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In this paper, we consider numerical methods for the location of events of differential
algebraic equations of index one. These events correspond to cross a discontinuity surface,
beyond which another differential algebraic equation holds. Convergence theorems of the
numerical event time and event point to the true event time and event point are given.
It is proved that, for integrations by semi-implicit methods or Rosenbrock methods, the
order of convergence of the numerical event location is the order of convergence of the
continuous extension and, for integration by implicit Runge-Kutta methods, the order of
convergence is the order of convergence of the implicit RK method.
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1. Introduction

Several problems in applications may be described by the Differential Algebraic Equation (DAE)⎧⎨
⎩

y′ (t) = f (y (t) , z (t)) , t ∈ [0, T ],
g (y (t) , z (t)) = 0, t ∈ [0, T ],
(y(0), z(0)) = (y0, z0) ,

(1)

where (y (t) , z (t)) ∈Rd1 ×Rd2 , (y0, z0) ∈Rd1 ×Rd2 , ( f , g) :Rd1 ×Rd2 →Rd1 ×Rd2 . The spaces Rd1 and Rd2 are equipped 
with norms, both denoted by ‖ · ‖.

We assume that the initial values (y0, z0) are consistent, i.e. g(y0, z0) = 0, f and g are sufficiently smooth functions and 
the DAE (1) has a unique solution on [0, T ].

Moreover, we assume that the DAE (1) has index 1 (see for instance [14]). This means that there exist neighborhoods 
U1 of {y(t) : t ∈ [0, T ]} and U2 of {z(t) : t ∈ [0, T ]} such that, for any (y, z) ∈ U1 × U2, the jacobian matrix gz(y, z) of g at 
(y, z) is invertible and the inverse is uniformly bounded on U1 × U2. Then, by the Implicit Function Theorem, there exists a 
smooth function G : U1 → U2 such that

g(y, z) = 0 ⇔ z = G(y), (y, z) ∈ U1 × U2. (2)

In this paper we are interested in a DAE (1) whose solution (y, z) meets, during its evolution in the state space Rd1 ×
Rd2 , a surface � at a certain time t∗ ∈ [0, T ), i.e. we have (y(t), z(t)) /∈ � for t ∈ [0, t∗) and (y(t∗), z(t∗)) ∈ �.
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This surface � is a considered as a discontinuity surface, since we suppose that beyond � another DAE with a different 
( f , g) holds.

Several real systems may be modeled by DAEs of this type, see for instance the applications in Chemical Engineering 
[1,4,26,27] and electrical systems [20,21]. In recent years a growing interest has been observed concerning the theoretical 
aspects (see for example [4,7,11]) together with the numerical questions that arise in such DAEs (see for example [15,16,18,
19,23]). In literature such DAEs, are called in several ways: non-smooth DAEs, hybrid DAEs, discontinuous DAEs, DAEs of Filippov 
type. We will call these DAEs as DDAEs (Discontinuous DAEs).

What happens to the solution for t > t∗ , that is once the solution has met the discontinuity surface �, is not the aim of 
this paper. In general, (y, z) could cross �, or could slide on �, or could not exist, or could not be unique (see for instance 
[8] where a deep study of all these questions is addressed).

In this paper, we focus on the important computational task of the numerical event location for DDAEs, which is the 
computational detection of the event time t∗ and the event point (y(t∗), z(t∗)) ∈ �. The accurate computation of the event 
point on � is a crucial question in the construction of numerical schemes for this kind of problems, in particular when 
the solution (y(t), z(t)) slides on the discontinuity surface for t > t∗ . For the similar task in case of discontinuous Ordinary 
Differential Equations (ODEs), techniques based on one-step methods (see for instance [9,10,17]) or multistep methods (see 
for instance [3]) are used. In case of DDAEs we have the additional difficulty that the event point must be consistent with 
the algebraic constraint.

In this paper, we consider standard numerical integrations of the DAE (1) given by semi-implicit methods, Rosenbrock 
methods and implicit Runge-Kutta (RK) methods. For the integration, we consider a mesh

0 = t0 < t1 < · · · < tN = T

over the interval [0, T ] of stepsizes

τn+1 := tn+1 − tn, n = 0,1, . . . , N − 1.

The maximun stepsize is denoted by τmax. The methods provide approximations (yn, zn) of (y(tn), z(tn)), n = 0, 1, . . . , N .
We show how the numerical event location can be accomplished during the integration by these three families of 

methods, and convergence theorems of the numerical event time and event point to the true event time and event point 
are given. Some test examples of numerical event location are presented. The appendix gives a background on the numerical 
integration of DAEs and continuous extensions.

2. Event location for DAEs

We begin with some definitions better defining the event location problem.
Let h :Rd1 ×Rd2 →R be a sufficiently smooth function partitioning the state space Rd1 ×Rd2 in the three subsets:

S− = {(y, z) ∈Rd1 ×Rd2 : h(y, z) < 0}
� = {(y, z) ∈Rd1 ×Rd2 : h(y, z) = 0}
S+ = {(y, z) ∈Rd1 ×Rd2 : h(y, z) > 0}.

Observe that the regions S− and S+ are separated by the surface �. We can suppose that the DAE (1) holds in S− ∪ �, 
while in S+ ∪ � a similar DAE holds but with a different ( f , g). For the aim of this paper we can consider just the DAE 
in S− ∪ �, ignoring what happens in S+ ∪ �. However, we assume that ( f , g) in S− ∪ � can be smoothly extended to a 
neighborhood of � in S+ .

Suppose to have an initial value (y0, z0) such that (y0, z0) ∈ S− . We want to integrate the DAE (1) up to the first time 
t∗ > 0 such that

h
(

y
(
t∗) , z

(
t∗))= 0. (3)

The time t∗ is called the event time and (y(t∗), z(t∗)) is called the event point or event state. The event location is the 
determination of the event time t∗ and the event point (y(t∗), z(t∗)).

In the following we assume that the event time t∗ exists and it is a simple root of the event equation (3), i.e.

d

dt
h(y(t), z(t))

∣∣∣
t=t∗

> 0

holds. Observe that this is the generic case.
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2.1. The numerical event equation

We rewrite the equation (3), determining the event time and the event point, as

h(ϕ(t∗)) = 0, (4)

where ϕ (t) is the solution (y(t), z(t)) of (1). Observe that t∗ is the event time and ϕ(t∗) is the event point.
In the numerical event location, we do not solve the equation (4) but its approximation

h
(
ϕτ

(
t∗
τ

))= 0, (5)

where ϕτ (t) is a numerical solution of (1) defined at all times t ∈ [0, T ]. Observe that t∗
τ is the numerical event time and 

ϕτ

(
t∗
τ

)
is the numerical event point.

The function ϕτ is obtained by the numerical method with which we are integrating the DAE (1): ϕτ can be a continuous 
extension of the numerical solution or the numerical solution whose value at t ∈ (tn, tn+1), n = 0, 1, . . . , N − 1, is obtained 
by taking a stepsize t − tn from (tn, yn).

Next theorem says how close are the numerical event time and event point to the true event time and event point. In 
the theorem and in the following, we use the norm ‖(y, z)‖ = max {‖y‖ ,‖z‖} on Rd1 ×Rd2 .

