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Abstract

One of the common excavation methods in the construction of urban infrastructures as well as water and wastewater facilities is the
excavation through soldier pile walls. The maximum lateral displacement of pile wall is one of the important variables in controlling the
stability of the excavation and its adjacent structures. Nowadays, the application of machine learning methods is widely used in engi-
neering sciences due to its low cost and high speed of calculation. This paper utilized three intelligent machine learning algorithms based
on the excavation method through soldier pile walls, namely eXtreme gradient boosting (XGBoost), least square support vector regressor
(LS-SVR), and random forest (RF), to predict maximum lateral displacement of pile walls. The results showed that the implemented
XGBoost model performed excellently and could make predictions for maximum lateral displacement of pile walls with the mean abso-
lute error of 0.1669, the highest coefficient of determination 0.9991, and the lowest root mean square error 0.3544. Although the LS-SVR,
and RF models were less accurate than the XGBoost model, they provided good prediction results of maximum lateral displacement of
pile walls for numerical outcomes. Furthermore, a sensitivity analysis was performed to determine the most effective parameters in the
XGBoost model. This analysis showed that soil elastic modulus and excavation height had a strong influence on of maximum lateral
displacement of pile wall prediction.
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1 Introduction

Deep excavation is now required today for a variety of
projects, including the construction of underground facili-
ties, water and sewage pumping stations, underground
stations, and the high-rise building basements. Especially
in urban construction, the safety and serviceability of sur-
rounding structures are at risk if the displacement of the
excavation exceeds a certain level. As a result, determining
the maximum displacement of a deep excavation is a
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crucial global problem. Engineers and researchers have
conducted a detailed analysis of lateral wall displacement
due to excavation. To date several research papers have
investigated the behaviour of different walls affected by
deep excavations, including diaphragm walls
(Addenbrooke et al., 2000; Bica & Clayton, 1998; Dong
et al., 2014; Elbaz et al., 2018; Goh et al., 2017; Hashash
& Whittle, 1996; Hsiung, 2009; Hsiung et al., 2016;
Kunasegaram & Takemura, 2021; Ou et al., 2020; Tan &
Wei, 2012), sheet piling (Gajan, 2011; Gopal Madabhushi
& Chandrasekaran, 2005; Wong & Broms, 1989), nailing
(Cheuk et al., 2005; Hu et al., 2020; Liu et al., 2021;
Singh & Sivakumar Babu, 2010; Yuan et al., 2019), and
soldier pile wall (Vermeer et al., 2001; Athmarajah & de
behalf of KeAi Communications Co. Ltd.

mmons.org/licenses/by-nc-nd/4.0/).
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Silva, 2019; Chalmovsky et al., 2011; Hong et al., 2003; Lee
et al., 2011; Perko & Boulden, 2008; Rashidi & Shahir,
2019; Ye & He, 2022; Zhang et al., 2022). Ramadan
et al. (2018) conducted a parametric study to evaluate three
factors, namely excavation depth, wall stiffness, and pile
embedment depth for shallow excavation in clay medium
using the three-dimensional finite element method. Various
design proposals for a safe support system were then made.
In order to establish a trustworthy representation of the
functioning of slip-resistant pile structures, Buslov and
Margolin (2018) conducted an analytical study on the sub-
ject of retaining walls with multiple rows of piles and eval-
uated the function of the second row during their
operation. Ramadan and Meguid (2020) provided the
results of a single numerical analysis to determine the activ-
ities of a cantilever secant pile wall used to support an exca-
vation in sand. This parametric study used a wide range of
sand density, excavation depth, flexural stiffness of wall,
and bonding between piles within the wall. Based on the
results, a model was developed to predict the deflection
of the wall in the presence of fully and partially bonded
piles. Bekdas� et al. (2020) investigated cantilever soldier
pile retaining walls embedded in friction soils in order to
balance cost and size while meeting geotechnical and struc-
tural criteria. Razeghi et al. (2021) performed nine cen-
trifuge experiments to investigate the effects of different
geometric elements, such as pile spacing ratio and pile
embedded depth ratio, on wall lateral displacement, pile
bending moment, and backfill settlement. The centrifuge
data suggested that reducing pile area and increasing the
pile embedment depth would reduce the settlement of can-
tilever pile walls.

