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The experimental data on the helicity amplitudes of charmonium decays allow us to measure
entanglement in final state spin correlations and test possible violations of the Bell inequality. We find
that the Bell inequality is violated with a significance of 5σ or more in the decays ηc; χ0c; J=ψ → Λþ Λ̄,
J=ψ → Ξ− þ Ξ̄þ;Ξ0 þ Ξ̄0;Σ− þ Σ̄þ;Σ0 þ Σ̄0, ψð3686Þ → Ξ− þ Ξ̄þ;Σ− þ Σ̄þ;Σ0 þ Σ̄0, χ0c; χ1c → ϕþ ϕ.
The decays ψð3686Þ → Λþ Λ̄ and Ξ0 þ Ξ̄0 show the same violation but with less significance. The decay
ψð3686Þ → Ω− þ Ω̄þ displays entanglement. These results firmly establish the presence of entanglement
and quantum nonseparability at high energies, in a setting with particles of different spins and interacting
through electroweak and strong interactions. In addition, the relatively long lifetime of some of the strange
baryons produced in the decays provides a natural probe to test whether quantum spin correlations remain
after the particles have interacted with the beam pipe and the first few layers of the detector.
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I. INTRODUCTION

The violation of the Bell inequality [1] shows that
quantum mechanics cannot be explained in terms of local
variables with definite properties that are independent of
their measurement. It has been verified experimentally at
low energies [2,3] by means of two photons prepared into a
singlet state, whose polarizations are measured along
different directions to verify their entanglement [4] and
the violation of the Bell inequality.
Entanglement and Bell inequality violation have been

first established in high-energy physics in B-meson decays
[5]. Entanglement, but not yet Bell inequality violation, has
also been observed in top-quark production [6,7]. These
quantum observables are now actively investigated in high-
energy physics and the reader can find most of the pertinent
references in the recent review paper [8].
The charmonium decays have been singled out early on

in [9,10] and [11,12] as promising systems in which to
check the violation of Bell inequality in particle physics.
The charmonium decays ηc → ΛΛ̄, χc → ΛΛ̄ and J=ψ →
ΛΛ̄ were originally discussed and further studied in [13].
In recent years, data on the helicity amplitudes for

these processes have been published by the BESIII

Collaboration [14,15], which has also studied the similar
J=ψ → Σ−Σ̄þ [16], Σ0Σ̄0 [17], Ξ−Ξ̄þ [18] or Ξ0Ξ̄0 [19] and
ψð3686Þ → Σ−Σ̄þ [16], Σ0Σ̄0 [17], Ξ−Ξ̄þ [20] or Ξ0Ξ̄0 [21]
decays, as well as ψð3686Þ → Ω−Ω̄þ [22]. In addition, the
three decays χJc → ϕϕ (with J ¼ 0, 1, 2) have also been
analyzed [23]. The ATLAS [24], CMS [25] and LHCb [26]
collaborations also provided data on the decay Λb →
J=ψΛ, which has a charmonium state in the final state.
Entanglement is often mentioned in describing the final
state of charmonium decays but only as a descriptive
feature and no attempt of a quantitative study has been
attempted yet.
The helicity amplitudes provided by the experimental

collaborations with dedicated data analyses allow to per-
form a full quantum tomography of the system of interest,
reconstructing the density matrix that describes the polar-
izations and spin correlations of the final state. The amount
of entanglement present in the latter and the violation of
Bell inequality can then be straightforwardly investigated
by means of various operators, as described in Sec. II. The
uncertainty of the measurements determines, through the
propagation of the errors, the significance of the presence
of entanglement and the violation of the Bell inequality. We
implement this program with the limitation that, for some
of the decays, the phases of the helicity amplitudes are not
given and that the correlations among the uncertainties are
not always available. Notice that the phases in the ampli-
tude can only originate from the strong interactions among
the final states because the absorptive part from the weak
interactions is either loop suppressed or vanishing.
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The same experimental data on the helicity amplitudes
can also be used to test to what extent the density matrix
factorizes into momentum and spin dependent parts: The
entanglement of the strange baryons is computed after
some of them have crossed the beam pipe outer wall and the
first few layers of the detector and, therefore, a comparison
with the expected theoretical value can tell us whether
entanglement has been affected by these interactions or not.
On the other hand, we know that the momentum dependent
part of the density matrix has completely lost coherence
since we can see the tracks left by the particles [27]. This is
an important test that probes, for the first time, the full
density matrix of the system as a whole.

A. The charmonium system

The charmonium system encompasses a rich variety of
bound states with a structure resembling that of an atomic
system. Figure 1 shows some of these states and lists their
properties. They present themselves at colliders as reso-
nances whose decays can be studied in detail.
These states and their decays are a natural laboratory for

the study of the entanglement in spin correlations at high
energies. Charmonium gives access to a variety of bipartite
final states characterized by different spins and to initial
resonant states that encompass, as well, spins ranging
from 0 to 2.

The Beijing electron-positron collider (BEPCII) and
spectrometer (BESIII) have been designed to operate in
the charmonium energy regime (between 2 and 4.95 GeV)
with a peak luminosity of 1033 cm−2 s−1. Electron and
positron are collided at these energies, charmonium
states are produced in isolation or in combination with a
photon, and their decay products recorded in the detector.
The BESIII detector [29] consists of a multilayered drift
chamber (MDC), a plastic scintillator time-of-flight system
and an electromagnetic calorimeter . The entire detector is
enclosed in a superconducting solenoid magnet providing a
1 T magnetic field.
Many charmonium states have been copiously produced

in the last few years at BEPCII, thus making it possible not
only to measure their branching fractions into different final
states, but also the helicity amplitudes of each single decay.
These are reconstructed by means of the angular distribu-
tion of the decay products: protons, pions, and kaons. The
full quantum tomography of the bipartite final states uses
all the information provided by the charmonium two-body
decays and encodes it into the polarization density matrix.

II. METHODS

Since our goal is to utilize the experimental values of
helicity amplitudes to directly find entanglement and test
the violation of the Bell inequality, we do not need to

FIG. 1. The charmonium system. The bottom line shows the spin and parities of the states. Figure from [28].
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compute the polarization density matrix from a Lagrangian
of a specific model. The representations of the elements of
the SOð3Þ group are sufficient to parametrize the density
matrix in terms of the helicity amplitudes wλ1λ2 provided by
the experiments [30–32]

ρλ1λ2;λ01λ02 ∝ wλ1λ2w
�
λ0
1
λ0
2

X
k

DðJÞ�
k;λ1−λ2ð0;Θ; 0ÞD

ðJÞ
k;λ0

1
−λ0

2
ð0;Θ; 0Þ;

ð2:1Þ

where DðJÞ
i;j is the Wigner D-matrix for the spin J of the

decaying state and k runs over all the possible helicity
values of the same state. The overall factor in Eq. (2.1) is set
by the normalization requirement that Trρ ¼ 1. The density
matrix in Eq. (2.1) is written in the center-of-mass reference
frame where the momenta of final state particles are equal
in magnitude and opposite in direction and, therefore, the
total helicity of the two-particle system is λ1 − λ2. The
dependence on the angle ϕ drops out in the products of
the Wigner matrices because of the cylindrical symmetry of
the problem

DðJÞ�
k;λ1−λ2ð0;Θ; 0ÞD

ðJÞ
k;λ0

1
−λ0

2
ð0;Θ; 0Þ

¼ DðJÞ�
k;λ1−λ2ðϕ;Θ; 0ÞD

ðJÞ
k;λ0

1
−λ0

2
ðϕ;Θ; 0Þ: ð2:2Þ

Depending on the symmetries enjoyed by a decay
process, the number of independent helicity amplitudes
required for a full description may be reduced: it is zero for
decays of scalar states into fermions, 2 for the same decays
into spin 1 states and for the decay of a vector state into two
fermions, four for the case of the decay into two spin 3=2
fermions.
In general, the number of independent amplitudes is

reduced by imposing helicity conservation, that is

jλ1 − λ2j ≤ J ð2:3Þ

for the decay A → 1þ 2, with J the spin of the particle A.
A further reduction in the number of independent helicity

amplitudes comes from parity conservation, which implies

wJ
λ1;λ2

¼ ηAη1η2ð−1ÞJ−s1−s2wJ
−λ1;−λ2 ; ð2:4Þ

in which ηi are the intrinsic parities and si the spin of the
particles in the final state.
For final states including identical particles, helicity

amplitudes transform under the interchange of the
particles as

wJ
λ1;λ2

¼ ð−1ÞJ−2swJ
λ2;λ1

; ð2:5Þ

with s ¼ s1 ¼ s2. If instead the final state is made of a pair of
particle and antiparticle

wJ
λ1;λ2

¼ ηCð−1ÞJwJ
λ2;λ1

; ð2:6Þ

in which ηC is the C parity of the decaying particle A.