Theorem 1. Let t∗ ∈ (0, T ) be an event time which is a simple root of (4). Consider a mesh

0 = t0 < t1 < · · · < tN = T

over [0, T ] and assume that ϕτ is continuous on [0, T ] and, for any mesh interval [tn, tn+1], n = 0, 1, . . . , N, the restriction of ϕτ to 
[tn, tn+1] is continuously differentiable. If

max
t∈[0,T ]

‖ϕτ (t) − ϕ(t)‖ → 0

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∥∥ϕ′
τ (t) − ϕ′(t)

∥∥→ 0, (6)

as τmax → 0, then there exist ε > 0 and τ > 0 such that, for any mesh with τmax ≤ τ , the equation (5) has a unique solution t∗
τ in 

[t∗ − ε, t∗ + ε] and we have∣∣t∗
τ − t∗∣∣= O

(
max

t∈[0,T ]
‖ϕτ (t) − ϕ(t)‖

)
∥∥ϕτ (t∗

τ ) − ϕ(t∗)
∥∥= O

(
max

t∈[0,T ]
‖ϕτ (t) − ϕ(t)‖

)
(7)

as τmax → 0.

Proof. Assume (6). Let R, R1 > 0 be such that

max
t∈[0,T ]

‖ϕ (t)‖ ≤ R and max
t∈[0,T ]

∥∥ϕ′ (t)
∥∥≤ R1.

Since (6) holds, there exists τ 0 > 0 such that, for τmax ≤ τ 0, we have

max
t∈[0,T ]

‖ϕτ (t)‖ ≤ 2R and max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∥∥ϕ′
τ (t)

∥∥≤ 2R1. (8)

Suppose τmax ≤ τ 0.
Let F = h ◦ ϕ and Fτ = h ◦ ϕτ . Both F and Fτ are functions defined in [0, T ] with values in R. We have

max
t∈[0,T ]

|Fτ (t) − F (t)| ≤ max
x∈Rd1 ×Rd2

‖x‖≤2R

∥∥h′ (x)
∥∥ · max

t∈[0,T ]
‖ϕτ (t) − ϕ(t)‖ . (9)

Moreover, for any mesh interval [tn, tn+1], n = 0, 1, . . . , N − 1, the restriction of Fτ to [tn, tn+1] is continuously differentiable 
and we have

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∣∣F ′
τ (t) − F ′ (t)

∣∣
≤ max

x∈Rd1 ×Rd2
‖x‖≤2R

∥∥h′ (x)
∥∥ · max

n=0,1,...,N−1
max

t∈[tn,tn+1]

∥∥ϕ′
τ (t) − ϕ′(t)

∥∥
+ max

x∈Rd1 ×Rd2
‖x‖≤2R

∥∥h′′ (x)
∥∥ · max

t∈[0,T ]
‖ϕτ (t) − ϕ(t)‖ · R1.
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So, we have

max
t∈[0,T ]

|Fτ (t) − F (t)| → 0

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∣∣F ′
τ (t) − F ′ (t)

∣∣→ 0 (10)

as τmax → 0 by (6).

The equations (4) and (5) read F (t∗) = 0 and Fτ (t∗
τ ) = 0, respectively. Since t∗ ∈ (0, T ) is a simple root of (4), we have 

F ′ (t∗) > 0. Then, there exists ε > 0 such that

F ′ (t) ≥ F ′ (t∗)
2

, t ∈ [t∗ − ε, t∗ + ε
]
,

F
(
t∗ − ε

)
< 0, F

(
t∗ + ε

)
> 0.

By reminding (10), there exists τ > 0 such that, for any τmax ≤ τ , we have

F ′
τ (t) ≥ F ′ (t∗)

4
, t ∈ [t∗ − ε, t∗ + ε

]
, (11)

Fτ

(
t∗ − ε

)≤ F (t∗ − ε)

2
, Fτ

(
t∗ + ε

)≥ F (t∗ + ε)

2
.

(When t is a mesh point tn , n = 1, . . . , N − 1, the first inequality is true for both values F ′
τ (t) coming from the restrictions 

to the intervals [tn−1, tn] and [tn, tn+1].) This shows that, for τmax ≤ τ , the function Fτ is strictly increasing and changes 
sign in [t∗ − ε, t∗ + ε] and so the equation (5) has a unique solution in [t∗ − ε, t∗ + ε].

Now, we show how the conclusions (7) follow. Suppose τmax ≤ min{τ 0, τ }. We have (by (11))∣∣Fτ

(
t∗)∣∣= ∣∣Fτ

(
t∗)− Fτ

(
t∗
τ

)∣∣≥ F ′ (t∗)
4

∣∣t∗
τ − t∗∣∣

and then∣∣t∗
τ − t∗∣∣≤ 4 |Fτ (t∗)|

F ′ (t∗)
.

Since (recall (9))∣∣Fτ

(
t∗)∣∣≤ max

x∈Rd1 ×Rd2
‖x‖≤2R

∥∥h′ (x)
∥∥ · max

t∈[0,T ]
‖ϕτ (t) − ϕ(t)‖

(really∣∣Fτ

(
t∗)∣∣≤ max

x∈Rd1 ×Rd2
‖x‖≤2R

∥∥h′ (x)
∥∥ · ∥∥ϕτ (t∗) − ϕ(t∗)

∥∥
holds), we obtain∣∣t∗

τ − t∗∣∣= O

(
max

t∈[0,T ]
‖ϕτ (t) − ϕ(t)‖

)
, τmax → 0.

Moreover, we have (recall (8))∥∥ϕτ (t∗
τ ) − ϕ(t∗)

∥∥≤ ∥∥ϕτ (t∗
τ ) − ϕτ (t∗)

∥∥+ ∥∥ϕτ (t∗) − ϕ(t∗)
∥∥

≤ 2R1
∣∣t∗

τ − t∗∣∣+ ∥∥ϕτ (t∗) − ϕ(t∗)
∥∥

and then∥∥ϕτ (t∗
τ ) − ϕ(t∗)

∥∥= O

(
max

t∈[0,T ]
‖ϕτ (t) − ϕ(t)‖

)
, τmax → 0. �

Note that convergence results for the numerical event location of ODEs (not DAEs) are given in [25]. However, that paper 
lacks of the proof of existence and uniqueness for the root of the numerical event equation and, as a consequence, conditions 
like (6) do not appear. Most of our proof is for showing existence and uniqueness for the solution of the numerical event 
equation (5). The assumption on the derivative in (6) guarantees the uniqueness of the solution.

In the next subsections we deal with the numerical event location when the DAE (1) is integrated by semi-implicit 
methods, Rosenbrock methods and implicit Runge-Kutta (RK) methods, which are introduced in Appendix along with their 
continuous extensions.
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2.2. Event location for semi-implicit methods

Suppose that the DAE (1) is integrated by a semi-implicit method presented in Appendix A.1 up to an index n = n∗ such 
that h (yn∗ , zn∗ ) and h (yn∗+1, zn∗+1) have different signs. The numerical event time t∗

τ and event point (y∗
τ , z∗

τ ) are obtained 
by solving the nonlinear system in the unknowns t∗

τ and z∗
τ :{

g(y∗
τ , z∗

τ ) = 0
h(y∗

τ , z∗
τ ) = 0,

(12)

where

y∗
τ = η(t∗

τ ) = yn∗ + τn∗+1

s∑
i=1

bi

(
t∗
τ − tn∗

τn∗+1

)
f (yn∗ i, zn∗ i), (13)

with η the continuous extension (54). Observe that the stage values (yn∗ i, zn∗ i), i = 1, . . . , s, in (13) are known since they 
are obtained during the step from tn∗ to tn∗+1.