The three main methods used to predict the deformation
of concrete walls caused by excavation are analytical and
semi-analytical solutions, numerical simulations, and
experimental studies. However, the predicted results are
usually exaggerated. The empirical formulas based on pre-
vious work have a very simple model and are not particu-
larly sophisticated in application. Although numerical
simulation techniques like the finite element and finite dif-
ference methods often provide more accurate results, they
are challenging due to the complexity of bringing together
all instinctive and extinct components. In addition, experi-
mental methods lead to very costly projects and require
advanced instrumentation.

Nowadays, the use of engineering problem-solving
methods using artificial intelligence algorithms is very ben-
eficial in various fields such as medicine, environment and
oil industry, construction, and all other sciences with the
development of computer science and advanced machine
learning algorithms and access to valuable data. Machine
learning (ML), a relatively new technology in the field of
geotechnical engineering, has attracted great interest due
to its high efficiency, superior generalisation performance,
and ability to handle problems in large-scale. Also, ML
methods have proven useful in predicting geomechanical
parameters, such as the tensile strength of rock materials
(Ceryan et al., 2013), assessing seismic-liquefaction poten-
tial (Samui et al., 2011), and predicting slope stability con-
ditions (Samui, 2013). These techniques have been applied
in different fields, such as the behavior of structural ele-
ments like diaphragm walls, sheet pile walls, and braced
walls, as well as in analysing the performance of piles
and evaluating ground surface settlement due to excavation
activities (Alkroosh & Nikraz, 2012; Ismail & Jeng, 2011;
Samui, 2011; Su et al., 2022). In addition, several research-
ers have studied various properties of diaphragm walls. Jan
et al. (2002) selected 18 case studies of deep excavations
with four to seven excavation phases to train and test the
prediction of diaphragm wall displacement by a supervised
neural network. A study on deep excavations, mostly in
soft soils, was conducted by Moormann (2004) using a
comprehensive database of over 530 recent worldwide case
studies. Kung et al. (2007) used an artificial neural network
(ANN) approach to predict deflection that would occur in
supported excavation in soft to medium clay. The convolu-
tional neural network (CNN) model was found to be the
most suitable model for predicting diaphragm wall deflec-
tion and was able to provide adequate guidance for site
safety management. Zhang et al. (2020) compared the pre-
diction performance of soft computing techniques such as
XGBoost, multivariate adaptive regression splines
(MARS), ANN, and support vector machine (SVM) in a
case study for estimating maximum lateral wall deflection
in supported excavation. Using three ML algorithms,
namely back-propagation neural network, long short-
term memory (LSTM), and gated recurrent unit (GRU),
Zhao et al. (2021) predicted the concrete diaphragm wall
caused by excavation. They showed that GRU outper-
formed LSTM in terms of computational time, which
exhibited lower prediction errors, and demonstrated
greater robustness in a 10-fold cross-validation. Later,
the effects of soft clay anisotropy on diaphragm wall defor-
mations in a braced excavation were determined based on
the results of finite element analysis (Zhang et al., 2021).
Huang et al. (2022) proposed an ANN approach to predict
the horizontal displacement of tunnels in soft soils caused
by excavation. ANN model was developed using a series
of finite element data sets obtained from verified numerical
models. Seven input variables were selected, including
excavation width and depth, retaining wall thickness, aver-
age shear strength, average modulus of elasticity for
unloading and reloading, horizontal distance between the
tunnel and retaining wall, and burial depth of tunnel
crown. The feasibility of the developed ANN model to pre-
dict the horizontal displacement of the tunnel due to exca-
vation was demonstrated by the results obtained.