A. Tools to study entanglement and test the violation
of Bell inequality

The determination of the density matrix is the aim of
quantum tomography. In the present case we find the
polarization density matrix from the analysis of the
experimental data as presented by the experimental
collaborations.
The density matrix makes it possible to compute the

entanglement and test Bell inequalities for the final states of
the charmonium decays. The choice of the most appropriate
tools depends on whether the final state is described by
qubits (two-level systems) or qutrits (three-level systems)
or, more in general, qudits (d-level systems).

1. Qubits

Consider a bipartite system composed by a spin-1=2 pair,
one controlled by an observer, Alice, and the other by a
second observer, Bob. The corresponding quantum state
can be described by a 4 × 4 density matrix of the form

ρ ¼ 1

4

�
12 ⊗ 12 þ

X3
i¼1

Bþ
i ðσi ⊗ 12Þ þ

X3
i¼1

B−
j ð12 ⊗ σjÞ

þ
X3
i;j¼1

Cijðσi ⊗ σjÞ
�
; ð2:7Þ

where σi are the Pauli matrices, 12 is the unit 2 × 2 matrix
and the indices i and j running over 1, 2, 3, represent any
three orthogonal spatial directions.
The real coefficients Bþ

i and B−
j represent the polarization

of the two spin-1=2 fermions, while the real matrix Cij gives
their spin correlations. The density matrix in (2.7) is
normalized, Tr½ρ� ¼ 1, while extra constraints on Bþ

i , B
−
i

and Cij need to be enforced to guarantee its positivity, as all
eigenvalues of a density matrix are necessarily non-negative.
The entanglement content of any bipartite system

described with the density matrix ρ, that is, a measure
of the amount of quantum correlations among the two
composing subsystems, can be quantified with the con-
currence C½ρ�, taking values between zero (for separable,
unentangled states) and 1 (maximally entangled states). In
the case of two spin-1=2 sub-systems, a two qubit system,
the concurrence can be analytically computed through the
auxiliary matrix

R ¼ ρðσy ⊗ σyÞρ�ðσy ⊗ σyÞ; ð2:8Þ

where ρ� denotes a matrix with complex conjugated entries.
Although non-Hermitian, the matrix R possesses non-
negative eigenvalues; denoting ri, i ¼ 1, 2, 3, 4, their
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square roots and assuming r1 to be the largest, the
concurrence of the state ρ can be expressed as [33]

C½ρ� ¼ maxð0; r1 − r2 − r3 − r4Þ: ð2:9Þ

In quantum mechanics a statistical language is adopted
for the description of physical phenomena. Interestingly,
this compelling tool is amenable to experimental verifica-
tion against alternative, fully deterministic, local descrip-
tion of natural phenomena through Bell locality tests.
In the case of a two spin-1=2 system, Alice and Bob are

assumed to measure two spin-observable each, (Â1, Â2),
and (B̂1, B̂2), typically spin projections along four different
unit vectors, n⃗1, n⃗3 for Alice, and n⃗2, n⃗4 for Bob, so that
Â1 ¼ n⃗1 · σ⃗ and similarly for the remaining three observ-
ables. The Bell test consists in determining the following
combination of joint expectation values

I2 ¼ hÂ1B̂1i þ hÂ1B̂2i þ hÂ2B̂1i − hÂ2B̂2i; ð2:10Þ

that in any, local, deterministic model cannot exceed a
value of 2. In quantum mechanics, I2 can be conveniently
expressed as an expectation of a Bell operator B2,
I2 ¼ Tr½ρB2�, where

B2 ¼ n⃗1 · σ⃗ ⊗ ðn⃗2 − n⃗4Þ · σ⃗ þ n⃗3 · σ⃗ ⊗ ðn⃗2 þ n⃗4Þ · σ⃗:
ð2:11Þ

If an actual experiment finds I2 > 2, one has to deduce that
some sort of nonlocal resource had been shared between the
two parties, and this is precisely what is predicted by
quantum mechanics.
In practice, given an experimentally collected correlation

data, one thus needs to maximize I2 in (2.10) by choosing
suitable four independent spatial directions. Fortunately,
this optimization process can be performed in full general-
ity for a generic spin correlation matrix [34]. Indeed,
consider the matrix C and its transpose CT and form the
symmetric, positive, 3 × 3 matrix M ¼ CCT ; its three
eigenvalues m1, m2, m3 can be ordered in increasing order:
m1 ≥ m2 ≥ m3. Then, the two-spin state ρ in (2.7) violates
the Bell inequality I2 ≤ 2 if and only if the sum of the two
greatest eigenvalues of M is strictly larger than 1, that is
(Horodecki condition)

m12 ≡m1 þm2 > 1: ð2:12Þ

2. Qutrits

The density operator representing the state of a bipartite
system made of two qutrits is a 9 × 9 matrix that can be
written as

ρ ¼ 1

9
½13 ⊗ 13� þ

X8
a¼1

fa½Ta ⊗ 13� þ
X8
a¼1

ga½13 ⊗ Ta�

þ
X8
a;b¼1

hab½Ta ⊗ Tb�; ð2:13Þ

where Ta are the standard Gell-Mann matrices, while 13 is
the unit 3 × 3 matrix.
Although an analytic expression for the concurrence of a

generic two-qutrit state is lacking, a lower bound on its
value can be given in terms of the single spin polarizations
coefficients, fa and ga, and the correlation matrix hab
appearing in the decomposition (2.13):

C2 ¼ 2max

�
−
2

9
− 12

X
a

f2a þ 6
X
a

g2a þ 4
X
ab

h2ab;

−
2

9
− 12

X
a

g2a þ 6
X
a

f2a þ 4
X
ab

h2ab; 0

�
: ð2:14Þ

As in the case of qubits, a Bell test for a system of two
qutrits results in the determination of a combination I3 of
joint expectations values involving four spin observables,
(Â1, Â2) for Alice, and (B̂1, B̂2) for Bob. In quantum
mechanics, it can be again expressed as an expectation
value on the state (2.14) of a suitable Bell operator B3:

I3 ¼ Tr½ρB3�: ð2:15Þ

The explicit form of B3 depends on the choice of the four
measured operators Â1, Â2, B̂1, and B̂2. For the case of the
maximally correlated qutrit state, the problem of finding an
optimal choice of measurements has been solved [35], and
the Bell operator takes a particular simple form [36]

B3 ¼

0
BBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 − 2ffiffi
3

p 0 0 0 0 0

0 0 0 0 − 2ffiffi
3

p 0 2 0 0

0 − 2ffiffi
3

p 0 0 0 0 0 0 0

0 0 − 2ffiffi
3

p 0 0 0 − 2ffiffi
3

p 0 0

0 0 0 0 0 0 0 − 2ffiffi
3

p 0

0 0 2 0 − 2ffiffi
3

p 0 0 0 0

0 0 0 0 0 − 2ffiffi
3

p 0 0 0

0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCA

:

ð2:16Þ

Within the choice of measurements leading to the Bell
operator (2.16), there is still the freedom of modifying the
measured observables through local unitary transforma-
tions, which effectively corresponds to local changes of
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basis, separately at Alice’s and Bob’s sites. Corres-
pondingly, the Bell operator undergoes the change

B3 → ðU ⊗ VÞ† · B3 · ðU ⊗ VÞ; ð2:17Þ

whereU and V are independent 3 × 3 unitary matrices. One
can use this additional freedom in order to maximize the
value of I3 for any given bipartite qutrit state described
by ρ.