The system (12) of unknowns t∗
τ and z∗

τ has dimension 1 + d2. This should be compared with a step of the semi-implicit 
method, where s systems of dimension d2 need to be solved.

Observe that the numerical event point (y∗
τ , z∗

τ ) is consistent and it is on the surface �, since we require both these 
conditions in the equations (12).

Next theorem shows that the order of convergence of the numerical event time and event point is equal to the order of 
convergence of the continuous extension, whenever the event time t∗ is a simple root of the event equation (3).

Theorem 2. Suppose that the DAE (1) is integrated by a semi-implicit method over a mesh

0 = t0 < t1 < · · · < tN = T

on the interval [0, T ]. Let t∗ ∈ (0, T ) be an event time which is a simple root of (3). Suppose that the numerical event time and event 
point are obtained by solving the system (12), once an index n = n∗ such that h (yn∗ , zn∗ ) and h (yn∗+1, zn∗+1) have different signs is 
detected.

Suppose that the semi-implicit method has order p and the continuous extension (54) has order q, where q is a positive integer. So, 
the continuous extension has convergence order min {p,q + 1}.

Then, there exists a neighborhood U of (t∗, y(t∗), z(t∗)) such that, for any mesh with τmax sufficiently small, there exists a unique 
numerical event time and event point (t∗

τ , y∗
τ , z∗

τ ) in U and we have∣∣t∗
τ − t∗∣∣= O

(
τ

min{p,q+1}
max

)
‖y∗

τ − y(t∗)‖ = O
(
τ

min{p,q+1}
max

)
‖z∗

τ − z(t∗)‖ = O
(
τ

min{p,q+1}
max

)
as τmax → 0.

Proof. The continuous extension η is given by

η(t) = yn + τn+1

s∑
i=1

bi

(
t − tn

τn+1

)
f (yni, zni)

n = 0,1, . . . , N − 1 and t ∈ [tn, tn+1] .

Since the continuous extension has order q ≥ 1, we have

s∑
i=1

bi (θ) = θ, θ ∈ [0,1] ,

and then

s∑
i=1

b′
i (θ) = 1, θ ∈ [0,1] . (14)

Let U1 and U2 be the neighborhoods of {y (t) : t ∈ [0, T ]} and {z (t) : t ∈ [0, T ]}, respectively, defined in Section 1 and let 
G : U1 → U2 be the smooth function also defined in Section 1.
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If yni ∈ U1 and yn+1 ∈ U1, we consider zni = G(yni) and zn+1 = G(yn+1) as the roots of the equations (41) and (43), 
respectively, of the semi-implicit method (other roots not in U2 are not considered). Moreover, if y∗

τ = η(t∗
τ ) ∈ U1, we 

rewrite the first equation in (12) as

z∗
τ = G(y∗

τ ).

For a sufficiently small τmax, we have

yni ∈ U1, zni = G (yni) , yn+1 ∈ U1 and zn+1 = G(yn+1)

n = 0,1, . . . , N − 1 and i = 1, . . . , s.

Moreover, since the continuous extension has convergence order min {p,q + 1} ≥ q ≥ 1, we have

max
t∈[0,T ]

‖η (t) − y (t)‖ → 0, τmax → 0, (15)

and then

η(t) ∈ U1, t ∈ [0, T ] ,

in particular y∗
τ = η(t∗

τ ) ∈ U1, for a sufficiently small τmax. We define

F (y) = f (y, G(y)), y ∈ U1.

The functions ϕ and ϕτ appearing in (4) and (5) are

ϕ (t) = (y (t) , G (y (t))) , t ∈ [0, T ] ,

and

ϕτ (t) = (η (t) , G (η (t))) , t ∈ [0, T ] .

The function ϕτ is continuous in [0, T ] and, for any mesh interval [tn, tn+1], n = 0, 1, . . . , N − 1, the restriction of ϕτ to 
[tn, tn+1] is continuously differentiable: we have

ϕ′
τ (t) = (η′ (t) , G ′ (η (t))η′ (t)

)
, t ∈ [tn, tn+1] ,

where

η′(t) =
s∑

i=1

b′
i

(
t − tn

τn+1

)
F (yni), t ∈ [tn, tn+1] .

Observe that

max
t∈[tn,tn+1]

∥∥η′(t)
∥∥≤ max

θ∈[0,1]

s∑
i=1

∣∣b′
i (θ)

∣∣ · sup
y∈U1

‖F (y)‖ .

We have

max
t∈[0,T ]

‖ϕτ (t) − ϕ (t)‖ ≤ max {1, Lip (G)} max
t∈[0,T ]

‖η (t) − y (t)‖ , (16)

where Lip (G) is the Lipschitz constant of the function G . Moreover,

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∥∥ϕ′
τ (t) − ϕ′(t)

∥∥
≤ max

{
max

n=0,1,...,N−1
max

t∈[tn,tn+1]

∥∥η′(t) − y′(t)
∥∥ ,

Lip
(
G ′) max

t∈[0,T ]
‖η (t) − y (t)‖ max

θ∈[0,1]

s∑
i=1

∣∣b′
i (θ)

∣∣ · sup
y∈U1

‖F (y)‖

+ sup
t∈[0,T ]

∥∥G ′ (y (t))
∥∥ · max

n=0,1,...,N−1
max

t∈[tn,tn+1]

∥∥η′(t) − y′(t)
∥∥} , (17)

where Lip
(
G ′) is the Lipschitz constant of the function G ′ .
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Beside (15), we also have

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∥∥η′(t) − y′(t)
∥∥→ 0, τmax → 0.

In fact, for n = 0, 1, . . . , N − 1 and t ∈ [tn, tn+1], we have (recall (14))

η′(t) − y′ (t) =
s∑

i=1

b′
i

(
t − tn

τn+1

)(
F (yni) − y′ (t)

)
.

Then

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∣∣η′(t) − y′ (t)
∣∣

≤ max
θ∈[0,1]

s∑
i=1

∣∣b′
i (θ)

∣∣ max
n=0,1,...,N−1

max
t∈[tn,tn+1]

max
i=1,...,s

∥∥F (yni) − y′ (t)
∥∥

with

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

max
i=1,...,s

∥∥F (yni) − y′ (t)
∥∥→ 0, τmax → 0. (18)

Regarding (18), observe that

F (yni) = F (yn) + Rni

and

y′(t) = F (y(t)) = F (yn) + Sn(t)

with

max
n=0,1,...,N−1

max
i=1,...,s

‖Rni‖ → 0, τmax → 0,

and

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

‖Sn(t)‖ → 0, τmax → 0.

Now, by (16) and (17) we have

max
t∈[0,T ]

‖ϕτ (t) − ϕ(t)‖ → 0

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∥∥ϕ′
τ (t) − ϕ′(t)

∥∥→ 0,

as τmax → 0. The thesis follows by Theorem 1. �
When the DAE (1) is integrated by a semi-implicit method, the numerical event location has the drawback that the 

order of convergence of the numerical event time and event point is min {p,q + 1}, which is in general less than the order 
of convergence p of the semi-implicit method.