Recently, ANN was used by Pradeep et al. (2022) to pre-
dict the embedment depth of a cantilever sheet pile wall in
the context of sheet piling. Soil properties such as cohesive-
ness, internal friction angel, and unit weight were employed
as input factors to determine the expected embedment
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depth of the pile. Akan (2022) demonstrated how expres-
sions derived using multiple linear regression (MLR) anal-
ysis can be used to determine where the maximum bending
moment (Mmax) would occur in the cross-section of a can-
tilever sheet pile wall penetrating sand. The results showed
that polynomial equations can be used in addition to MLR
models to achieve Mmax. Afterward, fully braced excava-
tions in inhomogeneous soils were examined for stability
using a two-dimensional plane strain-based finite element
limit analysis approach (Yodsomjai et al., 2022). However,
to generate the equation for stability prediction, the model
MARS was used, which is a machine regression method
commonly used by experts in the field. Zhang et al.
(2022) proposed a method based on automatic ML to
address the problem precisely so that they could determine
the effects of a deep excavation on nearby existing shield
tunnels. Their model was acceptable for the application
in real construction projects, as shown by the agreement
of the prediction results with the monitoring data. Huang
et al. (2021) proposed a method for calculating the
expected deflection of a cantilever wall in undrained clay
using an ANN-based tool. Their results showed that the
proposed model could reliably predict the deflection of a
cantilever wall in undrained clay. The sensitivity analysis
also revealed that the excavation depth had the greatest
influence. The state of deep learning (DL) practice in
geotechnical engineering was provided by Zhang et al.
(2021), who also showed the statistical trend of published
papers. In terms of geotechnical applications, four main
algorithms were developed: feedforward neural network,
recurrent neural network, CNN, and generative adversarial
network. Furthermore, the challenges and perspectives for
DL development in geotechnical engineering were men-
tioned and discussed.

2 Research aims and objectives

Based on the present literature review, there is a signif-
icant lack of using ML algorithms for rapid prediction of
maximum lateral displacement of deep excavations con-
structed with soldier pile walls. Therefore, this study pro-
poses three intelligent ML methods for predicting
maximum lateral displacement of deep excavations con-
structed by soldier pile walls. This research can be divided
as follows. Firstly, we introduce the idea of ML and several
complementary modeling techniques. Secondly, we
describe the databases and pre-processing techniques we
use to prepare the data for analysis. We then analyse the
applicability and generality of the three algorithms
XGBoost, LS-SVR and RF together with the ML and
compare the derived results to show the excellent fit and
predictive ability of the model.. A ranking of the influence
of deep excavation factors on lateral displacement is done
as the final step of the analytical process. The results are
then summarised.
3 Methodology

3.1 Workflow

The input parameters for training ML models are two
excavation dimensions (called B and L), excavation height
(H), soil elasticity (Es), pile height (Hp), soil friction angle
(u), soil cohesion (C), soil unit weight (c), pile diameter
(Dp), wale width (Ww), pile spacing (Sp), and shotcrete
thickness (t). Figure 1 shows the major steps of proposed
methodology. The details of the individual processes are
explained in the following section.

3.2 Database introduction

3.2.1 FEM model
Although deep excavations with soldier pile walls are

carried out in a number of engineering scenarios, data col-
lection in the field is quite tedious. Important parameters
are often missing from existing data, and there is insuffi-
cient mass to produce an estimate. This problem was
solved by creating a database for numerical modelling of
the maximum lateral displacement of soldier pile walls.
Figure 2 shows the typical geometry used for numerical
modelling. First, the finite element model (FEM) is verified
using data from a high-quality excavation project with
extensive documentation (Chavda et al., 2019); A database
was then created by building 675 different models based on
variable features. The reliable database is then used to
develop ML estimators.

The mathematical statistics on the database variables
are calculated and presented in Table 1 to provide better
understanding of data distribution. The extreme values of
the variables are labeled Max and Min. The mean value
represents the average, while standard deviation (SD) rep-
resents the degree of dispersion. The twelve database com-
ponents previously examined in the context of deep
excavation serve as input variables for this study. The max-
imum displacement of pile wall is treated as target in the
ML models, and it is present in the database as the output
(U).

