α0 Trq½Δðk2TÞΓaðhÞσq1α Γa0†ðhÞΔ†ðk2TÞ�
Tr½…� ð22Þ

and is represented by the upper rectangular domain in
Fig. 7. In the denominator ½…� indicates the same expres-
sion as in the numerator but the trace is taken also on
the polarization index a of the VM. a and a0 can take the
values x, y, z and span the polarization states of the
meson measured in the meson rest frame.5 We have
also used the vector of couplings matrices ΓaðhÞ ¼
ðGTσ

q1
x σq1z ; GTσ

q1
y σq1z ; GL1

q1Þ [see Eq. (13)].
The spin-density matrix of the VM is used for the

generation of the anisotropic angular distribution of the
hadrons produced in the decay of the meson. Indicating
with Maðp1; p2;…Þ the matrix element that describes the
decay process VM → p1; p2;…, the angular distribution of
the decay products in the rest frame of the VM can be
obtained by

FIG. 7. Unitarity diagram for q1q̄1 → hX, where h is a VM
emitted from q1 and decays in three pions. Particularly is shown
the decay matrix of the VM.

5This rest frame is obtained from the c.m.s. by the boost
composition of Ref. [27].
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dN
dΦðp1; p2;…Þ ¼

Maðp1; p2;…Þρaa0 ðhÞM†
a0 ðp1; p2;…ÞR

dΦðp1; p2…Þ½…� :

ð23Þ

The quantity dΦðp1; p2;…Þ indicates the differential phase
space element involved in the decay. The detailed descrip-
tion of the decay processes included in the stringþ 3P0

model is given in Ref. [27]. The quantities in the numerator
on the rhs of Eq. (23) are represented in Fig. 7 for the
example h ¼ ω → 3π.
Following the CK recipe, the decay process of the VM

fixes the decay matrix Dðp̂1; p̂2;…Þ, where p̂1; p̂2;… are
the generated four-momenta of the decay hadrons. The
decay matrix is necessary to account for the quantum
mechanical correlations between the orientation of the
decay hadrons and the spin state of the leftover quark q2
or the antiquark q̄1. It is given by

Da0aðp̂1; p̂2;…Þ ¼ M†
a0 ðp̂1; p̂2;…ÞMaðp̂1; p̂2;…Þ; ð24Þ

and hence it is evaluated at the generated momenta of the
decay hadrons and depends on the matrix element that
describes the decay process. The formation of the decay
matrix is represented in Fig. 7 by the hexagonal domain.

3. Propagation of the spin correlations

After the emission of the hadron h from the quark end of
the string by the splitting q1 → hþ q2 the string piece
stretched between q2 and q̄1 remains to be fragmented. The
q2q̄1 string is characterized by a new joint spin-density
matrix ρðq2; q̄1Þ and associated new correlation coefficients
Cq2q̄1 . If h ¼ PS, the joint spin-density matrix can be
calculated by inserting in Eq. (2) the acceptance matrix
ηðq1Þ in Eq. (4b) and identifying the resulting expression
with dσ ∝ Trq2q̄1 ½ρðq2; q̄1Þηðq2Þ ⊗ ηðq̄1Þ�. If h ¼ VM, the
acceptance matrix to be used is that in Eq. (19) with the
decay matrix in Eq. (24). We obtain (given the emission of
the hadron h from the quark end of the string) for the joint
spin-density matrix of the system q2q̄1

ρðq2;q̄1Þ¼
�Tq2;h;q1ρðq1;q̄1ÞT†

q2;h;q1
=Tr½…� h¼PS;

Ta
q2;h;q1

ρðq1;q̄1ÞT†a0
q2;h;q1

Daa0=Tr½…� h¼VM:

ð25Þ

It is represented by the domain C in Fig. 1. The associated
correlation coefficients are

Cq2q̄1α0β ¼ Trq2q̄1ðρðq2; q̄1Þσα0 ðqÞ ⊗ σβðq̄1ÞÞ
¼ Cq1q̄1αβ Mq1

αα0=C
q1q̄1
α0 Mq1

α0: ð26Þ

Thus the correlation coefficients Cq2q̄1 can be obtained by
matrix operations on the correlation coefficients Cq1q̄1 by

introducing the matrix Mq1
αα0 . Such matrix for PS and VM

emissions is given by

Mq1
αα0 jPS ¼

1

2
Tr½σq1α0 Δðk2TÞΓhσ

q1
α Γ†

hΔ†ðk2TÞ�;