3. Additional observables

Given a density matrix ρ describing the state of a generic
bipartite system, SA þ SB, the reduced density matrix
describing the state of SA alone is given by ρA ¼ TrB½ρ�,
where the trace is performed on all SB degrees of freedom;
similarly, ρB ¼ TrA½ρ� is the reduced density matrix
describing the state of SB.
For pure states, ρ ¼ jψihψ j, or equivalently ρ2 ¼ ρ, the

quantity

E½ρ�≡ −Tr½ρA ln ρA� ¼ −Tr½ρB ln ρB�; ð2:18Þ

giving the von Neumann entropy of the reduced density
matrices, is a good entanglement quantifier—often called
in the literature entropy of entanglement. Indeed, a pure
state ρ is entangled if and only if its reduced density
matrices have nonzero entropy. Assuming the two systems
SA and SB have the same dimension d, one finds
0 ≤ E½ρ� ≤ ln d; the first equality holds if and only if the
bipartite pure state is separable, while the upper bound is
reached by a maximally entangled state.
Given a generic density matrix ρ for the bipartite state

SA þ SB, deciding whether the state is entangled or not, or
quantifying its entanglement content is in general a hard
problem [37,38], and, thus, one has to rely on quantities
that give only sufficient conditions for the presence of
entanglement.
One such quantity involves the operation of partial

transposition. Given a basis of orthonormal vectors fjiji ¼
jii ⊗ jjig for the system SA þ SB, any density matrix can
be represented by its matrix elements hi1j1jρji2j2i; then,
the partially transpose matrix ρTB with respect to SB is
represented by matrix elements hi1j2jρji2j1i; a similar
expression holds for ρTA. Interestingly, if ρTB , or equiv-
alently ρTA possesses negative eigenvalues, than the
composite system is entangled. In addition, the absolute
sum of the negative eigenvalues of ρTB , called negativity,

N ðρÞ ¼
X
k

jλkj − λk
2

; ð2:19Þ

λk being the eigenvalues of ρTB , can be used to quantify its
entanglement content [39].

B. From the helicity amplitudes
to the quantum observables

The helicity amplitudes are extracted from the data by
means of a maximum likelihood fit. This fit depends on all
the kinematic variables of the processes under consider-
ation. For instance, for the case of the decay of J=ψ into
Λ-Λ̄ baryon pairs, the differential cross section W depend-
ence can be indicated as

Wðα;ΔΦ; αΛ; αΛ̄;ΘΛ; n1; n2Þ ð2:20Þ

in which α and ΔΦ are directly related to the parametriza-
tion of the helicity amplitudes—and are therefore not
varied, αΛ, αΛ̄ are the polarimetric coefficients of the
baryons, ni are the directions of the proton (i ¼ 1) and
antiproton (i ¼ 2) in the rest frame of the J=ψ andΘΛ is the
scattering angle. The likelihood fit yields the coefficients α
and ΔΦ and therefore the helicity amplitudes, which are
quantities independent of the other kinematic variables
in Eq. (2.20).
In this work, we use the values of the helicity amplitudes

thus obtained by inserting them in the quantum observables
that quantify entanglement and the violation of Bell
inequality. The uncertainties associated to the helicity
amplitudes can be propagated to find the uncertainties of
the utilized operators.

III. CHARMONIUM SPIN 0 STATES

The decays of the spin 0 states of the charmonium are the
simplest to analyze because the density matrix only
depends on one or, at most, two helicity amplitudes.
Moreover, the density matrix is independent of the scatter-
ing angle.

A. ηc → Λ+ Λ̄ and χ 0c → Λ+ Λ̄
The scalar and pseuodoscalar states of the charmonium

can decay into a pair of strange Λ baryon and antibaryon

ηc → Λþ Λ̄ and χ0c → Λþ Λ̄; ð3:1Þ

with branching fraction ð1.10� 0.28Þ × 10−3 and ð1.27�
0.09Þ × 10−4 [28], respectively. The scalar state ηc is
produced in the processes

eþe− → J=ψ → γηc; ð3:2Þ

while the χ0c in

eþe− → ψð3686Þ → γχ0: ð3:3Þ

The Λ baryons and antibaryons decay into pπ− and p̄π−,
respectively. The angular dependence of these charged final
states in the cascade decays allows the reconstruction of the
baryon polarizations.
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The final states are constrained—by the conservation of
the helicity—to be described by the state

jψ0i ∝ w1
2
−1
2

���� 12 ;
1

2

�
⊗
���� 12 ;−

1

2

�
þ w−1

2
1
2

���� 12 ;−
1

2

�
⊗
���� 12 ;

1

2

�

ð3:4Þ

in which wij are the helicity amplitudes and jJ;mi the spin
states. Parity sets the relative sign between the two
amplitudes: it is −1 for the pseudoscalar ηc and 1 for
the scalar χ0c. Accordingly, the ηc falls into the singlet
representation of the product 1

2
⊗ 1

2
¼ 0 ⊕ 1 while the χ0c

into the m ¼ 0 component of the triplet. Charge parity
conservation implies the same condition as parity and does
not add new relations among the helicity amplitudes.
The states in Eq. (3.4) give the following density matrix

ρΛΛ ¼ jψ0ihψ0j ¼
1

2

0
BBB@

0 0 0 0

0 1 �1 0

0 �1 1 0

0 0 0 0

1
CCCA; ð3:5Þ

in which the only, still undefined, overall size of the
amplitudes has canceled out in the normalization, which
is Trρ ¼ 1.
The system is completely constrained, thus implement-

ing the idealized two-qubit system of textbooks. This
property was already observed for the decay of the
Higgs boson H → τ−τþ in [40]. Neither the Λ baryon
nor the antibaryon are polarized.
The concurrence can be computed and it is maximal

C½ρ� ¼ 1: ð3:6Þ

From the density matrix in Eq. (3.5), using the Pauli
matrices, we can write the correlation matrix

Cij ¼ TrðρΛΛσi ⊗ σjÞ ¼

0
B@

1 0 0

0 1 0

0 0 −1

1
CA; ð3:7Þ

which is the same for both the decay processes.
Accordingly, the Horodecki condition is found to be

m12 ¼ 2; ð3:8Þ

corresponding to a maximal violation of the Bell inequality.
For these decays, we do not even need the experimental

values of the helicity amplitudes to claim maximum
entanglement and Bell inequality violation. Uncertainties
from the data analysis are however necessary to assess the
significance of the result. These values have not yet been
released by the experimental collaboration. In any case, if
the uncertainty turns out to be of the same order of that of

the processes discussed below, that is, of the per mille, the
violation of the Bell inequality will easily be established
with a significance of more than 100σ.
This process provides a direct test of the conservation of

quantum correlations. If the experiments find a difference
between the helicity amplitudes w1

2
−1
2
and w−1

2
1
2
, or that they

vanish, it will mean that some of the original coherence has
been lost during the flight of the Λ baryons—some of
which travel inside the beam pipe wall and the first layers of
the detector before decaying. This is an important test, as
explained in the Introduction. We come back to this point
in Sec. VI.

B. χ 0c → ϕ+ϕ

The scalar state of the charmonium can decay into a pair
of ϕ mesons

χ0c → ϕþ ϕ; ð3:9Þ
with branching fraction of ð8.48� 0.26� 0.27Þ× 10−4 [23].
The χ0c are produced, as already mentioned, in

eþe− → ψð3686Þ → γχ0: ð3:10Þ

The final state of the two ϕ mesons can be written as

jΨi ¼ w−1−1j − 1;−1i þ w00j00i þ w1 1j1; 1i; ð3:11Þ
with

jw−1−1j2 þ jw0 0j2 þ jw1 1j2 ¼ 1; ð3:12Þ
and w1 1 ¼ −w−1−1 because of the conservation of parity.
The same condition is found by the indistinguishability
of the final state particles. There is therefore only one
independent amplitude and the density matrix depends on
one complex number.
The final states are spin 1 and their polarizations are

described by qutrits. The resulting 9 × 9 density matrix
ρϕϕ ¼ jΨihΨj is written as

ρϕϕ∝

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 jw−1−1j2 0 w−1−1w�
00 0 w−1−1w�

11 0 0

0 0 0 0 0 0 0 0 0

0 0 w00w�
−1;−1 0 jw00j2 0 w00w�

11 0 0

0 0 0 0 0 0 0 0 0

0 0 w11w�
−1−1 0 w11w�

00 0 jw11j2 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

;

ð3:13Þ
The analysis of the data in [23] selects 2701� 84 out of the
γKþK−KþK− final states events. The maximum likelihood
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fit yields the absolute value of the ratio of the moduli of the
helicity amplitudes

����w1;1

w0 0

���� ¼ 0.299� 0.003jstat � 0.019jsyst: ð3:14Þ

No value for the relative phase is provided. Accordingly,
we can only carry out the analysis in the case of zero phase.
As pointed out in the Introduction, this phase comes from
the final state strong interactions if we assume that the form
factors have no significant absorptive part.
The entanglement can be determined from the entropy of

entanglement given in Eq. (2.18) because the final state in
Eq. (3.11) is pure. We find, after propagating the errors,

E½ρ� ¼ 0.531� 0.040: ð3:15Þ

This number differs from zero with a significance of 13.3σ.
After optimization, the expectation value of the Bell

operator is

TrρϕϕB ¼ 2.296� 0.034: ð3:16Þ

This decay provides a clean test of the violation of Bell
inequality in a system of two qutrits. Its significance
is 8.8σ.