3.2.2 Database processing

Before using the data to build ML models from the orig-
inal database, a number of data processing techniques
should be performed to improve the quality of the data.
First, the training set is randomly selected from the 675
records in the database, and the test dataset is created from
the remaining 30%, 25%, and 20%. The ideal ratio for split-
ting up the data is determined and set during evaluation
process. The 3-, 5-, 10-, and 15-fold cross-validation proce-
dure is then used to create the validation set for the model
training process. This improves the robustness of the
model. Along with the above pre-processing techniques,
the Optuna package (Akiba et al., 2019) is used to find



Fig. 1. Workflow adopted in this study.

Fig. 2. Three-dimensional FEM concept.
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the best set of hyperparameters. The training dataset is
used to train ML models, which are then tested on an inde-
pendent dataset (the test dataset). The ML models are built
according to the schema in Fig. 1.
Scatter plots are appropriate 2D plots for showing the
relationship between two variables in a dataset. The X-
axis represents an independent variable or attribute, while
the Y-axis represents a dependent variable. Figure 3 shows



Table 1
Statistical description of database created.

Feature B L H Hp Dp Sp t c Es C u Ww U

(m) (m) (m) (m) (m) (m) (mm) (kN/m2) (MPa) (kPa) (�) (m) (mm)

Mean 9.69 13.69 11.92 16.07 1.00 1.95 9.69 19.58 28.35 15.92 29.14 1.24 15.30
SD 3.57 3.10 4.18 5.40 0.11 0.54 1.38 0.79 15.00 5.39 4.09 0.06 12.20
Min 4.00 8.00 5.00 7.00 0.85 1.00 8.00 18.70 15.00 10.00 25.00 1.10 0.02
Max 16.00 17.00 15.00 20.00 1.20 3.00 12.00 21.00 55.00 25.00 36.00 1.30 49.02
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the relationship between 12 features and the maximum
deflection of the soldier pile wall. Accordingly, the
increases in excavation height, pile height, and pile spacing
lead to a significant increase in maximum displacement and
the decreases in cohesion, soil friction angle, soil elastic
modulus, pile diameter, and soil unit weight, resulting in
a significant decrease in the output target.

Figure 4 shows the correlation heat map of the features
derived from the database. A correlation heatmap is a
visual representation of a correlation matrix showing the
degree of correlation between different variables. Heat
maps are a two-dimensional representation of data, where
values are colour-coded to indicate their respective intensi-
ties. A heat map can be used to summarise data quickly
and easily. In addition, complex datasets can be better
understood with the help of more detailed heatmaps. A
straight line can be drawn from top left to bottom right
to show how well each variable correlates with itself. This
is a symmetrical matrix as the correlations above and
below the primary diagonal are mirror images of each
other. As it can be seen, the correlation between U and
H, Hp, Es, as well as B and L are very strong with the coef-
ficients of 0.71, 0.71, �0.51, 0.54, and 0.62, respectively.
4 Modelling theory

4.1 XGBoost

The scalable end-to-end tree boosting system XGBoost
is widely used in data science. This technology gives data
scientists access to state-of-the-art solutions to a range of
ML problems. It is relevant for both classification and
regression problems. Due to its high execution speed and
efficient out-of-core processing, XGBoost is the algorithm
of choice among ML researchers. The gradient boosting
approach combines weak classifiers or regressors into a sin-
gle robust predictive model. The final model is built using a
method that iteratively adds weak students one by one to
an ensemble. To prevent overfitting, XGBoost algorithm
has improved a basic gradient boosting technique by incor-
porating a regularisation component Eq. (2) into the objec-
tive function Eq. (1) (Chen & Guestrin, 2016).

Obj ¼
Xn

i¼1

l yi; ŷið Þ þ
XK
k¼1

X f kð Þ; ð1Þ

where by i is the prediction at the i-th round; yi is the real
value; l yi; by ið Þ is the loss function; f k is the term used to
describe the decision tree structure; X f kð Þ is the regulariza-
tion term; n is the number of training examples.