2.3. Event location for Rosenbrock methods

Now, suppose that the DAE (1) is integrated by a Rosenbrock method of Appendix A.2.2 up to an index n = n∗ such that 
h (yn∗ , zn∗) and h (yn∗+1, zn∗+1) have different signs. The numerical event time t∗

τ and event point (y∗
τ , z∗

τ ) are obtained by 
solving the equation

h(y∗
τ , z∗

τ ) = 0, (19)

where

y∗
τ = η(t∗

τ ) = yn∗ +
s∑

i=1

bi

(
t∗
τ − tn∗

τn∗+1

)
lni

z∗
τ = μ(t∗

τ ) = zn∗ +
s∑

i=1

bi

(
t∗
τ − tn∗

τn∗+1

)
kni
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with (η, μ) the continuous extension (56).
The equation (19) is a scalar equation in the unknown t∗

τ . So, the computational cost of the numerical event location is 
a small fraction of the computational cost of a step of the Rosenbrock method, where s linear systems of dimension d1 + d2
need to be solved.

Observe that, unlike the case of semi-implicit methods, the numerical event point (y∗
τ , z∗

τ ) is not consistent, in general.

The order of convergence of the numerical event time and event point is equal to the order of convergence of the 
continuous extension, as in case of semi-implicit methods. However, we have to assume

τ
p

max

τmin
→ 0, τmax → 0, (20)

where

τmin := min
n=0,...,N−1

τn+1

and p is the differential algebraic order of the Rosenbrock method. The reason for introducing this assumption is that, in 
general, the numerical solutions (yn, zn), n = 0, . . . , N , are not consistent. The assumption (20) is an assumption on the 
type of mesh we are using for the integration of the DAE. For a constant stepsize mesh, it holds if and only if p > 1. For a 
variable stepsize mesh with τmin = O  

(
τα

max

)
, τmax → 0, for some α ≥ 1, it holds if and only if α < p.

Theorem 3. Suppose that the DAE (1) is integrated by a Rosenbrock method over a mesh

0 = t0 < t1 < · · · < tN = T

on the interval [0, T ]. Let t∗ ∈ (0, T ) be an event time which is a simple root of (4). Suppose that the numerical event time and event 
point are obtained by solving the equation (19), once an index n = n∗ such that h (yn∗ , zn∗ ) and h (yn∗+1, zn∗+1) have different signs 
is detected.

Suppose that the Rosenbrock method has differential algebraic order p and stability function R such that |R(∞)| < 1 and the 
continuous extension (56) has differential algebraic order q, where q is a positive integer. So, the continuous extension has convergence 
order min {p,q + 1}.

Suppose that the assumption (20) holds.
Then, there exists a neighborhood U of (t∗, y(t∗), z(t∗)) such that, for any mesh with τmax sufficiently small, there exists a unique 

numerical event time and event point (t∗
τ , y∗

τ , z∗
τ ) in U and we have∣∣t∗

τ − t∗∣∣= O
(
τ

min{p,q+1}
max

)
‖y∗

τ − y(t∗)‖ = O
(
τ

min{p,q+1}
max

)
‖z∗

τ − z(t∗)‖ = O
(
τ

min{p,q+1}
max

)
as τmax → 0.

Proof. The continuous extension (η,μ) is given by

(η(t),μ(t)) = (yn, zn) +
s∑

i=1

bi

(
t − tn

τn+1

)
(lni,kni),

n = 0,1, . . . , N − 1 and t ∈ [tn, tn+1] .

Since the continuous extension has differential algebraic order q ≥ 1, we have

s∑
i=1

bi (θ) = θ, θ ∈ [0,1] ,

and then

s∑
i=1

b′
i (θ) = 1, θ ∈ [0,1] . (21)

The functions ϕ and ϕτ appearing in (4) and (5) are

ϕ (t) = (y (t) , z (t)) , t ∈ [0, T ] ,
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and

ϕτ (t) = (η (t) ,μ(t)) , t ∈ [0, T ] .

Since the continuous extension has convergence order min {p,q + 1} ≥ q ≥ 1, we have

max
t∈[0,T ]

‖ϕτ (t) − ϕ (t)‖ → 0, τ → 0. (22)

Moreover, we also have

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∥∥ϕ′
τ (t) − ϕ′ (t)

∥∥→ 0, τ → 0. (23)

In fact, for n = 0, 1, . . . , N − 1 and t ∈ [tn, tn+1], we have (recall (21))

ϕ′
τ (t) − ϕ′ (t) =

s∑
i=1

b′
i

(
t − tn

τn+1

)(
(lni,kni)

τn+1
− (y′ (t) , z′ (t)

))

and then

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∥∥η′(t) − y′ (t)
∥∥

≤ max
θ∈[0,1]

s∑
i=1

∣∣b′
i (θ)

∣∣ max
n=0,1,...,N−1

max
t∈[tn,tn+1]

max
i=1,...,s

∥∥∥∥ (lni,kni)

τn+1
− (y′ (t) , z′ (t)

)∥∥∥∥
with

max
t∈[tn,tn+1]

max
i=1,...,s

∥∥∥∥ (lni,kni)

τn+1
− (y′ (t) , z′ (t)

)∥∥∥∥→ 0, τ → 0. (24)

Regarding (24), observe that

(lni,kni)

τn+1
=
(

f (yn, zn) ,− (gn
z

)−1
gn

y f (yn, zn)
)

+ Rni

and

(
y′(t), z′(t)

)= ( f (y(t), z(t)) ,−g−1
z

(
y(t), z(t)

)
g y
(

y(t), z(t) ) f (y(t), z(t)))

=
(

f (yn, zn) ,− (gn
z

)−1
gn

y f (yn, zn)
)

+ Sn(t)

with

max
n=0,1,...,N−1

max
i=1,...,s

‖Rni‖ → 0, τmax → 0, (25)

and

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

‖Sn(t)‖ → 0, τmax → 0.

Observe that (25) holds if

max
n=0,1,...,N−1

‖g (yn, zn)‖
τn+1

→ 0, τmax → 0, (26)

and (26) holds if (20) holds.
Since (22) and (23) hold, the thesis follows by Theorem 1. �
When the DAE (1) is integrated by a Rosenbrock method, we have the same drawback encountered for a semi-implicit 

method, namely the order of convergence of the numerical event time and event point is min {p,q + 1}, which is in general 
less that the order of convergence p of the Rosenbrock method.
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2.4. Event location for implicit RK methods

Finally, suppose that the DAE (1) is integrated by an implicit RK method of Appendix A.2.1 up to an index n = n∗ such 
that h (yn∗ , zn∗) and h (yn∗+1, zn∗+1) have different signs. The numerical event time t∗

τ and event point (y∗
τ , z∗

τ ) are not 
obtained by using a continuous extension of the numerical solution (yn, zn), but simply by seeing (y∗

τ , z∗
τ ) as new values 

(yn∗+1, zn∗+1) corresponding to a new unknown step τ ∗ = t∗
n∗+1 − tn∗ . In other words, we have (remind (48)):

t∗
τ = tn∗ + τ ∗

y∗
τ = yn∗ + τ ∗

s∑
i=1

bi f (y∗
i , z∗

i )

z∗
τ =

⎛
⎝1 −

s∑
i, j=1

biωi j

⎞
⎠ zn∗ +

s∑
i, j=1

biωi j z
∗
j ,

where τ ∗ and (y∗
i , z

∗
i ), i = 1, . . . , s, satisfy

y∗
i = yn∗ + τ ∗

s∑
j=1

aij f (y∗
j , z∗

j ), i = 1, . . . , s,

g(y∗
i , z∗

i ) = 0, i = 1, . . . , s,

h(y∗
τ , z∗

τ ) = 0. (27)

The non-linear system (27) in the unknowns τ ∗ and (y∗
i , z

∗
i ), i = 1, . . . , s, has dimension 1 + s(d1 +d2). So, the computational 

cost of the numerical event location is essentially the same as the computational cost of a step in the implicit RK method, 
where a non-linear system of dimension s(d1 + d2) has to be solved.