IV. CHARMONIUM SPIN 1 STATES

The decay of spin 1 particles brings in a dependence of
the polarization density matrix on the scattering angle. The
amount of entanglement and possible violations of the Bell
inequality therefore depend on the value of this angle.
Data on many different processes are available and we

review all of them. Such a comprehensive presentation is
necessarily repetitive. We apologize. The final results are
summarized in Table I.

A. J=ψ → Λ+ Λ̄ and ψð3686Þ → Λ+ Λ̄
The helicity states of the final system in

J=ψ → Λþ Λ̄ ð4:1Þ

fall in the triplet representation of the product 1
2
⊗ 1

2
¼

1 ⊕ 0. It is constrained by the conservation of the angular
momentum to be described by the three states

jψ↑i ∝ w1
2
1
2

���� 12
1

2

�
⊗
���� 12

1

2

�

jψ↓i ∝ w−1
2
−1
2

���� 12 −
1

2

�
⊗
���� 12 −

1

2

�

jψ0i ∝ w1
2
−1
2

���� 12
1

2

�
⊗
���� 12 −

1

2

�
þ w−1

2
1
2

���� 12 −
1

2

�
⊗
���� 12

1

2

�
;

ð4:2Þ

in which the state in the first line of Eq. (4.2) corresponds
to the J=ψ being transversally polarized with positive
helicity (Jz ¼ þ1), the second line to the opposite helicity
(Jz ¼ −1) and the third line to the 0 helicity (Jz ¼ 0), that
is, the J=ψ being longitudinally polarized. The states in
Eq. (4.2) are written along the z-axis and must be rotated to
the direction of the final state momenta.
In the process

eþe− → γ → cc̄ → J=ψ → ΛΛ̄; ð4:3Þ

the J=ψ is produced polarized. The correlation matrix
of the two baryons depends on the scattering angle Θ
because the polarization of the J=ψ does.
The elements of the density matrix can be written as

ρλ1λ2;λ01λ02 ∝ wλ1λ2w
�
λ0
1
λ0
2

X
k¼�1

Dð1Þ�
k;λ1−λ2ð0;Θ; 0ÞD

ð1Þ
k;λ0

1
−λ0

2
ð0;Θ; 0Þ

ð4:4Þ

where Dð1Þ
i;j is the Wigner matrix for the spin 1 representa-

tion of SOð3Þ and the sum is only over the�1 polarizations
because the spin 1 state is produced from unpolarized
electrons and positrons with the electron and positron taken
to be massless and, therefore, with only the �1 helicities.

TABLE I. Summary of Bell inequality violation in spin 1
charmonium decays into baryons.

Decay m12 Significance

J=ψ → ΛΛ̄ 1.225� 0.004 56.3
ψð3686Þ → ΛΛ̄ 1.476� 0.100 4.8
J=ψ → Ξ−Ξ̄þ 1.343� 0.018 19.1
J=ψ → Ξ0Ξ̄0 1.264� 0.017 15.6
ψð3686Þ → Ξ−Ξ̄þ 1.480� 0.095 5.1
ψð3686Þ → Ξ0Ξ̄0 1.442� 0.161 2.7
J=ψ → Σ−Σ̄þ 1.258� 0.007 36.9
ψð3686Þ → Σ−Σ̄þ 1.465� 0.043 10.8
J=ψ → Σ0Σ̄0 1.171� 0.007 24.4
ψð3686Þ → Σ0Σ̄0 1.663� 0.065 10.2
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Of the four helicity amplitudes, only two are independent. The density matrix is given by

ρΛΛ̄ ∝

0
BBBBBBBB@

w−1
2
−1
2
w�
−1
2
−1
2

s2Θ −w−1
2
−1
2
w�
−1
2
1
2

cΘsΘffiffi
2

p w−1
2
−1
2
w�

1
2
−1
2

cΘsΘffiffi
2

p w−1
2
−1
2
w�

1
2
1
2

s2Θ

−w−1
2
1
2
w�
−1
2
−1
2

cΘsΘffiffi
2

p w−1
2
1
2
w�
−1
2
1
2

fΘ w−1
2
1
2
w�

1
2
−1
2

s2Θ
2

−w−1
2
1
2
w�

1
2
1
2

cΘsΘffiffi
2

p

w1
2
−1
2
w�
−1
2
−1
2

cΘsΘffiffi
2

p w1
2
−1
2
w�
−1
2
1
2

s2Θ
2

w1
2
−1
2
w�

1
2
−1
2

fΘ w1
2
−1
2
w�

1
2
1
2

cΘsΘffiffi
2

p

w1
2
1
2
w�
−1
2
−1
2

s2Θ −w1
2
1
2
w�
−1
2
1
2

cΘsΘffiffi
2

p w1
2
1
2
w�

1
2
−1
2

cΘsΘffiffi
2

p w1
2
1
2
w�

1
2
1
2

s2Θ

1
CCCCCCCCA
; ð4:5Þ

in which fΘ ≡ ð3 − cos 2ΘÞ=4, sΘ ≡ sinΘ and cΘ ≡ cosΘ.
The helicity amplitudes can be parametrized as

w1
2
1
2
¼ w−1

2
−1
2
¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
ffiffiffi
2

p and w1
2
−1
2
¼ w−1

2
1
2
¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ α
p

exp½−iΔΦ�: ð4:6Þ

The polarization of the Λ baryons is given by

B−
i ¼ −Bþ

i ¼ Tr ρΛΛ1 ⊗ σi ¼
�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
sin 2Θ sinΔΦ
C0

; 0

�
; ð4:7Þ

in which C0 ¼ 2þ αþ α cos 2Θ. The expression for the polarization in Eq. (4.7) agrees with [15,41].
Ten billion J=ψ events have been collected at the BESIII detector. The decay J=ψ → ΛΛ̄ has branching fraction

ð1.89� 0.08Þ × 10−3 [28]. The decay into ΛΛ̄ pairs is reconstructed from their dominant hadron decays: Λ → pπ− and
Λ̄ → p̄π−. The maximum likelihood fit yields the values of the two parameters defining the helicity amplitudes [15]:

α ¼ 0.4748� 0.0022jstat � 0.0031jsyst and ΔΦ ¼ 0.7521� 0.0042jstat � 0.0066jsyst: ð4:8Þ

No correlation in the uncertainties is provided.
The spin correlation matrix can be computed from the density matrix in Eq. (4.5) and it is given by

C ¼ 1

C0

0
B@

2sin2Θ 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
sin 2Θ cosΔΦ

0 2αsin2Θ 0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
sin 2Θ cosΔΦ 0 −ð1þ 2αþ cos 2ΘÞ

1
CA: ð4:9Þ

Equation (4.9) agrees with [41].
As shown in Fig. 2, the concurrence and m12 depend on

the scattering angle. The largest values are found at
Θ ¼ π=2, for which

C½ρ� ¼ 0.475� 0.004 and m12 ¼ 1.225� 0.004; ð4:10Þ

and the violation of the Bell inequality is established with a
significance of 56.3σ.
The same analysis can be followed for the case of

the ψð3686Þ.
The decay ψð3686Þ → ΛΛ̄ has branching fraction

ð3.81� 0.13Þ × 10−4 [28]. Events at energies around the
value of the mass of the ψð3686Þ have been collected by
selecting the Λ and Λ̄ decays into pπ− and p̄π− respec-
tively. A likelihood fit yields the helicity amplitude
parameters α and ΔΦ [42]:

α ¼ 0.69� 0.07jstat � 0.02jsyst and

ΔΦ ¼ 0.40þ0.15
−0.14 jstat � 0.03jsyst: ð4:11Þ

No correlation between the uncertainties is given.
As shown in Fig. 2, the concurrence and m12 are, as

before, the largest at Θ ¼ π=2, for which

C½ρ� ¼ 0.69� 0.07 and m12 ¼ 1.48� 0.10; ð4:12Þ

and the violation of the Bell inequality is established with a
significance of 4.8σ.