X f kð Þ ¼ cT þ 1

2
kkx2k; ð2Þ

where c is used to regulate the number of leaf nodes; T is
the number of leaves; k is to keep the leaf node score within
acceptable limits to avoid overfitting; x is the leaf node’s
score.

Each feature point is repeatedly evaluated by XGBoost
based on its value in the above objective function using a
greedy method. The objective function gain of a single leaf
node is compared exactly with the value of the split objec-
tive function within a predefined threshold that severely
restricts the development of tree, and the split is only per-
formed if the gain exceeds the threshold. Therefore, it is
important to describe the top characteristics and branch
points that will ultimately establish the tree structure.
Working with XGBoost requires careful parameter tuning
and can lead to overfitting for small or noisy data sets. It
can also become computationally intensive when working
with large data sets.

4.2 Least squares support vector machine model

The Least Squares Support Vector Machine model (LS-
SVM) is a variant of the SVM developed for function esti-
mation or regression tasks proposed by Suykens et al.
(2002). It combines the principles of SVM with the concept
of least squares regression to create a powerful model for
accurate approximation of functions. In LS-SVM, the
objective is to find a hyperplane that effectively fits the
training data and accurately predicts the target variable
for new unseen data points. This is achieved by minimising
the squared norm of the weight vector, where the predicted
outputs obtained by applying the weight vector and the
bias term to the feature representation of the input data
should be within a certain tolerance of the actual targets.
The optimization of LS-SVM is to find the optimal values
for the weight vector and the bias term. To achieve this, lin-
ear equations or optimization techniques such as quadratic
programming can be utilized. In addition, the model
includes parameters such as the regularisation parameter,
which controls the trade-off between fitting the training
data and avoiding overfitting, and the kernel function
parameters, which define the mapping of the input data
into a higher-dimensional feature space. Once the
LS-SVM model is trained and optimized, it can be used



Fig. 3. Scatter plots.
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to estimate target values for new input data by using the
learned weight vector and the bias term in the feature map-
ping equation.

By integrating the advantages of SVM with the concepts
of least squares regression, LS-SVM offers an effective and
powerful method for estimating functions. Its applications
span various domains, including pattern recognition,
regression analysis, and time series prediction.
The LS-SVM model can be mathematically represented
as follows:

Minimize:

min
w;b;e

J w; eð Þ ¼ 1

2
wTwþ 1

2
c
XN
k¼1

e2k ; ð4Þ

Subject to:



Fig. 4. Correlation heat map is illustrated for the entire dataset.
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yk ¼ wTu xkð Þ þ bþ ek; k ¼ 1; :::;N ; ð5Þ
where w is the weight vector; u xkð Þ is the feature mapping
function; b is the bias term; ek is the error term for each
data point; c is the regularization parameter that balances
the trade-off between model complexity and error mini-
mization; xk are the slack variables that allow for devia-
tions larger than a specified tolerance.

It is necessary to determine the best regularisation
parameter and the error size in the sensitive zone. The
sophistication of the prediction is determined by the values
chosen for these variables. LS-SVM has limitations that
should be considered. It exhibits computational complex-
ity, especially with large datasets and complex feature map-
pings. The selection of appropriate hyperparameters is
critical for optimal performance, and LS-SVM models
may lack interpretability compared with other models.
Overfitting may occur, especially with complex models or
small and noisy datasets. Despite these limitations, LS-
SVM remains a valuable tool for function estimation tasks.

4.3 Random forest

Random forest (RF) is a set of tree predictors composed
such that the values of each tree depend on the values of a
randomly selected vector, which has the same distribution
for each tree in the forest. As a bagging ensemble learning
technique, RF includes numerous decision trees. This algo-
rithm can be used to perform both regressions and classifi-
cations. During training, subsamples are drawn from the
full training set by bootstrap sampling, and multiple trees
are grown to best fit the data. By averaging the results of
numerous trees generated by the training model, the final
prediction is produced. The number of trees in the forest
(n estimators) and the maximum number of features used
in tree development are important factors in RF model
(max features) (Breiman, 2001). Although RF is widely
used, it can encounter difficulties when dealing with data-
sets that have a larger number of features as samples. Its
performance may also be affected by multicollinearity or
dependencies among features. Furthermore, the ensemble
nature of Random Forest models limits their
interpretability.