Observe that this technique for the numerical event location was used in [12] in the context of detecting breaking points 
for state-dependent delay differential equations integrated by implicit schemes.

Unlike the case of semi-implicit methods and similarly to the case of Rosenbrock methods, the numerical event point 
(y∗

τ , z∗
τ ) is not consistent, in general. However, it is guaranteed to be consistent if the implicit RK method is stiffly accurate.

When the numerical event location problem is accomplished in this fully implicit way, we are able to overcome the 
drawback of the lower order of convergence of the numerical event time and event point with respect to the order of the 
method. We obtain, an order of convergence equal to the order of convergence of the method.

Theorem 4. Suppose that the DAE (1) is integrated by an implicit RK method with matrix A non-singular over a mesh

0 = t0 < t1 < · · · < tN = T

on the interval [0, T ]. Let t∗ ∈ (0, T ) be an event time which is a simple root of (4). Suppose that the numerical event time and event 
point are obtained by solving the system (27), once an index n = n∗ such that h (yn∗ , zn∗ ) and h (yn∗+1, zn∗+1) have different signs is 
detected.

Suppose that the implicit RK method has differential algebraic order p and stability function R such that |R(∞)| < 1, where p is a 
positive integer.

Then, there exists a neighborhood U of (t∗, y(t∗), z(t∗)) such that, for any mesh with τmax sufficiently small, there exists a unique 
numerical event time and event point (t∗

τ , y∗
τ , z∗

τ ) in U and we have∣∣t∗
τ − t∗∣∣= O

(
τ

p
max
)

‖y∗
τ − y(t∗)‖ = O

(
τ

p
max
)

‖z∗
τ − z(t∗)‖ = O

(
τ

p
max
)

as τmax → 0.

Proof. Since the implicit RK method has differential algebraic order p ≥ 1, we have

s∑
i=1

bi = 1. (28)

The functions ϕ and ϕτ appearing in (4) and (5) are
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ϕ (t) = (y (t) , z (t)) , t ∈ [0, T ] ,

and

ϕτ (t) = (yτ (t) , zτ (t)) , t ∈ [0, T ] ,

where, for n = 0, 1, . . . , N − 1 and t ∈ [tn, tn+1], we have

yτ (t) = yn + (t − tn)

s∑
i=1

bi f (yni (t) , zni (t))

zτ (t) =
⎛
⎝1 −

s∑
i, j=1

biωi j

⎞
⎠ zn +

s∑
i, j=1

biωi j znj (t) , (29)

with (yi(t), zi(t)), i = 1, . . . , s, given by

yni (t) = yn + (t − tn)

s∑
j=1

aij f (ynj (t) , znj (t)), i = 1, . . . , s,

g(yni (t) , zni (t)) = 0, i = 1, . . . , s. (30)

Let U1 and U2 be the neighborhoods of {y (t) : t ∈ [0, T ]} and {z (t) : t ∈ [0, T ]}, respectively, defined in Section 1 and let 
G : U1 → U2 be the smooth function also in Section 1.

For a sufficiently small stepsize τ , we have

yni(t) ∈ U1 and zni(t) = G (yni(t)) , n = 0,1, . . . , N − 1, t ∈ [tn, tn+1] and i = 1, . . . , s.

Now, we can rewrite (29) as

yτ (t) = yn + (t − tn)

s∑
i=1

bi f (yni (t) , G(yni (t)))

zτ (t) =
⎛
⎝1 −

s∑
i, j=1

biωi j

⎞
⎠ zn +

s∑
i, j=1

biωi j G(ynj (t))

and (30) as

yni (t) = yn + (t − tn)

s∑
j=1

aij f (ynj (t) , G(ynj (t))), i = 1, . . . , s.

Since the implicit RK method has convergence order p ≥ 1, we have

max
t∈[0,T ]

‖ϕτ (t) − ϕ (t)‖ → 0, τ → 0. (31)

Moreover, we also have

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∥∥ϕ′
τ (t) − ϕ′ (t)

∥∥→ 0, τ → 0. (32)

In fact, for n = 0, 1, . . . , N and t ∈ [tn, tn+1], we have (recall (28))

y′
τ (t) − y′ (t) =

s∑
i=1

bi
(

f (yni (t) , G(yni (t))) − y′ (t)
)

+ (t − tn)

s∑
i=1

bi
d

dt
f (yni (t) , G(yni (t)))

and then
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max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∥∥y′
τ (t) − y′ (t)

∥∥
≤

s∑
i=1

|bi| max
n=0,1,...,N−1

max
t∈[tn,tn+1]

max
i=1,...,s

∥∥ f (yni (t) , G(yni (t))) − y′ (t)
∥∥

+τmax

s∑
i=1

|bi | max
n=0,1,...,N−1

max
t∈[tn,tn+1]

max
i=1,...,s

∥∥∥∥ d

dt
f (yni (t) , G(yni (t)))

∥∥∥∥
with

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

max
i=1,...,s

∥∥ f (yni (t) , G(yni (t))) − y′ (t)
∥∥→ 0, τmax → 0,

and

lim sup
τmax→0

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

max
i=1,...,s

∥∥∥∥ d

dt
f (yni (t) , G(yni (t)))

∥∥∥∥< ∞.

In addition, for n = 0, 1, . . . , N and t ∈ [tn, tn+1], we have (recall (28))

z′
τ (t) − z′ (t) =

s∑
i, j=1

biωi j G
′(ynj (t))y′

nj (t) − z′ (t)

=
s∑

i=1

bi

⎛
⎝ s∑

j=1

ωi j G
′(ynj)y′

nj (t) − z′ (t)

⎞
⎠ ,

and then

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

∥∥z′
τ (t) − z′ (t)

∥∥

≤
s∑

i=1

|bi| max
n=0,1,...,N−1

max
t∈[tn,tn+1]

max
i=1,...,s

∥∥∥∥∥∥
s∑

j=1

ωi j G
′(ynj)y′

nj (t) − z′ (t)

∥∥∥∥∥∥
with

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

max
i=1,...,s

∥∥∥∥∥∥
s∑

j=1

ωi j G
′(ynj)y′

nj (t) − z′ (t)

∥∥∥∥∥∥ , τmax → 0. (33)

Regarding (33) observe that, for i = 1, . . . , s, we have

s∑
j=1

ωi j G
′(ynj)y′

nj (t)

=
s∑

j=1

ωi j G
′(ynj)

·
(

s∑
k=1

a jk f (ynk (t) , G(ynk (t))) + (t − tn)

s∑
k=1

a jk
d

dt
f (ynk (t) , G(ynk (t)))

)

=
s∑

j=1

s∑
k=1

ωi ja jkG ′(yn) f (yn, G(yn)) + Rni (t)

= G ′(yn) f (yn, G(yn)) + Rni (t)

(in the last equality recall that ωi j are the elements of A−1), where

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

max
i=1,...,s

‖Rni (t)‖ = 0, τmax → 0,

and
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z′ (t) = G ′(y (t))y′ (t) = G ′(yn) f (yn, G(yn)) + Sn (t) ,

where

max
n=0,1,...,N−1

max
t∈[tn,tn+1]

‖Sn (t)‖ = 0, τmax → 0.