B. J=ψ → Ξ− + Ξ̄+ and Ξ0 + Ξ̄0

We can just retrace our steps from the previous section.
The density and correlation matrices are the same as in

Eqs. (4.5) and (4.9). The decay J=ψ → Ξ−Ξ̄þ has branch-
ing fraction ð9.7� 0.8Þ × 10−4 [28]. The chain decays
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Ξ− → Λπ−, Λ → pπ− and Ξ̄þ → Λ̄πþ, Λ̄ → p̄πþ out of a
sample of 1.31 × 109 J=ψ have been reconstructed. A
maximum likelihood fit over the kinematic variables yields
the values of the parameters defining the helicity ampli-
tudes [18]:

α ¼ 0.586� 0.012jstat � 0.010jsyst and

ΔΦ ¼ 1.213� 0.046jstat � 0.016jsyst: ð4:13Þ

As shown in Fig. 3, the concurrence and m12 depend on
the scattering angle. The largest value for m12 is found at
Θ ¼ π=2, for which

C½ρ� ¼ 0.586� 0.016 and m12 ¼ 1.343� 0.018: ð4:14Þ

This process exemplifies the fact that the largest violation
of the Bell inequality does not necessary entail the largest
value for the entanglement. The significance of the viola-
tion of the Bell inequality is 19.1σ.
The next decay, J=ψ → Ξ0Ξ̄0, has branching fraction

1.17 × 10−3 [18]. A sample of 327 305 events is selected
from the chain decays Ξ0 → Λπ0,Λ → pπ− and Ξ̄0 → Λ̄π0,
Λ̄ → p̄πþ; the helicity amplitude parameters obtained from
the likelihood fit are [19]:

α ¼ 0.514� 0.006jstat � 0.0015jsyst and

ΔΦ ¼ 1.168� 0.019jstat � 0.018jsyst: ð4:15Þ
As shown in Fig. 3, the concurrence and m12 depend on

the scattering angle. The largest value for m12 is found at
Θ ¼ π=2, for which

C½ρ� ¼ 0.514� 0.016 and m12 ¼ 1.264� 0.017: ð4:16Þ

The significance of the violation of the Bell inequality
is 15.5σ.

C. ψð3686Þ → Ξ− + Ξ̄+ and Ξ0 + Ξ̄0

In the process

eþe− → γ → cc̄ → ψð3686Þ → Ξ− þ Ξ̄þ; ð4:17Þ

theψð3686Þ is produced polarized. The correlationmatrix of
the two baryons depends on the scattering angle Θ because
the polarization of the ψð3686Þ does. The process is similar
to the previous ones and, again, we can simply retrace our
steps from the previous section. See results in Fig. 4 for the
scattering angular dependence of the concurrence andm12.
The density and correlation matrices are the same as in

Eqs. (4.5) and (4.9).
The decay ψð3686Þ → Ξ−Ξ̄þ has branching fraction

ð2.87� 0.11Þ × 10−4 [28]. The chain decays Ξ− → Λπ−,

FIG. 2. In the first row: Concurrence (left) and Horodecki conditionm12 (right) for J=ψ → ΛΛ̄. In the bottom row: Concurrence (left)
and Horodecki condition m12 (right) for ψð3686Þ → ΛΛ̄. All quantities are the largest for Θ ¼ π=2.
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FIG. 3. In the first row: Concurrence (left) and Horodecki condition m12 (right) for J=ψ → Ξ0Ξ̄0. In the bottom row: Concurrence
(left) and Horodecki condition m12 (right) for J=ψ → ΞþΞ̄−. m12 is the largest for Θ ¼ π=2.

FIG. 4. In the first row: Concurrence (left) and Horodecki conditionm12 (right) for ψð3686Þ → Ξ0Ξ̄0. In the bottom row: Concurrence
(left) and Horodecki condition m12 (right) for ψð3686Þ → ΞþΞ̄−. All quantities are the largest for Θ ¼ π=2.
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Λ → pπ− and Ξ̄þ → Λ̄πþ, Λ̄ → p̄πþ have been recon-
structed out of a sample of ð448.1� 2.9Þ × 106 ψð3686Þ.
A maximum likelihood fit over the kinematic variables
yields the values of the parameters defining the helicity
amplitudes [20]:

α ¼ 0.693� 0.048jstat � 0.049jsyst and

ΔΦ ¼ 0.667� 0.111jstat � 0.058jsyst: ð4:18Þ

We find

C½ρ� ¼ 0.693� 0.068 and m12 ¼ 1.480� 0.095; ð4:19Þ

at Θ ¼ π=2. The significance of the violation of the Bell
inequality is 5.1σ.
The next decay, ψð3686Þ → Ξ0Ξ̄0, has branching fraction

ð2.3� 0.4Þ × 10−4 [28]. The chain decays J=ψ → Ξ0 →
Λπ0,Λ → pπ− and J=ψ → Ξ̄0 → Λ̄π0, Λ̄ → p̄πþ have been
reconstructed out of the same sample of ψð3686Þ as before;
the helicity amplitude parameters obtained from the like-
lihood fit are [21]:

α ¼ 0.665� 0.086jstat � 0.081jsyst and

ΔΦ ¼ −0.050� 0.150jstat � 0.020jsyst: ð4:20Þ

We find

C½ρ� ¼ 0.665� 0.119 and m12 ¼ 1.442� 0.161;

ð4:21Þ

at Θ ¼ π=2.
The significance of the violation of the Bell inequality

is 2.7σ.

D. J=ψ → Σ− + Σ̄+ and ψð3686Þ → Σ− + Σ̄+

In these decays, the correlation matrix of the two baryons
depends on the scattering angle Θ because the polarization
of the ψð3686Þ does. Again, we can just retrace our steps
from the previous sections. The density and correlation
matrices are the same as in Eqs. (4.5) and (4.9). See results
in Fig. 5 for the scattering angular dependence of the
concurrence and m12.
The decay J=ψ → Σ−Σ̄þ has branching fraction ð1.50�

0.24Þ × 10−3 [28]. The decays Σ− → p̄π0 and Σ̄þ → pπ0

out of a sample of 1.31 × 109 J=ψ have been reconstructed.
A maximum likelihood fit over the kinematic variables
yields the values of the parameters defining the helicity
amplitudes [16]

FIG. 5. In the first row: Concurrence (left) and Horodecki condition m12 (right) for J=ψ → Σ̄þΣ−. In the bottom row: Concurrence
(left) and Horodecki conditionm12 (right) for ψð3686Þ → Σ̄þΣ−. All quantities are the largest for Θ ¼ π=2. All quantities are the largest
for Θ ¼ π=2.
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α ¼ −0.508� 0.006jstat � 0.004jsyst and

ΔΦ ¼ −0.270� 0.012jstat � 0.009jsyst: ð4:22Þ

We find

C½ρ� ¼ 0.508� 0.007 and m12 ¼ 1.258� 0.007; ð4:23Þ
at Θ ¼ π=2.
The significance of the violation of the Bell inequality is

therefore 36.9σ.
The next decay, ψð3686Þ → Σ−Σ̄þ, has branching frac-

tion ð2.82� 0.09Þ × 10−4 [28]. The decays Σ− → p̄π0 and
Σ̄þ → pπþ out of a sample of 4.48 × 108 ψð3686Þ have
been reconstructed. A maximum likelihood fit over the
kinematic variables yields the values of the parameters
defining the helicity amplitudes [16]:

α ¼ 0.682� 0.030jstat � 0.011jsyst and

ΔΦ ¼ 0.379� 0.07jstat � 0.014jsyst: ð4:24Þ
We find

C ¼ 0.682� 0.032 and m12 ¼ 1.465� 0.043; ð4:25Þ
at Θ ¼ π=2.
The significance of the violation of the Bell inequality is

therefore 10.8σ.

E. J=ψ → Σ0 + Σ̄0 and ψð3686Þ → Σ0 + Σ̄0

One last time, we can just retrace our steps from the
previous sections. The density and correlation matrices are
the same as inEqs. (4.5) and (4.9). See results in Fig. 6 for the
scattering angular dependence of the concurrence andm12.
The decay J=ψ → Σ0Σ̄0 has branching fraction ð1.172�

0.032Þ × 10−3 [28]. The chain decays Σ0 → Λγ, Λ → pπ−

and Σ̄þ → Λ̄γ, Λ̄ → p̄πþ have been reconstructed out of a
sample of 1.0 × 1010 J=ψ . A maximum likelihood fit over
the kinematic variables yields the values of the parameters
defining the helicity amplitudes [17]

α ¼ −0.4133� 0.0035jstat � 0.0077jsyst and

ΔΦ ¼ −0.0828� 0.00068jstat � 0.0033jsyst: ð4:26Þ
We find for the J=ψ → Σ0Σ̄0

C½ρ� ¼ 0.4133� 0.009 and m12 ¼ 1.171� 0.007;

ð4:27Þ
at Θ ¼ π=2.
The significance of the violation of the Bell inequality

is 24.4σ.
The next decay, ψð3686Þ → Σ0Σ̄0, has branching fraction

ð2.35� 0.09Þ × 10−4 [28]. The chain decays Σ0 → Λγ,
Λ → pπ−, and Σ̄þ → Λ̄γ, Λ̄ → p̄πþ out of a sample of
2.7 × 109ψð3686Þ have been reconstructed. A maximum

FIG. 6. In the first row: Concurrence (left) and Horodecki condition m12 (right) for J=ψ → Σ0Σ̄0. In the bottom row: Concurrence
(left) and Horodecki conditionm12 (right) for ψð3686Þ → Σ0Σ̄0. All quantities are the largest for Θ ¼ π=2. All quantities are the largest
for Θ ¼ π=2.
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likelihood fit over the kinematic variables yields thevalues of
the parameters defining the helicity amplitudes [17]

α ¼ 0.814� 0.028jstat � 0.028jsyst and

ΔΦ ¼ 0.512� 0.085jstat � 0.034jsyst: ð4:28Þ
We find

C½ρ� ¼ 0.814� 0.040 and m12 ¼ 1.663� 0.065; ð4:29Þ

at Θ ¼ π=2. The significance of the violation of the Bell
inequality is therefore 10.2σ.