Mq1
αα0 jVM ¼ 1

2
Tr½σq1α0 Δðk2TÞΓaðhÞσq1α Γ†a0 ðhÞΔ†ðk2TÞ�Da0a:

ð27Þ
4. Hadron emission from the antiquark end

Pseudoscalar meson emission. The emission of a hadronH
from the antiquark end of the string by the splitting
q̄1 → H þ q̄2, after the hadron h was emitted from the
quark end proceeds in a way symmetrical to that of the
emission of h. The emission of h, which has already
occurred, has changed the q1 − q̄1 string in the q2 − q̄1 one
and we must take into account the spin information coming
from the splitting q1 → hþ q2. This information is con-
tained in the spin-density matrix ρðq2; q̄1Þ of Eq. (25).
Therefore, to get the momentum spectrum of H in the PS
case it suffices to make in Eq. (16) the replacement
q1 → q̄1, q̄1 → q2 and q2 → q̄2, h → H, Zþ → Z− and
pT → PT. We obtain

dPðq̄1 → H ¼ PSþ q̄2; q2q̄1Þ
dZ−Z−1

− d2PT

≡ Fq̄2;H;q̄1ðZ−;PT; k̄1T; Cq2q̄1Þ
¼ Trq2q̄2 ½Tq̄2;H;q̄1ρðq2; q̄1ÞT†

q̄2;H;q̄1
�; ð28Þ

where we have defined Tq̄2;H;q̄1 ¼ 1q2 ⊗ Tq̄2;H;q̄1 , and the
joint spin-density matrix ρðq2; q̄1Þ is given in Eq. (25). The
splitting function Fq̄2;H¼PS;q̄1 depends on Z−, PT, k̄1T and
on the correlation coefficients Cq2q̄1 , calculated in Eq. (26).
It gives the conditional probability of emitting the hadron
H, given that the hadron h was emitted from the quark end.
Inserting in Eq. (28) the splitting matrix in Eq. (15), the

explicit expression for Fq̄2;H¼PS;q̄1 is

Fq̄2;H¼PS;q̄1ðZ−;PT; k̄1T;Cq2q̄1Þ

¼ ûq̄1;H
ûq̄1

�
1−Z−

ε2H

�
a
e−bLε

2
H=Z−N−1

a ðε2HÞf2Tðk̄2
2TÞ

jμj2þ k̄2
2T

jμj2þhk2TifT
× ð1þ âðk̄2TÞCq2q̄10x sinϕq̄1

k̄2
− âðk̄2TÞCq2q̄10y cosϕq̄1

k̄2
Þ: ð29Þ

This expression is similar to Eq. (17), with the substitutions
Zþ→Z−, fk1T;pT;k2Tg→fk̄1T;PT;k̄2Tg, ϕq1

k2
→ ϕq̄1

k̄2
and

Cq1q̄1 → Cq2q̄1 . The azimuthal angle ϕq̄1
k̄2

of the transverse

momentum k̄2T of q̄2 is measured in the AHF. The
azimuthal angle in the QHF can be obtained using
Eq. (9). Equation (29) is responsible for a Collins effect
for the production of H in the AHF. The strength of the
effect depends on the emission of h from the quark side
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through the correlation coefficients Cq2q̄1 . A similar Collins
effect would have been found if we had treated the emission
of h after that ofH. In fact, these effects are related and they
sum up to an azimuthal correlation between pT and PT
given by Eq. (38).

Vector meson emission. The splitting function for the
emission of a VM in the antiquark splitting q̄1 → H ¼
VMþ q̄2 can be obtained from Eq. (28) by the substitution
1q1 ⊗Tq̄2;h¼PS;q̄1 ⊗→1q1 ⊗Ta

q̄2;h¼VM;q̄1
Va and by summing

over the polarization states of the meson. The correspond-
ing splitting function takes the explicit form

Fq̄2;H¼VM;q̄1ðM2; Z−;PT; k̄1T; Cq2q̄1Þ

¼ ûq̄1;H
ûq̄1

jDHðM2Þj2
�
1 − Z−

ε2H

�
a
e−bLε

2
H=Z−N−1

a ðε2HÞ

× f2Tðk̄2
2TÞ

jμj2 þ k̄2
2T

jμj2 þ hk2TifT
ð1 − âðk̄2TÞfLCq2q̄10x sinϕq̄1

k̄2

þ âðk̄2TÞfLCq2q̄10y cosϕq̄1
k̄2
Þ: ð30Þ

We note again that the azimuthal angle ϕq̄1
k̄2

of the transverse

momentum of q̄2 is measured in the AHF.
The density matrix of H as well as the correlation

coefficients of the new string piece after the antiquark
splitting q̄1 → H þ q̄2 have similar expressions to those
that are obtained when the hadron is emitted from the quark
side (see Secs. III A 2 and III A 3). The calculation is not
repeated here and the explicit expressions can be found in
Appendix B.