In addition, regularisation techniques such as feature
bagging and feature subsampling can be applied in RF to
avoid overfitting. These techniques help reduce the effect
of individual features and increase the diversity among
the trees in the forest, improving the generalization perfor-
mance of the model. By incorporating regularization meth-
ods, RF can effectively prevent overfitting and improve the
reliability and robustness of the predictions.
4.4 Hyper-parameter tuning

In machine learning, the computer is ideally asked to
perform an exploration and automatically select the best
model architecture. The parameters that determine the
model architecture are called hyperparameters, and the
process of defining the best model architecture is called
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hyperparameter tuning. Three robust machine learning
XGBoost, RF, and LS-SVR models are used to predict
the maximum lateral displacement of the pile walls utilizing
Optuna. Table 2 shows the tuning factors of the three pro-
posed ML models.
Table 3
The statistical parameters computed to evaluate the efficiency of the
established models (80/20).

Model Training dataset Testing dataset

R2 RMSE MAE R2 RMSE MAE

XGBoost 0.9999 0.0909 0.0569 0.9991 0.3923 0.1817
RF 0.9972 0.6402 0.2525 0.9937 0.9662 0.4866
LS-SVR 0.9940 0.9400 0.4617 0.9929 0.9950 0.4865

Table 4
The statistical parameters computed to evaluate the efficiency of the
established models (75/25).
4.5 Error analysis for ML models evaluation

The purpose of developing ML models is to ensure that
it is accurate and reliable, can be used in a variety of sce-
narios, and is as free from bias as possible. Since any mod-
elling method is concerned with accurately representing the
truth, error analysis and the resulting actions are crucial.
Error analysis can reveal the hotspots and coldspots of
the model by identifying, monitoring, and diagnosing the
errors in ML predictions. In this study, the mean absolute
error (MAE), root mean square error (RMSE), and coeffi-
cient of determination (R2) are three widely used tech-
niques to measure error. An analytical tool used in
regression models to determine how much of the observed
variation in the dependent variable can be attributed to the
independent variable is the coefficient of determination, or
R2. The R2 value provides information on how well the
data fit the regression model according to Eq. (7):

R2 ¼ 1�
Pm
i¼1

Ui � U �
i

� �2
Pm
i¼1

U �
i � U

�� �2

:
ð7Þ

RMSE quantifies how far a model’s predictions deviate
from reality. In other words, it assesses how well the
observed data match the predictions of the model as
reported in Eq. (8):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
i¼1

Ui � U �
i

� �2s
: ð8Þ

MAE measures how far the actual value differs from the
predicted value, and values closer to zero show better
agreement with the data. It is possible to write the equation
as Eq. (9):
Table 2
Hyperparameter tuning adopted.

Model Hyperparameter Values

RF max_depth 750
max_features –
n_estimators 551

LS-SVR Kernel Function RBF
c 1000

XGBoost Booster gbtree
Learning rate 0.14
Max depth 76
Min child weight 1
n_estimators 100
reg alpha 0.215
reg lambda 0.001
MAE ¼ 1

m

Xm
i¼1

Ui � U �
i

�� ��; ð9Þ

where m is the total number of calculated data points; Ui is
the predicted values for the wall’s maximum displacement;
U �

i is the FEM calculated maximum displacement of the

wall values; U
�

is the average maximum displacement of
the wall.
5 Results and discussion

5.1 Comparison of the three machine learning methods

The accuracy of the predictions of three intelligent mod-
els for the database was measured using statistical and
visual analysis. The predictive performance of the three
models is compared in Tables 3–5 for a range of training/
test split ratios. XGBoost outperforms all models, securing
the top spot, followed by LS-SVR and RF, respectively. All
three ML models achieved good prediction results when
trained (R2 > 0.9885). With R2 of 0.9991, RMSE of
0.3544, and MAE of 0.1669 in the test phase, XGBoost
has been proved to be an effective predictor. The best
results were achieved with a training/test split of 70/30.