Since (31) and (32) hold, the thesis follows by Theorem 1. �
3. Numerical tests

Theorems 2, 3 and 4 say what is the convergence order of the numerical event location for semi-implicit methods, 
Rosenbrock methods and implicit RK methods, respectively. Some numerical tests on simple DAEs are now presented with 
the aim to experimentally confirm these convergence orders.

3.1. Numerical methods

The tests involve the following methods.
As semi-implicit methods, we consider:

• the explicit two-stage improved (or modified) Euler method of order p = 2 equipped by the linear continuous extension

b1(θ) = 1

2
θ, b2(θ) = 1

2
θ

of order q = 1;
• the explicit four-stage classical RK method of order p = 4 equipped by the continuous extension

b1(θ) = −1

2
θ2 + 2

3
θ, b2(θ) = b3(θ) = 1

3
θ, b4(θ) = 1

2
θ2 − 1

3
θ

of order q = 2 or the continuous extension

b1(θ) = 2

3
θ3 − 3

2
θ2 + θ, b2(θ) = b3(θ) = −2

3
θ3 + θ2, b4(θ) = 2

3
θ3 − 1

2
θ2

of order q = 3 (see [2]).

By Theorem 2, the numerical event location has convergence order min{p, q + 1}.

As a Rosenbrock method, we use:

• the two-stage method given by

b1 = 0, b2 = 1, a21 = 1

12
, γ11 = 1

4
, γ21 = 1

12
, γ22 = 1

3

of differential algebraic order p = 2 and satisfying R(∞) = 0, equipped by the linear continuous extension

b1(θ) = 0, b2(θ) = θ

of differential algebraic order q = 1.

By Theorem 3, the numerical event location has convergence order min{p, q + 1}.

Finally, as implicit RK methods, we see:

• the stiffly accurate two-stage Lobatto III C method of differential algebraic order p = 2.
• the stiffly accurate three-stage Radau II A method of differential algebraic order p = 5.

By Theorem 4, the numerical event location has convergence order p.

We present three test, where three different simple DAEs are considered. These DAEs are all integrated with constant 
stepsize

τk = r0q−k (34)
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Fig. 1. Improved Euler method.

where r0 > 0 and q > 1 are fixed and the integer k varies from 0 to kmax. We check the convergence order r by looking to 
the ratios

Mk

τ r−1
k

,
Mk

τ r
k

and
Mk

τ r+1
k

, (35)

where

Mk = max
{
|t∗

τk
− t∗|,‖y∗

τk
− y∗‖2,‖z∗

τk
− z∗‖2

}
,

for the stepsizes (34) with k = 0, . . . , kmax. If the convergence order of the numerical event location is (exactly) r, then, as 
τk goes to zero, Mk

τ r−1
k

is expected to go to zero, Mk

τ r+1
k

is expected to go to infinite, whereas Mk
τ r

k
is expected to stay away from

zero and infinite.

3.2. First test

We consider the scalar DAE⎧⎨
⎩

y′ (t) = z (t) , t ≥ 1,

y (t)2 − z (t)2 − 1 = 0, t ≥ 1,

(y(1), z(1)) = (cosh 1, sinh 1) ,

(36)

whose solution is

(y(t), z(t)) = (cosh t, sinh t), t ≥ 1.

The event equation is

h(y, z) = 2yz − 100,

with event time t∗ = 1
2 arcsinh(100) = 2.6492 and event point (cosh t∗, sinh t∗).

For this DAE, we check the convergence order of the numerical event location for the improved Euler method (as semi-
implicit method), the Rosenbrock method and the Lobatto III C method (as implicit RK method). For all three methods the 
convergence order is r = 2.

In Figs. 1, 2 and 3, we see, from the left to the right, the ratios (35) for the stepsizes

τk = 0.5 · 2−k, k = 0, . . . ,kmax = 10.

The abscissas in these figures are the values of k. The order r = 2 is confirmed.
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Fig. 2. Rosenbrock method.

Fig. 3. Two-stage Lobatto III C method.

Just for completing the information of the previous figures, we give in Table 1 the errors Mk for k = 0 and kmax = 10.

3.3. Second test

We consider the linear DAE⎧⎨
⎩

y′ (t) = Ay (t) + Bz (t) , t ≥ 0
C y (t) + Dz (t) = 0, t ≥ 0,

(y(0), z(0)) = (y0, z0) ,

(37)
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Table 1
Improved Euler method (top), Rosenbrock
method (middle) and two-stage Lobatto III
C method (bottom).

k τk Mk

0 0.5 3.08e-02
kmax = 10 4.88e-04 5.35e-08

k τk Mk

0 0.5 5.43e-02
kmax = 10 4.88e-04 6.22e-08

k τk Mk

0 0.5 1.49e-01
kmax = 10 4.88e-04 8.36e-08

where A, B, C, D ∈Rn×n , with D invertible, and (y0, z0) are consistent initial values. The solution is

z(t) = −D−1C y(t)

and

y(t) = et(A−B D−1C) y0.

In particular, we consider n = 10, the matrices

A = D =

⎡
⎢⎢⎢⎢⎢⎣

−2 1
1 · ·

· ·
· · ·

· · 1
1 −2

⎤
⎥⎥⎥⎥⎥⎦ , B = −C =

⎡
⎢⎢⎢⎢⎢⎣

−1
1 ·

· ·
· ·

· ·
1 −1

⎤
⎥⎥⎥⎥⎥⎦ ,

and the consistent initial values

y0 = (1,0, . . . ,0), z0 = −D−1C y0.

The event equation is

h(y(t), z(t)) = aT y(t) + bT z(t) + c = 0,

where

a = 1

5
(1, . . . ,10) ∈Rn, b = −1

2
a

and the number c is chosen in order to have an event time at t∗ =
√

2
2 . Then, the event point is

y∗ = et∗(A−B D−1C) y0, z∗ = −D−1C y∗.

First, as semi-implicit method, we check the convergence order of the numerical event location for the classical RK 
method with both continuous extensions. The order of convergence is r = 3 for the second order continuous extension and 
r = 4 for the third order continuous extension.

In Figs. 4 and 5, we see, from the left to the right, the ratios (35) for the stepsizes

τk = 0.25 · 1.1−k, k = 0, . . . ,kmax, (38)

for the second order continuous extension (kmax = 70) and third order continuous extension (kmax = 60), respectively. The 
convergence orders r = 3 and r = 4 of the numerical event location are confirmed.

Now, as implicit method, we check the convergence order of the numerical event location for the three-stage Radau II 
A method. The order of convergence is r = 5. The ratios (35) for the stepsizes (38) with kmax = 40 are given in Fig. 6. The 
order of convergence r = 5 is confirmed.

Table 2 gives the errors Mk for k = 0 and k = kmax.
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Fig. 4. Classical RK method with second order continuous extension (r = 3).

Fig. 5. Classical RK method with third order continuous extension (r = 4).

3.4. Third test

The following DAE describes the gas-phase in a model of a soft-drink production (see [8]) and it reads⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y′
1 (t) = F1 − z(t) − kc

y1(t)y2(t)
V

y′
2 (t) = F2 − kc

y1(t)y2(t)
V

y′
3 (t) = kc

y1(t)y2(t)
V

z (t) = kg X (P (y(t)) − Pout) ,

(39)
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Fig. 6. Three-stage Radua II A method (r = 5).