5. End of the fragmentation chain

We assume that several hadrons have been emitted from
both string ends and that a string piece stretched between a
quark ql and an antiquark q̄n remains to be fragmented by
the process qlq̄n → hþH. Following the recipe adopted in
the MC implementation of the Lund model of string
fragmentation [28], the condition for the termination of
the fragmentation chain is called if the squared mass of the
qlq̄n string falls below some minimum value M2

min of the
order of a GeV (for the precise definition of M2

min see
Ref. [28]). The fragmentation chain is thus ended by the
creation of a last quark pair and the formation of the
hadrons h and H. The corresponding spacetime picture is
shown in Fig. 8(a).
To construct these two hadrons we use the following

recipe. We consider the reaction ql þ q̄n → hþH equally
as ql → hþ qlþ1 followed by qlþ1 → H þ qlþ2, as
shown in Fig. 8(b), or as q̄n → H̄ þ qnþ1 followed by
q̄nþ1 → hþ qnþ2, where q̄n, q̄nþ1 and q̄nþ2 are, respec-
tively, the antiparticles of qlþ2; qlþ1 and ql. The qlq̄n pair is
characterized by the joint spin-density matrix ρðql; q̄nÞ ¼
4−1Cqlq̄n

μν σqlμ ⊗ σq̄nν . If ql was generated after q̄n, Eqs. (25)

and (26) are used to calculate such matrix; otherwise,
Eqs. (B2) and (B3) are used. ql, μ, q̄n, and ν take the place
of q2, α0, q̄1, and β in the first case, respectively, and of q2,
α, q̄2 and β0 in the second case.
Starting with ρðql; q̄nÞ, we build the matrix Rðql; qlþ2Þ

obtained by the successive transformations:
(a) change the signs of Cqlq̄n

μy and Cqlq̄n
μz (to put everything

in the QHF frame),
(b) reverse the signs of Cqlq̄n

μi for i ¼ x, y or z,
(c) multiply the resulting matrix on the left and on the

right by 1 ⊗ σz.
6

To fix the hadron h andH, we draw the flavor u, d or s of
qlþ1 with respective probabilities proportional to ûu, ûd or
ûs [see Eq. (14)]. Then the hadron species are drawn with
probabilities proportional to jCqlþ1;h;ql j2 and jCqlþ2;H;qlþ1

j2.
The mass of VMs is generated according to the corre-
sponding distribution jDðM2Þj2.
To build the four-momenta of p of h and P of H, it is

necessary to know the transverse momentum kTðqlþ1Þ of
qlþ1. The latter is generated with the probability propor-
tional to

hjjT a;bjiihi ⊗ j0jRji0 ⊗ jihj0jT †a;bji0i ð31Þ

(summed over repeated indices), where i, j, a and b are spin
states of ql, qlþ2, h and H, and

T a;b ¼ ΓbðHÞΔðkTðqlþ1ÞÞΓaðhÞ: ð32Þ

FIG. 8. (a) Spacetime picture of the string fragmentation of the
qlq̄n pair and the production of the last two hadrons h and H.
(b) Associated amplitude for the two-step process ql → hþ qlþ1

and qlþ1 → H þ qlþ2.

6Steps (b) and (c) come from the expression ξðSÞ ¼ σzχð−SÞ
of an antiquark spinor in the stringþ 3P0 model [25], where χðSÞ
and ξðSÞ are the 2D reductions of the Dirac spinors uðp;SÞ and
vðp;SÞ ¼ γ5uðp;−SÞ in the hαzi ¼ þ1 subspace. The choice of
this subspace is motivated by the relation hαzi ¼ vz and the fact
that in Fig. 8 a longitudinal velocity vz ¼ þ1 is attributed to the
antiquark just before it reaches the emission vertex of H.
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The latter amplitude is also shown inFig. 8(b). The transverse
momenta of the emitted hadrons then calculated as pT ¼
kTðqlÞ − kTðqlþ1Þ and PT ¼ kTðqlþ1Þ − kTðqlþ2Þ.
Finally, the longitudinal momenta (and the energies) of

the final two hadrons are obtained by calculating the two
possible solutions of the system:

pþp− ¼ m2
h þ p2

T;

ðPþ
rem − pþÞðP−

rem − p−Þ ¼ m2
H þ P2

T; ð33Þ

with Prem ¼ kðqlÞ þ kðq̄nÞ ¼ kðqlÞ − kðqlþ2Þ, and choos-
ing one of them, each having a relative weight proportional
to expf−bLPþp−g. The factor Pþp− is the area in the past
light cone of the spacetime point Q in Fig. 8(a). The
exponential gives the probability that no string breaking
occurred in the past light cone of Q.
If h andH are VMs, their spin states are described by the

joint density matrix of h and H:

ha; bjρðh;HÞja0; b0i
∝ hjjT a;bjiihi ⊗ j0jRji0 ⊗ jihj0jT †a0;b0 ji0i: ð34Þ

If only h is a VM, one gets the single density matrix
hajρðhÞja0i by omitting the indices b and b0. The case
where only H is a VM is analogous. If h is a VM, its decay
is treated like in Sec. III A 2 with ρðhÞ ¼ TrHρðh;HÞ. If H
is also a VM, to generate its decay one must first calculate
the decay matrix DðhÞ as in Sec. III A 2 according to the
CK recipe and then decayH according to the density matrix

hbjρðHÞjb0i ∝ ha; bjρðh;HÞja0; b0iha0jDðhÞjai: ð35Þ

The proposed recipe is formulated at the amplitude level,
and it can be regarded as the generalization of the recipe of
the Lund model [28] employed for the joining of the quark
and antiquark jets in Monte Carlo simulations.