F. Entanglement as a function of the form factors

We have seen that the amount of entanglement in the
final state spin correlations depends on the kind of baryons
and on the charmonium state these come from.
We can study how in general the entanglement varies as

we vary the form factors GM and GE in the coupling of the
baryons to the spin 1 resonance. For instance, the coupling
of the Λ baryons to the J=ψ is given as

ūΛ

�
F1γ

μ þ 1

2mΛ
σμνqνF2

�
uΛA

J=ψ
μ ð4:30Þ

in which GM ¼ F1 þ F2 and GE ¼ F1 þ s=2m2
ΛF2

and s ¼ q2 is the square of the energy. The field AJ=ψ
μ

represents the J=ψ charmonium state. In Eq. (4.30),
σμν ¼ i=2½γμ; γν�.
The two form factors GM and GE have been written in

terms of the two coefficients α and ΔΦ as

GM

GE
¼
����GM

GE

����eiΔΦ and α¼ sjGMj2 − 4m2
ΛjGEj2

sjGMj2 þ 4m2
ΛjGEj2

: ð4:31Þ

The left-hand side of Fig. 7 shows the variation of the
entanglement as we vary these two parameters. It is the
largest when α ¼ −1, that is when GM ¼ 0. This value
corresponds to F1 ¼ −F2, which gives the coupling of an
elementary scalar to the photon and is parity conserving.
The other limit of interest is F2 ¼ 0, for which GE ¼ GM
and corresponds at threshold to α ¼ 1. This is the minimal
coupling of an elementary fermion to the photon.
Setting the scattering angle to Θ ¼ π=2, the concurrence

ceases to depend on the phase ΔΦ—as it can be seen by
inspection of Eq. (4.5)—and becomes identical to the
absolute value of the coefficient α, see the right-hand side
of Fig. 7.
The values of entanglement and Bell inequality violation

for the decays of charmonium states with spin 1 into
baryons are summarized in Table I.

G. χ 1c → ϕ+ϕ

Though more complicated, the computation for this
process is essentially similar to the previous one.
The χ1c are produced in

eþe− → ψð3686Þ → γχ1c; ð4:32Þ

with a branching fraction of ð4.36� 0.13� 0.18Þ × 10−4

[23]. The elements of the spin density matrix can be written
as in Eq. (4.4).
There are 2 independent amplitudes, because the sym-

metry under exchange of identical particles in the final state
gives w1 1 ¼ w0;0 ¼ 0. The density matrix is given by

FIG. 7. Left side: Entanglement as a function of the form factor parameters α andΔΦ. The concurrence is computed atΘ ¼ π=3. Right
side: The concurrence as a function of the parameter α at Θ ¼ π=2 is C½ρ� ¼ jαj. There is no dependence on the other parameter ΔΦ.
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ρϕϕ ∝

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 jw−10j2ð2 − s2ΘÞ 0 w−10w⋆
0−1s

2
Θ 0 w−10w⋆

01ð2 − s2ΘÞ 0 w−10w⋆
10s

2
Θ 0

0 0 0 0 0 0 0 0 0

0 w0−1w⋆
−10s

2
Θ 0 jw0−1j2ð2 − s2ΘÞ 0 w0−1w⋆

01s
2
Θ 0 w0−1w10ð2 − s2ΘÞ 0

0 0 0 0 0 0 0 0 0

0 w01w⋆
−10ð2 − s2ΘÞ 0 w01w⋆

0−1s
2
Θ 0 jw01j2ð2 − s2ΘÞ 0 w01w⋆

10s
2
Θ 0

0 0 0 0 0 0 0 0 0

0 w10w⋆
−10s

2
Θ 0 w10w⋆

0−1ð2 − s2ΘÞ 0 w10w⋆
01s

2
Θ 0 jw10j2ð2 − s2ΘÞ 0

0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

; ð4:33Þ

in which sΘ ≡ sinΘ.
The analysis of the data in [23] selects 1529� 45 out of

the γKþK−KþK− final state events. The maximum like-
lihood fit yields the absolute value of the ratio of the moduli
of the helicity amplitudes

����w10

w0;1

����¼ 1.05� 0.05 and

����w11

w10

����¼ 0.07� 0.04; ð4:34Þ

in which the uncertainty is only statistical. The symmetries
of the decay process imply that w0 1 ¼ −w−1;0 and
w1 0 ¼ −w0−1.
There is no easily computable direct measure of the

entanglement for a bipartite system of two qutrits. We
compute instead the quantity C2, defined in Eq. (2.14),
which is a lower bound on it. It is maximum at scattering
angle Θ ¼ π=2, as shown in Fig. 8, where it is 1, showing
that also the entanglement must be maximal.
Concerning the violation of the Bell inequality, we find

(at Θ ¼ π=2)

TrBρϕϕ ¼ 2.296� 0.003: ð4:35Þ

The significance of the violation of the Bell inequality is
98.7σ—though we must bear in mind that the uncertainties
used in this estimate are only statistical.
The ϕ are polarized and their polarization is given

by

Tr ρϕϕSi ⊗ 1 ¼ ð0; 0; 0.024Þ; ð4:36Þ

where S1 ¼ 1ffiffi
2

p ðT1 þ T6Þ, S2 ¼ 1ffiffi
2

p ðT2 þ T7Þ, and

S3 ¼ 1
2
T3 þ

ffiffi
3

p
2
T8.

H. ψð3686Þ → Ω− + Ω̄+

The elements of the 16 × 16 density matrix describing
the final state can be written as in Eq. (4.4).
There are 16 helicity amplitudes but 8 vanish because of

the condition jλ1 − λ2j ≤ 1 and the symmetry of the final
state. The remaining are related by parity and by the
symmetries of the final state as

w−3
2
−3
2
¼ −w3

2
3
2

ð4:37Þ

w−1
2
−1
2
¼ −w1

2
1
2

ð4:38Þ

w−1
2
1
2
¼ w3

2
−1
2

ð4:39Þ

w−1
2
−3
2
¼ w−3

2
−1
2
¼ −w1

2
3
2
¼ −w3

2
1
2
: ð4:40Þ

There are therefore only four independent amplitudes: w3
2
3
2
,

w1
2
1
2
, w1

2
−1
2
, and w3

2
1
2
.

A selection of 4000 events withΩ−Ω̄þ in the final state is
taken out of a sample of ð448.1� 2.9Þ × 106 ψð3686Þ
collected [22]. The decay chain is ψð3686Þ → Ω−Ω̄þ and
Ω− → K−Λð→ pπ−Þ and Ω̄þ → KþΛð→ p̄πþÞ.
The values of the four amplitudes are given in the

parametrization
FIG. 8. Dependence of the operator C2 on the scattering angleΘ
for χ1c → ϕϕ.
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w1
2
1
2

w1
2
−1
2

¼ h1eiϕ1 ;
w3

2
1
2

w1
2
−1
2

¼ h3eiϕ3 ; and
w3

2
3
2

w1
2
−1
2

¼ h4eiϕ4 ð4:41Þ

with two possible sets of solutions [22]

h1 ¼ 0.30� 0.11jstat � 0.04jsyst ϕ1 ¼ 0.69� 0.041jstat � 0.13jsyst ð4:42Þ

h3 ¼ 0.26� 0.05jstat � 0.02jsyst ϕ3 ¼ 2.60� 0.16jstat � 0.08jsyst ð4:43Þ

h4 ¼ 0.51� 0.03jstat � 0.01jsyst ϕ4 ¼ 0.34� 0.80jstat � 0.31jsyst ð4:44Þ

and

h1 ¼ 0.31� 0.10jstat � 0.04jsyst ϕ1 ¼ 2.38� 0.37jstat � 0.13jsyst ð4:45Þ

h3 ¼ 0.27� 0.05jstat � 0.01jsyst ϕ3 ¼ 2.57� 0.16jstat � 0.04jsyst ð4:46Þ

h4 ¼ 0.51� 0.03jstat � 0.01jsyst ϕ4 ¼ 1.37� 0.68jstat � 0.16jsyst ð4:47Þ

We find a negativity (at Θ ¼ π=2)

N ðρÞ ¼ 0.71� 0.04ðsol IÞ and N ðρÞ ¼ 1.34� 0.03ðsol IIÞ; ð4:48Þ

and therefore a substantial amount of entanglement.
Although Bell inequalities involving particle of any spin
have been discussed in the literature, a reliable estimator to
test Bell inequality between spin 3=2 fermions is not yet
available.