Table 2
Classical RK method with second order 
continuous extension (top), classical RK 
method with third order continuous ex-
tension (middle) and three-stage Radau II 
A method (bottom).

k τk Mk

0 2.50e-01 1.12e-03
kmax = 70 3.17e-04 7.95e-13

k τk Mk

0 2.50e-01 9.84e-04
kmax = 60 8.21e-04 9.75e-14

k τk Mk

0 2.50e-01 1.25e-05
kmax = 40 5.52e-03 9.03e-14

where

P (y(t)) = y1(t)RT

V − y2(t)
ρl

− y3(t)
ρa

.

Here y1, y2 and y3 are molar concentrations of CO2, H2O and H2CO3, respectively, in a tank and z is the flow rate of CO2

leaving the tank by a valve. The values of constants and parameters in suitable units are

F1 = 0.5, F2 = 7.5, kc = 0.433

4000
, V = 10,

kg = 3, X = 1, Pout = 1

R = 0.0820574587, T = 293, ρa = 16, ρl = 50.

The consistent initial values are given by

(y1(0), y2(0), y3(0)) = (0.72,95,0).
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Fig. 7. Improved Euler method.

Fig. 8. Lobatto III C method.

The event equation involves only y(t) and it is given by

h(y(t), z(t)) = y2(t)

ρl
+ y3(t)

ρa
− Vd = 0

with Vd = 2.25. After the event, we have a transition to the liquid-phase, where another DAE holds.
We check the convergence order of numerical event location for the improved Euler method, as semi-implicit method, 

and the two-stage Lobatto III C method, as implicit method. The order of convergence is r = 2 for both methods. In Figs. 7
and 8, we see the ratios (35) for the stepsizes
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Table 3
Improved Euler method (top) and two-
stage Lobatto III C method (bottom).

k τk Mk

0 5.00e-02 1.78e-08
kmax = 70 1.64e-03 5.88e-12

k τk Mk

0 5.00e-02 1.87e-07
kmax = 50 4.36e-03 4.64e-12

τk = 0.05 · 1.05−k, k = 0,1,2, . . . ,kmax,

for the improved Euler method (kmax = 70) and the Lobatto III C method (kmax = 50), respectively. We take the numerical 
event time and event point corresponding to k = kmax + 30 as the exact event time and event point.

The convergence order r = 2 for the numerical event location is confirmed.
In Table 3 we see the errors Mk for k = 0 and k = kmax. Although the convergence order is only 2, we have very small 

errors Mk , k = 0, . . . , kmax. This is explained by a very small constant C in the error estimate Cτ 2
k , as we can see in the 

middle parts of Figs. 7 and 8: the order of magnitude of the constant C is 10−6.

4. Conclusion

In this paper, we have studied numerical methods for the event location of Discontinuous DAEs (DDAEs), namely DAEs 
for which the trajectory meets a discontinuity surface �. We have considered some standard methods for the numerical 
solution of DAEs and convergence theorems of the numerical event time and event point to the true event time and event 
point are given. Of course the event location is a step of a more sophisticated procedure: that is, once the numerical 
trajectory meets the discontinuity surface � one should ask if the trajectory has to cross or slide on �: if the trajectory 
crosses �, then we need to change the vector field; while if the discontinuity surface has to slide on �, then a unique vector 
field has to be chosen and the numerical solution has to be computed until eventually it leaves �. The theory of DDAEs, 
concerning for instance the existence of solutions, the conditions of crossing/sliding for the trajectories and the definition 
of a unique sliding vector, is enough different with respect to the case of discontinuous ODEs, where Filippov theory helps. 
In the paper [8], there is a deep study of these aspects which should be considered in order to develop effective algorithms 
for solving such a type of problems.

In future the authors wish to study transformation techniques, which consists in time re-parametrizations that seem to 
be particularly effective for problems of this type (see [10,17]) and other problems (see [5,6]).
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Appendix A. Background on numerical methods for DAEs

In this appendix, we recall some classical numerical methods for solving DAEs, which will be used to derive numerical 
event location techniques for DDAEs. The results in this section may be found in standard books on DAEs, see for example 
[13,14], and they are given here for better understanding the numerical event location techniques.

A.1. Semi-implicit methods

Starting from an s-stage explicit RK method (A, b, c), we can construct the following method for the DAE (1).
Given the approximation yn of y(tn), n = 0, 1, . . . , N − 1, we obtain the approximation (yn+1, zn+1) of (y(tn+1), z(tn+1))

by

yn+1 = yn + τn+1

s∑
i=1

bi f (yni, zni) (40)

g(yn+1, zn+1) = 0, (41)

where the stage values (yni, zni), i = 1, . . . , s, are recursively obtained by
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yni = yn + τn+1

i−1∑
j=1

aij f (ynj, znj) (42)

g(yni, zni) = 0. (43)

The equations (40)-(41)-(42)-(43) define a semi-implicit method for the DAE (1). Observe that:

• for any stage index i = 1, . . . , s, given the already computed stage values (ynj, znj), j = 1, . . . , i − 1, first we compute 
explicitly yni by the formula (42) and then we compute implicitly zni by solving the equation (43);

• finally, given all the stage values (yni, zni), i = 1, . . . , s, first we compute explicitly yn+1 by the formula (40) and then 
we compute implicitly zn+1 by solving the equation (41).

Thus, at any step, the method requires to solve s + 1 non-linear systems of dimension d2.
Observe that all the stage values (yni, zni), i = 1, . . . , s, as well as the approximation (yn+1, zn+1) are consistent, i.e. 

g(yni, zni) = 0, i = 1, . . . , s, and g(yn+1, zn+1) = 0, by construction. So, the approximations (yn, zn), n = 0, 1, . . . , N , obtained 
by a semi-implicit method are all consistent.

The order of convergence of this semi-implicit method is the order p of the explicit RK method: we have

max
n=0,1,...,N

‖yn − y(tn)‖ = O (τ
p

max)

and

max
n=0,1,...,N

‖zn − z(tn)‖ = O (τ
p

max)

as τmax → 0. The proof of this fact is a trivial consequence of (2).

A.2. Singularly perturbed problems

We consider the solution of the DAE (1) as the limit, as ε → 0+ , of the solution (y, z) of the Singularly Perturbed 
Problem (SPP)⎧⎨

⎩
y′ (t) = f (y (t) , z (t)) , t ∈ [0, T ],
εz′ (t) = g (y (t) , z (t)) , t ∈ [0, T ],
(y(0), z(0)) = (y0, z0) .

(44)

We assume that the SPP (44) has a unique solution on [0, T ] for any sufficiently small ε > 0.
Numerical methods for the DAE (1) can be derived by applying to the SPP (44) a numerical method for Ordinary Differ-

ential Equations (ODEs) and then by setting ε to zero. As numerical method for ODEs, we consider implicit RK methods and 
Rosenbrock methods.

A.2.1. Implicit RK methods
Consider an implicit RK method (A, b, c) with A non-singular as applied to the SPP (44). We obtain, for n = 0, 1, . . . , N −

1,

yn+1 = yn + τn+1

s∑
i=1

bi f (yni, zni)

εzn+1 = εzn + τn+1

s∑
i=1

bi g(yni, zni), (45)

where the stage values (yni, zni), i = 1, . . . , s, are obtained by solving the system of equations

yni = yn + τn+1

s∑
j=1

aij f (ynj, znj), i = 1, . . . , s,

εzni = εzn + τn+1

s∑
j=1

aij g(ynj, znj), i = 1, . . . , s. (46)
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Since A is invertible, we can rewrite (46) as

τn+1 g(yni, zni) = ε

s∑
j=1

ωi j(znj − zn), i = 1, . . . , s, (47)

where ωi j , i, j = 1, . . . , s, are the elements of A−1, and then (45) as

zn+1 =
⎛
⎝1 −

s∑
i, j=1

biωi j

⎞
⎠ zn +

s∑
i, j=1

biωi j znj .