B. The recursive recipe for the string fragmentation

By gathering the ingredients presented in Sec. III A, we
can now formulate the following recipe for the fragmenta-
tion of a string stretched between a quark q1 and an
antiquark q̄1 with entangled spin states. As already men-
tioned, we assume the q1q̄1 pair to be produced in the hard
process eþe− → γ� → q1q̄1. The recipe is however general
and can be applied to other processes as well. In fact, the
information on the hard process that produces the pair is
included only in the joint spin-density matrix ρðq1; q̄1Þ,
which is required as an initial condition for the simulation
of the hadronization process q1q̄1 → h1; h2;…; hN .
We divide the simulation of the eþe− annihilation in the

generation of the primary quark pair and in the string
fragmentation of the pair.

1. Generation of the primary quark pair

Generate the flavor of q1 using the relative probabilities
P̂ðuūÞ∶P̂ðdd̄Þ∶P̂ðss̄Þ∶P̂ðcc̄Þ∶ � � �, where P̂ðq1q̄1Þ ¼
σ̂ðq1q̄1Þ=

P
q σ̂ðqq̄Þ and σ̂ ¼ R

d cos θdσ̂=d cos θ is the
integrated hard cross section obtained using Eq. (7). Then
generate the polar angle θ using the probability distribution
obtained by the cross section ratio σ̂−1dσ̂=dΩ̂. Set up the
four-momenta of eþ, e−, q1 and q̄1 using Eq. (6) and use the
generated value of θ to calculate the correlation coefficients
Cq1q̄1 . The latter can be read from the expression of the joint
spin-density matrix of the q1q̄1 pair in Eq. (10).

2. String fragmentation of the quark pair

The initial conditions for the string fragmentation proc-
ess are the momenta k1 of q1 and k̄1 of q̄1 and the joint
density matrix ρðq1; q̄1Þ. From the quark momenta we
define the available light-cone momenta Pþ

tot ¼
ffiffiffi
s

p ¼ P−
tot,

where Ptot ¼ k1 þ k̄1. It is k1T ¼ k̄1T ¼ 0, and thus
Ptot;T ¼ 0. To generate recursively the string fragmentation
process of the q1q̄1 pair, repeat the following steps:
(1) Select with equal probability whether to emit the

first hadron h from the quark side or the anti-
quark side.7

(2) If the splitting is performed from the quark side:
select a new quark pair q2q̄2 with probability
ûq1;h=ûq1 using Eq. (14), form the hadron h ¼
ðq1q̄2Þ and decide whether it is a VM with proba-
bility fVM, or a PS meson. If h is a PS meson,
generate k2

2T, ϕ
q1
k2

and Zþ using the splitting func-
tion Fq2;h¼PS;q1ðZþ;pT;k1T; Cq1q̄1Þ in Eq. (17). If h
is a VM, use instead the splitting function
Fq2;h¼VM;q1ðM2; Zþ;pT;k1T; Cq1q̄1Þ in Eq. (21) to
generate first the invariant mass squared M2 and
then k2

2T, ϕq1
k2

and Zþ. Calculate the light-cone
momenta pþ ¼ Zþkþ1 and p− ¼ ε2h=p

þ, the new
available light-cone momenta ðPþ

totÞnew ¼ Ptot − pþ

and ðP−
totÞnew ¼ P−

tot − ε2h=p
þ, and the transverse

momentum Pnew
tot;T¼Ptot;T−pT. If ðP2

totÞnew < M2
min,

go to step 4. Otherwise set Ptot ¼ ðPtotÞnew and
continue by constructing the four-momentum of h
using p ¼ ðEh;pT; pLÞ, where Eh ¼ ðpþ þ p−Þ=2
and pL ¼ ðpþ − p−Þ=2.
If h is a VM, apply the following further steps to

decay the meson:
(2.1) Calculate the spin-density matrix of h using

Eq. (22) and generate the momenta of the
decay hadrons in the rest frame of h using
Eq. (23). The expressions for the decay
amplitude Ma can be found in Ref. [27].

(2.2) Calculate the decaymatrixD using Eq. (24).

7As done in the Lund string model [28].
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(2.3) To come back to the center of mass frame,
apply the composition of longitudinal and
transverse boosts in Ref. [27] to the decay
hadrons.

(3) Calculate the correlation coefficients Cq2q̄1 of the
new string piece with end points q2 and q̄1 using
Eqs. (26) and (27). Let q2, k2 and Cq2q̄1 take the place
of q1, k1 and Cq1q̄1 , respectively, and go to step 1.
If the splitting is performed from the antiquark

side: the steps are similar to the splitting from the
quark side and can be found in Appendix C.

(4) The mass of the remaining string piece ql − q̄n has
become less than Mmin. To terminate the fragmen-
tation chain hadronize the remaining qlq̄n pair by
generating the last quark pair qlþ1q̄lþ1 and forming
the hadrons h ¼ ðqlq̄lþ1Þ and H ¼ ðq̄nqlþ1Þ. For
each hadron, decide whether it is a VM with
probability fVM or a PS meson. Generate the
longitudinal splitting variable and transverse mo-
mentum of q by the recipe in Sec. III A 5. Calculate
the transverse momenta pT ¼ klT − kTðqlþ1Þ and
PT ¼ k̄nT þ kTðqlþ1Þ. Finally build the four-
momentum p of h and P of H.