Figure 5 shows a visual representation of prediction of
FEM in function of the maximum displacement for three
ML methods. From these plots, it is clear that the distribu-
Model Training dataset Testing dataset

R2 RMSE MAE R2 RMSE MAE

XGBoost 0.9995 0.2605 0.1348 0.9980 0.5394 0.2856
RF 0.9970 0.6668 0.2667 0.9930 1.0105 0.5170
LS-SVR 0.9946 0.8940 0.4511 0.9913 1.1050 0.5133

Table 5
The statistical parameters computed to evaluate the efficiency of the
established models (70/30).

Model Training dataset Testing dataset

R2 RMSE MAE R2 RMSE MAE

XGBoost 0.9999 0.0637 0.0428 0.9991 0.3544 0.1669
RF 0.9972 0.6443 0.2567 0.9924 1.0480 0.5675
LS-SVR 0.9976 0.6060 0.2298 0.9964 0.7060 0.2475



Fig. 5. Predictions of the three ML models for maximum displacement are compared with the calculations of FEM using the cross plots.
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tion of the predicted maximum displacement of the train-
ing and testing data closely matches estimated FEM max-
imum displacement (slope = 1). The R2 value of 99.91%
shows that the FEM result and the prediction agree very
well. The XGBoost method can be used to predict the max-
imum displacement of soldier pile walls.

Figure 6 shows a bar chart comparing the R2, RMSE
and MAE indicators for the three proposed ML models
evaluated against the entire database. In Fig. 6, it can be
seen that the XGBoost model has the highest performance
on the training and testing data, which is the most interest-
ing part of this graph. Figure 6 shows that the statistical
performance of RF was the weakest in the training and
testing phase. MAE error performance of LS-SVR is com-
parable to that of XGBoost. Instead of reading raw
reports, it is always better to present a visual representation
Fig. 6. Statistical measures o
of the collected data to identify trends and unique experi-
ences. Figures 7 and 8 show a visual representation of
the raw data from this perspective. A Taylor chart repre-
sents the comparison of multiple models with a baseline.
The diagram shows how two values (the ‘‘predicted model”
and the ‘‘reference” values) are statistically related. Three
different statistical metrics (correlation, SD, and centred
RMSE) are displayed in the two-dimensional space of the
graph. The values of the ideal model are closer to or iden-
tical with the reference point.

The Regression Error Characteristic (REC) curve, orig-
inally proposed by Bi and Bennett (2003), is a graphical
representation for evaluating the performance of regression
models. It is similar to the Receiver Operating Characteris-
tic curve used in classification tasks, but is specifically tai-
lored to regression analysis. The curve represents the
f the three ML models.



Fig. 8. Taylor diagram representation for the predictive performance (test
dataset).

Fig. 7. Taylor diagram representation for the predictive performance
(train dataset).

Fig. 9. Comparison between the REC
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accuracy of a regression model as a function of the devia-
tion threshold. The deviation threshold represents the
acceptable degree of difference between the predicted and
the actual values of the target variable. By varying the devi-
ation threshold, the REC curve shows how the accuracy of
the model changes over different levels of prediction
tolerance.

Area Under the Curve (AUC) is a metric calculated
based on the REC curve. It quantifies the overall accuracy
of the regression model. An AUC of 1 indicates perfect pre-
diction, while an AUC of 0.5 indicates random guessing.
The REC curve and AUC provide valuable insights into
the predictive ability and accuracy of regression models.