V. CHARMONIUM SPIN 2 STATE

A. χ 2c → ϕϕ

The χ2c are produced in

eþe− → ψð3686Þ → γχ2c; ð5:1Þ

The elements of the density matrix can be written as

ρλ1λ2;λ01λ02 ∝wλ1λ2w
�
λ0
1
λ0
2

X
k¼�1�2

Dð2Þ�
k;λ1−λ2ð0;Θ;0ÞD

ð2Þ
k;λ0

1
−λ0

2
ð0;Θ;0Þ

ð5:2Þ

where Dð2Þ
i;j is the Wigner matrix for the spin 2 representa-

tion of SOð3Þ and the sum is only over the polarization �1
and �2 because the spin 2 state is produced from
unpolarized electrons and positrons with the electron and
positron taken to be massless and, therefore, with only the
helicities �1 and �2.
The analysis of the data in [23] selects 4247� 93 out of

the γKþK−KþK− final state events. The maximum like-
lihood fit yields the absolute value of the ratio of the moduli
of the helicity amplitudes:

����w1 1

w0 0

���� ¼ 0.808� 0.051jstat � 0.009jsyst ð5:3Þ

����w1−1

w0 0

���� ¼ 1.450� 0.097jstat � 0.104jsyst ð5:4Þ

����w0 1

w0 0

���� ¼ 1.265� 0.054jstat � 0.079jsyst: ð5:5Þ

Only the moduli of the amplitudes are given. The other
amplitudes are related to these as follows

w−1−1 ¼ w1 1; w−1 1 ¼ w1−1; and

w0−1 ¼ w1 0 ¼ w−1 0 ¼ w0 1: ð5:6Þ

We find no indication of entanglement, namely

N ðρÞ ¼ 0; and C2 ¼ 0: ð5:7Þ

The expectation value of the Bell operator is given, around
Θ ¼ π=2, by

TrBρϕϕ ¼ 1.202� 0.032 ð5:8Þ

and the Bell inequality is not violated.
The ϕ are not polarized

Tr ρϕϕSi ⊗ 1 ¼ ð0; 0; 0Þ: ð5:9Þ
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VI. QUANTUM CORRELATION
AND DECOHERENCE

The energy available to the Λ baryons in, for instance,
the decay ηc → ΛΛ̄ makes these particles travel at about
0.66c and decay, in average, around 7 centimeters away
from the primary vertex (Table II). The beam pipe at BESIII
has an inner (outer) diameter of 6.3 (11.4) cm [29] while at
the LHCb it goes from 6.5 (near the interaction region) to
26.2 cm with a conical design [43]. It therefore seems very
possible that the Λ baryons do hit the wall of the beam pipe
and even go inside the first layers of the detector, which is
the multilayer drift chamber (MDC) at BESIII and the
vertex detector (VELO) at LHCb.
Taking into account the exponential dispersion of the

decay times, about 58% of the Λ baryons coming out
approximately at 90° decay inside the wall of the beam pipe
or in the detector (see Fig. 9). Given a spherically symmetric
cross section, 2=3 of all the scattered particles decay either
inside thewall of the beam pipe or in theMDC or the VELO.
Even though the beam pipe walls are made of material that
interacts the least possiblewith the particles, still theymust be
affected and, in particular, once inside the detector, the spatial
part of the densitymatrix is completely incoherent (because a
spherical wave becomes a localized track in the detector).
This picture is confirmed by the study of the cross section
Λp → Λp inwhich the interaction between the hyperons and
the beam-pipe wall is utilized [44,45].
While only very weak interactions are expected between

the spin of the Λ baryons and the matter of the detector, the
density matrix as a whole should be affected by the loss
coherence as the particle leaves a track in the detector [27].
It does not seem so from the large entanglement shown by
the data. Why are the spins of theΛ baryons still entangled?
This problem does not appear to have been much discussed
in the literature. As suggested in [46], whereas the spatial
part becomes localized and describes the (feeble) track left
by the Λ baryon in the detector, the spin part remains
(mostly) unchanged and still fully correlated.
The density matrix seems to factorize into spatial- and

spin-dependent parts. As already noticed in Sec. IVA, this
important feature can be put to the test in the case of
ηc → ΛΛ̄ and χ0c → ΛΛ̄. We know that the helicity ampli-
tudes in vacuum are in this case fixed. If the measured ones
turn out to be less than expected, it would mean that some

of the entanglement has been lost in the interaction with
the detector. Vice versa, if the measured entanglement is
maximal, the polarization density matrix must be factorized
from the space dependent part.
The data from the decays of the J=ψ , ψð3686Þ and χ1c

into different baryons cannot be readily utilized to test such
a factorization. Even though the decay products do travel
different distances outside the beam pipe, their form factors
are different and the results cannot be compared.
A possible, albeit imperfect, test with the available data

can be performed by taking the events from the direct
production of Λ baryons (as discussed in Appendix A) at
different center-of-mass energies as given in [47] at

ffiffiffi
s

p ¼
2396 MeV and in [42] at

ffiffiffi
s

p ¼ 3680, 3683, 3684, 3685,
3687, 3691, and 3710 MeV. Figure 10 shows the values of
the coefficients α and ΔΦ extracted from events at different
values of

ffiffiffi
s

p
. Figure 11 shows the lengths traveled on

average by the baryons with different energies.
The energy at threshold is sufficiently small to be well

away from the J=ψ very narrow resonance. It gives a value
of the form factors uncontaminated by those of the J=ψ .
Similarly, the last point at

ffiffiffi
s

p ¼ 3710 MeV is sufficiently
away from the ψð3686Þ resonance—which is rather narrow
too. We can take the values extracted for these two energies
and compare them knowing that they come from baryons
that have decayed inside the beam pipe (the first) and that
have traveled through the wall of the beam pipe and into the
MDC detector (the second). Though the dependence of the
form factors on the energy may render the test unreliable,
we can provisionally assume that the form factors have
little variation with the energy when away from resonances.
Bearing in mind the above conditions, we can see that the

values for the two limiting energies are close together,
identical within one standard deviation. This we take as a
circumstantial clue that the polarization density matrix is
not affected by the loss of coherence that the spatial part is
undergoing in the second case, where a faint trace of the

FIG. 9. Decay ηc → ΛΛ̄: Fraction (out of 1000) of Λ baryons
decaying at different lengths from the primary vertex. The vertical
dashed line indicates where the inner surface of the beam pipe is
located (3.15 cm away from the primary vertex).

TABLE II. Masses and lifetimes of the strange baryons [28].

Mass (MeV) Lifetime (s)

Λ 1115.683� 0.006 ð2.617� 0.010Þ × 10−10

Σ− 1197.449� 0.029 ð1.479� 0.011Þ × 10−10

Σ0 1192.642� 0.024 ð7.4� 0.7Þ × 10−20

Ξ− 1321.71� 0.07 ð1.639� 0.015Þ × 10−10

Ξ0 1314.86� 0.20 ð2.90� 0.09Þ × 10−10

Ω− 1672.45� 0.29 ð0.821� 0.011Þ × 10−10
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baryon can be seen across the detector as a proof that
superposition is no longer present. This is only a clue
because the uncertainty in these values is large and the
value α ¼ 0 cannot be excluded.
A clear cut discussion for the data from the decays of

J=ψ and ψð3686Þ is not possible because of their different
form factors—on which the final entanglement depends.
For these decays, it would be useful to have the helicity
amplitudes computed on separate sets of baryons, namely
those for which the decay takes place inside the beam pipe
and those for which it takes place in the detector.