Steps 1–4 are similar to those applied for the imple-
mentation of the Lund string model in the PYTHIA event
generator [21,22]. In addition the CK recipe and the rules of
the stringþ 3P0 model are used to account for the spin
correlations at each hadron emission and to propagate these
correlations after each emission as required by quantum
mechanics. This recursive recipe is therefore suitable for
the implementation of the eþe− annihilation with spin
effects in MCEGs. The natural choice would be the
implementation in PYTHIA 8 [22] by extending the
StringSpinner package [24], which currently is applied only
to the polarized SIDIS process.

IV. APPLICATION TO BACK-TO-BACK
HADRON PRODUCTION IN e+ e −

The recipe for the fragmentation of a string stretched
between a quark pair with correlated spin states described
in Sec. III A can be checked to reproduce the expected
azimuthal distribution by applying it to the process
eþe− → hHX. As in Sec. III A, we assume h to be emitted
in the splitting q1 → hþ q2 and H to be emitted in the
splitting q̄1 → H þ q̄2. The two hadrons are associated to
different quark jets and are thus expected to be produced
nearly back to back in the c.m.s. The calculations are shown
in Sec. IVA for the case h ¼ PS and H ¼ PS and in
Sec. IV B for the case h ¼ VM and H ¼ PS. For these
calculations we neglect the quark mass mq.

A. Production of back-to-back PS mesons

According to the recipe described in Sec. III A, the
probability of producing the two hadrons h and H is

obtained as a three-step process (e.g., starting the string
fragmentation from the q1 side): (i) the production of the
q1q̄1 pair in the hard process eþe− → q1q̄1, (ii) the splitting
q1 → hþ q2 given the Cq1q̄1 correlation coefficients, and
(iii) the splitting q̄1 → H þ q̄2 given the correlation coef-
ficients Cq2q̄1 . The probability for step (i) to occur is given
by the cross section for the hard scattering. The proba-
bilities for steps (ii) and (iii) to occur are given by the
splitting functions of Eqs. (17) and (29), respectively. The
total probability is the product of the three probabilities,
and it can be written as [cf. Eq. (1) with ηðq2Þ ¼ 1q2 and
ηðq̄2Þ ¼ 1q̄2]

dPðeþe− → hHXÞ

¼ σ̂−1
dσ̂

d cos θ
d cos θ

× Fq2;h;q1ðZþ;pT;k1T; Cq1q̄1ÞZ−1þ dZþd2pT

× Fq̄2;H;q̄1ðZ−;PT; k̄1T; Cq2q̄1ÞZ−1
− dZ−d2PT; ð36Þ

where k1T ¼ 0 and k̄1T ¼ 0.
To calculate the splitting function Fq2;h;q1ðZþ;pT;

k1T; Cq1q̄1Þ of Eq. (17) one takes Cq1q̄1x0 ¼ Cq1q̄1y0 ¼ 0, accord-
ing to Eq. (11). Therefore h is emitted with a flat azimuthal
distribution. For the splitting function Fq̄2;H;q̄1 of Eq. (29),

instead, the coefficients Cq2q̄10x and Cq2q̄10y are needed. They
can be calculated by using Eqs. (26) and (27), with the
explicit expressions for the splitting amplitude in Eq. (12)
and the quark coupling to PS mesons in Eq. (13). We obtain

Cq2q̄10x ¼ Cq1q̄1xx
Mq1

x0

Mq1
00

¼ −
sin2θ

1þ cos2θ
âðk2TÞð− sinϕq1

k2
Þ;

Cq2q̄10y ¼ Cq1q̄1yy
Mq1

y0

Mq1
00

¼ −
sin2θ

1þ cos2θ
âðk2TÞ cosϕq1

k2
; ð37Þ

meaning that the quark q̄1 has a transverse polarization that
depends on the transverse momentum of h. According to
Eq. (29), this means that H is emitted with a Collins effect
in the AHF.
The hadron transverse momenta are given by pT ¼ −k2T

and PT ¼ −k̄2T. Indicating by ϕq
h and ϕq

H the azimuthal
angles of pT and PT in the helicity frame of q ¼ q1; q̄1,
respectively, one has ϕq1

h ¼ ϕq1
k2

þ π and ϕq̄1
H ¼ ϕq̄1

k̄2
þ π.

The azimuthal angle ϕq̄1
H can be expressed in the QHF using

Eq. (9), and it is ϕq1
H ¼ π − ϕq̄1

k̄2
.