The AUC results of the training and test datasets show
the performance of the three regression models (Fig. 9):
XGBoost, LS-SVR, and RF. Of these models, XGBoost
achieved the highest AUC of 0.980 for the training dataset,
indicating its strong predictive ability. For the test dataset,
both XGBoost and LS-SVR exhibited good generalisation
ability with AUC values of 0.961 and 0.959, respectively.
Although RF had a slightly lower AUC value of 0.948
on the test data set, it still showed a reasonable level of per-
formance. Overall, XGBoost, LS-SVR and, RF are
promising for the given task, with XGBoost performing
curves for (a) train, and (b) test.

Fig. 10. Feature importance diagram signifies the inputs impact on the
maximum lateral wall displacement in soldier pile walls.



Table 6
Feature importance on maximum soldier pile wall displacement.

Model B L H Hp Dp Sp t c Es C u Ww

XGBoost 3.8% 0.3% 34.9% 3.4% 2.5% 1.4% 0.0% 15.2% 37.2% 0.0% 0.1% 1.2%

LS-SVR 11.2% 10.0% 11.5% 11.5% 0.0% 1.4% 2.1% 5.6% 17.8% 15.5% 12.9% 0.0%
RF 1.3% 0.4% 25.3% 25.3% 4.0% 2.2% 0.0% 1.2% 32.4% 1.0% 5.4% 1.3%
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exceptionally well and both LS-SVR and RF offering com-
petitive performance on unseen data.
5.2 Input feature importance analysis

As it can be seen in Fig. 10 and Table 6, the feature
importance shows that soil elastic modulus and excavation
height are the most influential input variables, followed by
soil unit weight and pile height with feature importance of
37.2%, 34.2%, 15.2%, and 3.8% for XGBoost, respectively.
Further observation implies that in addition to the soil
elastic modulus, excavation height, and pile height, cohe-
sion, and soil friction angle are very important in determin-
ing the maximum displacement of the soldier pile wall for
LS-SVR with feature significance of 17.8%, 11.5%,
11.5%, 15.5%, and 12.9% respectively. Almost similar
results are obtained with the RF method. Although the soil
elastic modulus, the excavation height, and pile height play
the most important role, with a feature importance of
32.4%, 25.3%, and 25.3%, the friction angle is very impor-
tant with a value of 5.4% for RF.
6 Conclusions

In this paper, the maximum displacement of soldier pile
walls was predicted using a database of 675 FEM calcu-
lated data points and three robust intelligent models
(XGBoost, RF and LS-SVR). Statistical indicators and
visual analysis were used to analyse the accuracy and sta-
bility of the three intelligent models. As an added bonus,
a sensitivity analysis was performed to find out the most
important factor of the optimal intelligent model. The
main conclusions of the study are as follows:

(1) To save time and economic resources, this study has
shown a way to implement intelligent algorithms for
predicting the maximum displacement of soldier pile
wall due to excavation.

(2) The maximum displacement of the soldier pile wall
can be best estimated by the XGBoost model. The
XGBoost outperformed the LS-SVR and RF models
in all evaluation metrics. It achieved the lowest MAE
and RMSE, indicating lower prediction errors com-
pared with RF and LS-SVR. In addition, XGBoost
had a nearly perfect R2 results.

(3) The significant of the feature importance for
XGBoost is defined as follows: modulus of elasticity
of soil > excavation height > soil unit weight > pile
height. While for RF it is modulus of elasticity of
soil > excavation height > pile height > soil friction
angle > excavation length (B).

(4) This result shows that the width of the excavation (L)
parallel to the deformation and the thickness of the
shotcrete has no influence on the maximum lateral
displacement of the soldier pile walls when XGBoost
and RF are used.

(5) The advantage of this study is that it is a promising
way to reduce time and labour costs, while providing
a smart method to predict the maximum lateral dis-
placement of soldier pile walls.

However, the proposed intelligent methods have the fol-
lowing limitations:

(1) The developed intelligent models are used to predict
the maximum lateral displacement of soldier pile
walls only in similar statistical characterisation.

(2) Although the LS-SVR and RF models are less accu-
rate than the XGBoost model, they still provide good
prediction results for the maximum lateral displace-
ment of soldier pile walls for numerical models.
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