VII. LOOPHOLES AT COLLIDERS

The experimental violation of the Bell inequality at low
energies has been challenged by invoking the presence of
loopholes that bypass its effect. Though the same loopholes
might be brought to bear to tests at high energies, their

effectiveness and significance is different in the new
settings and must be revisited.
For a start, two of them, namely the detection and

coincidence loopholes, do not seem to apply at colliders.
The first because one routinely assumes having a fair
sampling of the recorded events. This assumption is
necessary given the small fraction of actually recorded
events out of the many produced. Also, the coincidence
loophole does not seem to be problematic at colliders.
Possible misidentifications are always accounted for in the
quoted uncertainty in the results of the experiments.
Next, the locality loophole seems to be possible. It is

potentially present for states made of particles that end up
decaying with a relative timelike interval, either because
they decayed at different times or because they do not move
apart fast enough. To close the locality loophole it is
desirable to consider decays in which the produced
particles are identical, and therefore their lifetimes are also
the same. Even in this case, the actual decays take place
with an exponential spread. To take this into account, one
must verify that the majority of the events do take place
separated by a spacelike interval and weed out those that do
not. The selection of these events could be implemented
with a suitable cut on the relative momentum of the two
particles. If the amount of available data is large and the
fraction of pairs rejected by the cut is small, this refinement
would not affect the significance of the Bell test under
consideration.
Finally, the polarization measurement is made inside the

detector by the particles themselves as they decay into
the final state; because the decay is a quantum process, it is
the ultimate random generator and therefore the freedom-
of-choice loophole is addressed.
In considering the relevance of these loopholes, the

reader should bear in mind that there is no model based on
hypothetical deterministic variables that is able to explain
all the experimental tests by exploiting one or more of these
loopholes. We can now add to the list of these tests those

FIG. 11. Decay lengths for the Λ baryons for the different
values of

ffiffiffi
s

p
. The first track is just inside the beam pipe (with an

inner wall at 3.15 cm, marked by the dashed horizontal line), the
last goes through the beam pipe and into the MDC (which stands
between a radius of 5.9 and 81 cm).

FIG. 10. Coefficients α and ΔΦ for the production of ΛΛ̄ at different values energies
ffiffiffi
s

p
. The first point is just about threshold, the

others around the ψð3686Þ mass.
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performed at high energies. At low energy all the possible
loopholes have been closed [48–50].

VIII. OUTLOOK

We have established that quantum entanglement and the
violation of Bell inequality are both present in several
decays of charmonium states. The charmonium offers the
ideal laboratory for the study of these properties exclusive
to quantum systems. If the experimental Collaborations
were to provide some of the missing information on the
helicity amplitudes of the processes we have discussed,
namely phases and correlations in the uncertainty, tests
even tighter than those hereby discussed could be
established.
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APPENDIX A: Λ-Λ̄ BARYON PAIR PRODUCTION

A pair of Λ baryon and antibaryon can be produced
directly if the energy in the center of mass is below the mass
of the first charmonium bound state, that is roughly below
3 GeV. In this process the Λ baryons are produced directly
through their coupling to the photon

eþ þ e− → Λþ Λ̄; ðA1Þ

without going through an intermediate resonance. The
helicity amplitudes depends on the electromagnetic form
factors of the baryon, which enters the current, as in
Eq. (4.30), as

ūΛ

�
F1γ

μ þ 1

2mΛ
σμνqνF2

�
uΛAμ ðA2Þ

in which Aμ stands for the electromagnetic four vector and
q2 ¼ s is the center-of-mass energy. The other common
parametrization, the one we used in Sec. IV F, is in terms of
the form factors

GM ¼ F1 þ F2 and GE ¼ F1 þ
q2

2m2
Λ
F2; ðA3Þ

which is obtained from Eq. (4.30) by means of the Gordon
decomposition.
To make contact with the experiments, we rewrite the

two form factors GM and GE in terms of the two
coefficients α and ΔΦ, introduced in Sec. IV.
The analysis of the data taken at

ffiffiffi
s

p ¼ 2.396 GeV
gives [47]

α ¼ 0.12� 0.14jstat and ΔΦ ¼ 0.65� 0.21jstat; ðA4Þ

in which the two statistical uncertainties are correlated with
coefficient 0.17.
As discussed in Sec. VI, the data collected are for events

with energies just above the threshold for the production of
the Λ baryons and therefore the baryons move slowly,
decaying within about 2.4 cm from the production point.
These decays take place within the beam pipe and before
any interaction with the detector is possible.
The analysis of entanglement and Bell inequality

violation is completely analogous to that in Sec. IV. See
results in Fig. 12 for the scattering angular dependence of
the concurrence and m12. At Θ ¼ π=2, we find

C½ρ� ¼ 0.12� 0.11 and m12 ¼ 1.01� 0.04: ðA5Þ

The Bell inequality is not violated.

FIG. 12. Concurrence (left) and Horodecki’s condition m12 (right) for eþe− → ΛΛ̄.
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The analysis of the data taken at
ffiffiffi
s

p ¼ 3.710 GeV
gives [42]

α ¼ 0.52þ0.38
−0.39 jstat � 0.02jsyst and

ΔΦ ¼ 0.0þ1.13
−0.99 jstat � 0.03jsyst; ðA6Þ

Now the data collected are for events in which the decay
takes place about 10 cm from the production point, that is,
after theΛ baryons have crossed most of the MDC detector,
let alone the beam pipe.
At Θ ¼ π=2, we find

C½ρ� ¼ 0.52� 0.30 and m12 ¼ 1.27� 0.61: ðA7Þ

The Bell inequality is not violated.
A similar analysis can be done on eþe− → ΣþΣ̄−

data [51].

APPENDIX B: Λb → J=ψ +Λ

The helicity states of the final system in

Λb → J=ψ þ Λ ðB1Þ

fall in the 1
2
representation of the product 1 ⊗ 1

2
¼ 3

2
⊕ 1

2
. It

is constrained by the conservation of the angular momen-
tum to be described by the two states

jψ↑i ∝ w0−1
2
j1; 0i ⊗

���� 12 ;
1

2

�
þ w11

2
j1; 1i ⊗

���� 12 ;−
1

2

�
ðB2Þ

jψ↓i ∝ w01
2
j1; 0i ⊗

���� 12 ;−
1

2

�
þ w−1−1

2
j1;−1i ⊗

���� 12 ;
1

2

�
;

ðB3Þ

in which the state in Eq. (B2) corresponds to the Λb with
positive helicity and that in Eq. (B3) to the opposite helicity.
The two states in Eqs. (B2) and (B3) enter, depending on

the polarization Pb of the initial Λb, in the mixture

ρΛ J=ψ ∝ p↑jψ↑ihψ↑j þ p↓jψ↓ihψ↓j; ðB4Þ

in which p↑ ¼ 1
2
þ Pb and p↓ ¼ 1

2
− Pb.

There is no parity conservation and therefore 4 inde-
pendent nonvanishing helicity amplitudes: w0�1

2
and w�1�1

2
.

The density matrix is

ρΛ J=ψ ∝

0
BBBBBBBBBB@

jw−1−1
2
j2 0 0 w−1−1

2
w�
0 1
2

0 0

0 0 0 0 0 0

0 0 jw0−1
2
j2 0 0 w0 1

2
w�
1 1
2

w01
2
w�
−1−1

2

0 0 jw0−1
2
j2 0 0

0 0 0 0 0 0

0 0 w1 1
2
w�
0−1

2

0 0 jw1 1
2
j2

1
CCCCCCCCCCA
; ðB5Þ

with no angular dependence. The helicity amplitude w1 1
2
is expected to be small because of the mostly chiral coupling.

Data from one of the experimental collaborations [24] have been taken for the chain decay Λb → J=ψð→ μþμ−ÞΛðpπ0Þ
with a luminosity of 4.6 fb−1 at center-of-mass energy of 7 TeV and recorded by the ATLAS detector at the LHC. They
extract from a likelihood fit the helicity amplitudes

jw0 1
2
j ¼ 0.17þ0.12

−0.17 jstat � 0.09jsyst; jw0−1
2
j ¼ 0.59þ0.06

−0.07 jstat � 0.03jsyst
jw1 1

2
j ¼ 0.08þ0.13

−0.08 jstat � 0.06jsyst jw−1−1
2
j ¼ 0.79þ0.04

−0.05 jstat � 0.02jsyst: ðB6Þ

Data for the same amplitudes are available from CMS [25]
and LHCb [26].
We find a positive but small value

N ðρÞ ¼ 0.05� 0.06; ðB7Þ

which corresponds to essentially no entanglement within
one standard deviation. This means that the final state is a
mixture of the two states in Eqs. (B2) and (B3) with equal
weight—which is what we would expect if the Λb is
produced unpolarized.
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