With these considerations, and inserting in Eq. (36) the
Eqs. (17) and (29) with the coefficients in Eq. (37), we
obtain the probability for the PSþ PS case
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dPðeþe− → hHXÞ
d cos θdZþd2pTdZ−d2PT

¼ 3

8
ð1þ cos2θÞ × ûq1;h

ûq1
Z−1þ

�
1 − Zþ
ε2h

�
a
e−bLε

2
h=ZþN−1

a ðε2hÞf2Tðp2
TÞ

jμj2 þ p2
T

jμj2 þ hp2
TifT

×
ûq̄1;H
ûq̄1

Z−1
−

�
1 − Z−

ε2H

�
a
e−bLε

2
H=Z−N−1

a ðε2HÞf2TðP2
TÞ

jμj2 þ P2
T

jμj2 þ hP2
TifT

×

�
1þ sin2θ

1þ cos2θ
âðpTÞâðPTÞ cosðϕq1

h þ ϕq1
H Þ

�
: ð38Þ

As can be seen from the last factor of the equation, the
recipe produces the azimuthal modulation cosðϕq1

h þ ϕq1
H Þ

associated to the Collins asymmetry for the production of
two back-to-back hadrons in eþe−, as calculated in
Refs. [5,33]. Also, the amplitude of the modulation has
a positive sign, as observed by the BELLE [12] and BABAR
[9,10] experiments. The azimuthal angles of both hadrons
are referred to the same reference system, which in this case
is the QHF. The amplitude of the modulation is propor-
tional to the squared imaginary part ðImμÞ2 of the complex
mass μ. If the Imμ vanishes, then the asymmetry vanishes,
as is the case for the transverse spin effects in the stringþ
3P0 model [25,27].
The simple formula (38) holds only for the two leading

hadrons produced in each quark jet. In order to obtain the
complete results for the Collins asymmetries in eþe−
annihilation, the present model must be implemented in
a Monte Carlo event generator, either standalone as in
Ref. [27] or in the PYTHIA MCEG by extending the
StringSpinner package in Ref. [24]. Still, this calculation is
important as it demonstrates that the recipe presented in this
work reproduces the azimuthal correlation of the hadrons
produced in eþe− annihilation.

B. Production of back-to-back VM and PS mesons

It is also interesting to study the qualitative prediction of
the stringþ 3P0 model for the process eþe− → hHX, with
h ¼ VM and H ¼ PS being produced back to back in the
quark and antiquark jets, respectively. This asymmetry has
never been measured.
The probability dPðeþe− → hHXÞ, with h ¼ VM and

H ¼ PS being produced in the q1 and q̄1 splittings, can be
performed as in Sec. IVA. The expression is similar
to Eq. (36), with the third line substituted by the split-
ting function for VM emission Fq2;h¼VM;q1ðM2; Zþ;pT;

k1T; Cq1q̄1ÞdM2Z−1þ dZþd2pT. The expression for
Fq2;h¼VM;q1 is obtained by Eq. (21) taking Cq1q̄1x0 ¼
Cq1q̄1y0 ¼ 0. Instead, the splitting function Fq̄2;H;q̄1ðZ−;PT;

k̄1T; Cq2q̄1Þ can be obtained from Eq. (29). The latter
depends on the correlation coefficients Cq2q̄10x and Cq2q̄10y

for VM emission, which can be calculated using Eqs. (26)
and (27). Assuming that the decay products of the VM are
not analyzed, we obtain the correlation coefficients

Cq2q̄10x ¼ Cq1q̄1xx
Mq1

x0

Mq1
00

¼ þ sin2θ
1þ cos2θ

fLâðk2TÞð− sinϕq1
k2
Þ;

Cq2q̄10y ¼ Cq1q̄1yy
Mq1

y0

Mq1
00

¼ þ sin2θ
1þ cos2θ

fLâðk2TÞ cosϕq1
k2
: ð39Þ

This leads to the probability distribution for eþe− →
ðh ¼ VMÞðH ¼ PSÞX [the analog of Eq. (38)]:

dPðeþe− → hHXÞ
dcosθdM2dZþd2pTdZ−d2PT

∝
3

8
ð1þ cos2θÞ

×

�
1−

sin2θ
1þ cos2θ

fLâðpTÞâðPTÞcosðϕq
hþϕq

HÞ
�
: ð40Þ

Comparing with Eq. (38), one can see that the Collins
asymmetry for back-to-back VM and PS mesons has the
opposite sign with respect to the asymmetry for back-to-
back PS mesons. Also, it is scaled by the factor fL and it is
thus sensitive to the fraction of longitudinally polarized
VMs produced in hadronization. This is a genuine pre-
diction of the stringþ 3P0 model that could be tested
experimentally, and it is similar to the prediction for the
Collins asymmetries for VM production in SIDIS [27] and
to the prediction for the single spin asymmetries for VM
production in pp scattering [41].
The high precision BELLE [8] and BABAR [9] data

could provide valuable information on the Collins asym-
metry for, e.g., ρ0 and π� mesons produced back to back in
eþe− annihilation. The measurement of such asymmetry
would be useful to retrieve information on the free
parameter fL of the stringþ 3P0 model for VM production.
A negative asymmetry would be a confirmation of the
prediction of the stringþ 3P0 mechanism of hadronization.

V. CONCLUSIONS

We presented an extension of the stringþ 3P0 model to
the fragmentation of a string stretched between a quark q1
and an antiquark q̄1 with entangled spin states. The spin
correlations of the quarks are described by their joint spin-
density matrix ρðq1; q̄1Þ. The latter is calculated assuming
the quark pair to be produced in the annihilation of an
electron and a positron via the exchange of a virtual photon
and neglecting gluon radiation. The model is formulated as
a recursive recipe that applies the rules of the stringþ 3P0
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model for the emission of hadrons from quark splittings as
well as the Collins-Knowles recipe to take into account the
spin correlations in the fragmentation chain. The recipe is
general and it can be applied to other processes as well,
regardless of the production mechanism of the q1q̄1 pair.
To show that the proposed recipe reproduces the already

predicted angular distribution of the final state hadrons, we
carried a proof-of-concept calculation for the reaction
eþe− → hHX where one of the hadrons is produced in
the quark jet and the other in the antiquark jet. We obtained
qualitatively the angular modulation in the distribution of
the sum of the azimuthal angles of the two hadrons as
expected by the product of two Collins effects. It agrees
with the azimuthal correlation observed by the BELLE and
BABAR experiments and predicts a reversal of the sign of
the Collins asymmetry for back-to-back pseudoscalar and
vector mesons.
For a deeper investigation of the model predictions a

Monte Carlo implementation is required. The straightfor-
ward choice is the implementation in the PYTHIA generator
by extending the StringSpinner package, which will be
addressed in a separate work. Other improvements of the
model are possible, such as the inclusion of gluon radiation.
This development would be important to shed more light on
the evolution of quark spin effects with the c.m.s. energy of
the eþe− event.
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APPENDIX A: HELICITY AMPLITUDES

The Feynman diagram associated to the process
eþe− → q1q̄1, considering the exchange of one virtual
photon, and its complex conjugate are shown in Fig. 9.
We have indicated by λ−, λþ, λ1, and λ̄1 the helicities of the
e−, eþ, q1 and q̄1, respectively. The corresponding hel-
icities in the complex conjugated diagram are λ0−, λ0þ, λ01
and λ̄01. The helicity amplitude associated to the process
eþe− → q1q̄1 is given by

iM̂λ−;λþ;λ1;λ̄1 ¼ i
4πα

s
½v̄ðeþ; λþÞγμuðe−; λ−Þ�

× ½ūðq1; λ1Þγμvðq̄1; λ̄1Þ�; ðA1Þ

where u and v indicate the Dirac spinors in the helicity
basis for a fermion and an antifermion, respectively.
The explicit expressions of M̂λ−;λþ;λ1;λ̄1 have been calcu-

lated keeping the quarkmassmq, and the results are shown in
Table I for the different combinations of the helicity pairs
ðλ−; λþÞ and ðλ1; λ̄1Þ. If the quark masses are neglected,
there are only two pairs of nonvanishing matrix elements,
i.e. M̂þ−;þ− ¼ M̂−þ;−þ and M̂þ−;−þ ¼ M̂−þ;þ− (the
equalities hold because of parity conservation).
If the quark mass is taken into account, the two

other pairs of matrix elements M̂þ−;þþ ¼ M̂þ−;−−≡
and M̂−þ;þþ ¼ M̂−þ;−− show up. They involve helicity
nonconservation at the quark creation vertex. The explicit
expressions are shown in Table I. These matrix elements are

suppressed by the Lorentz factor γq ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2q

q
. For

charmed quarks, it is γc ≃ 3.57 in the kinematics of the
BELLE and BABAR experiments and γc ≃ 1.20 and in the
kinematics of the BESIII experiment.

APPENDIX B: SPIN PROPAGATION AFTER A
HADRON EMISSION FROM THE q̄1 END

We consider here the case of a hadronH that is emitted in
the splitting q̄1 → H þ q̄2 taken from the antiquark end of a
string stretched between the quark q2 and the antiquark q̄1.
The joint spin-density matrix of the q2q̄1 system is
described by the correlation coefficients Cq2q̄1 , calculated
using Eq. (26).

1. Density matrix and decay of the VM

If H ¼ VM, its spin-density matrix can be most sim-
ply calculated using Eq. (22) with the replacement
Ta
q2;h¼VM;q1

⊗ 1q̄1 → 1q1 ⊗ Ta
q̄2;H¼VM;q̄1

and T†a0
q2;h¼VM;q1

⊗
1q̄1 → 1q1 ⊗ T†a0

q̄2;H¼VM;q̄1
. Using the expression for the

splitting amplitude in Eq. (15), the spin-density matrix is

ρaa0 ðHÞ¼Cq2q̄10β Tr½Δðk̄2TÞΓaðHÞσq̄1β Γ†
a0 ðHÞΔ†ðk̄2TÞ�

Tr½…� : ðB1Þ

The spin-density matrix is used to generate the decay of H,
as described in Sec. III A 2. In this case, however, the polar
and azimuthal angles involved in the distribution of the
decay hadrons [see Eq. (24)] are defined in the AHF. They
can be expressed in the QHF by using Eq. (9).

2. Calculation of the new correlation coefficients

After the emission of H (and after its decay, if it is a
VM), a new string piece stretched between q2 and q̄2
remains. The joint spin-density matrix of the q2q̄2 system

FIG. 9. Leading-order diagram for the process eþe− → q1q̄1
(left) and its complex conjugate (right). For each particle the
momentum and helicity variables are shown in parentheses.
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can be calculated as in Eq. (25) using the replacement
Tq2;h¼PS;q1 ⊗ 1q̄1 → 1q1 ⊗ Tq̄2;H¼PS;q̄1 if H ¼ PS and
the replacement Tq2;h¼VM;q1 ⊗ 1q̄1 → 1q1 ⊗ Ta

q̄2;H¼VM;q̄1
if

H¼VM. The new joint spin-density matrix is thus given by

ρðq2;q̄2Þ¼
(
Tq̄2;H;q̄1ρðq2;q̄1ÞT†

q̄2;H;q̄1
=Tr½…� H¼PS;

Ta
q̄2;H;q̄1

ρðq2;q̄1ÞT†a0
q̄2;H;q̄1

Da0a=Tr½…� H¼VM:

ðB2Þ

The correlation coefficients for the q2q̄2 system can be
calculated using Eq. (B2) and the explicit expression for the
splitting amplitude in Eq. (15). They are

Cq2q̄2αβ0 ¼ Cq1q̄1αβ Mq̄1
ββ0=C

q1q̄1
0β Mq̄1

β0; ðB3Þ

where the matrix Mq̄1
ββ0 is given by

Mq̄1
β0βjPS ¼

1

2
Tr½σq̄1β Δðk̄2TÞΓHσ

q̄1
β0 Γ

†
HΔ†ðk̄2TÞ�

Mq̄1
β0βjVM ¼ 1

2
Tr½σq̄1β Δðk̄2TÞΓaðHÞσq̄1β0 Γ†a0 ðHÞΔ†ðk̄2TÞ�Da0a:

ðB4Þ
Equations (B3) and (B4) are, respectively, the analogs of
Eqs. (26) and (27) that apply when the meson is emitted
from the quark side. The matrix Mq̄1

αβ in Eq. (B4) can be
obtained from Eq. (27) by the substitutions q1 → q̄1,
h → H and k2T → k̄2T. The matrix Daa0 is the decay
matrix of H, which is calculated as in Sec. III A 2.

APPENDIX C: STEPS FOR THE SIMULATION
OF THE ANTIQUARK SPLITTING

The steps for the simulation of the antiquark splitting are
similar to those for the quark splitting described in points 2
and 3 in Sec. III B. They are the following.

(a) Select a new quark pair q2q̄2 with probability
ûq̄1;H=ûq̄1 using Eq. (14). Form the hadron H ¼
ðq̄1q2Þ and decide whether it is a VM with probability
fVM, or a PS meson. If H is a PS meson, generate
k̄2
2T, ϕq̄1

k̄2
and Z− using the splitting function

Fq̄2;H¼PS;q̄1ðZ−;PT; k̄1T; Cq2q̄1Þ in Eq. (29). If H is a
VM, use instead the splitting function
Fq̄2;H¼VM;q̄1ðM2; Z−;PT; k̄1T; Cq2q̄1Þ in Eq. (30) to
generate first the invariant mass squared M2 and then
k̄2
2T, ϕ

q̄1
k̄2

and Z−. Calculate the light-cone momenta

P− ¼ Z−k̄−1 and Pþ ¼ ε2H=P
− and construct the four-

momentum of H using P ¼ ðEH;PT; PLÞ, where
EH ¼ ðPþ þ P−Þ=2 and PL ¼ ðPþ − P−Þ=2. Express
P in the QHF using Eq. (9). Before accepting the
generated P, update the new available light-cone
momenta ðP−

totÞnew ¼ P−
tot − P− and ðPþ

totÞnew ¼
Pþ
tot − ε2H=P

− and the transverse momentum Pnew
tot;T ¼

Ptot;T − PT. If P2
tot < M2

min, go to step 4 in Sec. III B.
Otherwise define Ptot ¼ Pnew

tot .
If H is a VM, apply the following further steps to

decay the meson.
(a.1) Calculate the spin-density matrix of H using

Eq. (B1) and generate the momenta of the
decay hadrons in the rest frame of H using
Eq. (23). Express the momenta in the QHF
using Eq. (9). The expressions for the decay
amplitude M can be found in Ref. [27].

(a.2) Calculate the decay matrixD using Eq. (24).
(a.3) To come back to the center of mass frame,

apply the composition of longitudinal and
transverse boosts in Ref. [27] to the decay
hadrons.

(b) Calculate the correlation coefficients Cq2q̄2 of the new
string piece with end points q2 and q̄2 using Eqs. (B3)
and (B4). Let q̄2, k̄2 and Cq2q̄2 take the place of q̄1, k̄1
and Cq1q̄1 and then go to step 1 in Sec. III B.
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