By setting ε = 0, the equation (47) becomes

g(yni, zni) = 0, i = 1, . . . , s.

Thus, for the DAE (1), we have the implicit RK method

yn+1 = yn + τn+1

s∑
i=1

bi f (yni, zni)

zn+1 =
⎛
⎝1 −

s∑
i, j=1

biωi j

⎞
⎠ zn +

s∑
i, j=1

biωi j znj, (48)

where the stage values (yni, zni), i = 1, . . . , s, are obtained by solving the non-linear system of equations

yni = yn + τn+1

s∑
j=1

aij f (ynj, znj), i = 1, . . . , s,

g(yni, zni) = 0, i = 1, . . . , s. (49)

At each step, the method needs to solve a non-linear system of dimension s(d1 + d2). When compared to semi-implicit 
methods for DAEs, implicit RK methods for DAEs require more computational effort.

Observe that the stage values (yni, zni), i = 1, . . . , s, are consistent by construction but, in general, the approximation 
(yn+1, zn+1) given in (48) could be non-consistent.

The consistency of (yn+1, zn+1) is automatically obtained in case of a stiffly accurate implicit RK method (for example, a 
Radau IIA method or a Lobatto IIIC method): for such a method, we have

asi = bi, i = 1, . . . , s,

and then (yn+1, zn+1) = (yns, zns).

Regarding the order of convergence of implicit RK methods for DAEs, we introduce the following notion of differential 
algebraic order.

Definition 5. Let (A, b, c) be a RK method with A non-singular. We say that the RK method has differential algebraic order p
if

max
t∈[0,T ] ‖yn+1 − y(t + τ )‖ = O (τ p+1)

and

max
t∈[0,T ] ‖zn+1 − z(t + τ )‖ = O (τ p)

as τ → 0, where yn+1 and zn+1 are obtained by (48)-(49) with (tn, yn, zn) = (t, y(t), z(t)).

The method (48) is convergent of order p if the implicit RK method has differential algebraic order p and satisfies an 
additional condition.

Theorem 6. Let (A, b, c) be a RK method with A non-singular. If the RK method has differential algebraic order p and |R(∞)| < 1, 
where R is the stability function of the RK method, then the method (48)-(49) has convergence order p, i.e. we have

max
n=1,...,N

‖yn − y(tn)‖ = O (τ
p

max)
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and

max
n=1,...,N

‖zn − z(tn)‖ = O (τ
p

max)

as τmax → 0.

A stiffly accurate implicit RK method of order p has differential algebraic order p and its stability function R satisfies 
R(∞) = 0. So, the method has convergence order p when it is applied to DAEs.

A.2.2. Rosenbrock methods
Stiffly accurate RK methods for DAEs work fine, but they are implicit methods: at any step the fully nonlinear system 

(49) needs to be solved. To reduce the computational effort, we can use Rosenbrock methods instead of implicit RK methods 
for solving the SPP (44), since the Rosenbrock methods constitute a good compromise between the cost and the stability 
requirement. The application of such methods to SPPs has been extensively studied, for instance, in [14,22,24].

Unlike RK methods, Rosenbrock methods make use of the jacobian matrix of the right-hand side of an ODE. A Rosenbrock 
method as applied to the SSP (44) reads, for n = 0, 1, . . . , N − 1,

yn+1 = yn +
s∑

i=1

bilni

zn+1 = zn +
s∑

i=1

bikni, (50)

where (lni, kni), i = 1, . . . , s, are recursively obtained by

lni = τn+1 f (yni, zni) + τn+1

i∑
j=1

γi j
(

f n
y lnj + f n

z knj
)
, i = 1, . . . , s,

εkni = τn+1 g(yni, zni) + τn+1

i∑
j=1

γi j
(

gn
ylnj + gn

z knj
)
, i = 1, . . . , s, (51)

with (yni, zni), i = 1, . . . , s, recursively and explicitly given by

yni = yn +
i−1∑
j=1

aijlnj, i = 1, . . . , s,

zni = zn +
i−1∑
j=1

aijknj, i = 1, . . . , s. (52)

Thus, the Rosenbrock method is defined by an explicit RK method (A, b, c) and additional parameters γi j , i = 1, . . . , s and 
j = 1, . . . , i. The method uses the jacobian matrices f n

y , f n
z , gn

y and gn
z of f and g evaluated at (yn, zn).

By setting ε = 0, the second equation in (51) becomes

0 = τn+1 g(yni, zni) + τn+1

i∑
j=1

γi j
(

gn
ylnj + gn

z knj
)
, i = 1, . . . , s,

and the first and second equations of (51) read⎡
⎣ I − τn+1γii f n

y − τn+1γii f n
z

−τn+1γii gn
y − τn+1γii gn

z

⎤
⎦
⎡
⎣ lni

kni

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎣

τn+1 f (yni, zni) + τn+1

i−1∑
j=1

γi j
(

f n
y lnj + f n

z knj
)

τn+1 g(yni, zni) + τn+1

i−1∑
j=1

γi j
(

gn
ylnj + gn

z knj
)

⎤
⎥⎥⎥⎥⎥⎦

i = 1, . . . , s. (53)

For the DAE (1), the Rosenbrock method is given by the equations (50)-(52)-(53):
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• for each stage index i = 1, . . . , s, given the previously computed (lnj, knj), j = 1, . . . , i − 1, first we compute explicitly
(yni, zni) by using the formula (52) and then (lni, kni) is obtained by solving the 2 × 2 block linear system (53);

• finally, given all values (lni, kni), i = 1, . . . , s, we compute (yn+1, zn+1) by the formula (50).

At each step of this method, s linear systems of dimension d1 + d2 need to be solved. This is a big computational saving 
with respect to implicit RK methods, where a fully non-linear system of dimension s(d1 + d2) has to be solved.

Observe that, in general, the stage values (yni, zni), i = 1, . . . , s, and the approximation (yn+1, zn+1) are not consistent.

As in case of implicit RK method for DAEs, we can introduce for Rosenbrock methods for DAEs the notion of differential 
algebraic order and prove that if a Rosenbrock method has differential algebraic order p and its stability function R satisfies 
|R(∞)| < 1, then it has convergence order p (see [13]).

Appendix B. Continuous extensions

This other appendix contains a brief review of continuous extensions for the methods introduced in the previous ap-
pendix.

Often, it is important to have an approximated solution of the DAE (1) defined not only at mesh times tn , n = 0, 1, . . . , N , 
but at all times t ∈ [0, T ]. Approximations of this type are given by continuous extensions of numerical solutions defined at 
mesh times.

We consider continuous extensions of numerical solutions given by semi-implicit methods or Rosenbrock methods, since 
such numerical solutions require continuous extensions for the numerical event location. On the other hand, numerical 
solutions given by implicit RK methods do not require continuous extensions for this task.

When the DAE (1) is integrated by a semi-implicit method (as described in Subsection A.1), the numerical event location 
requires a continuous extension of the numerical solution defined in (40), as we will see in Subsection 2.2. This continuous 
extension is a function η defined at all times t ∈ [0, T ] and given by

η(tn + θτn+1) = yn + τn+1

s∑
i=1

bi(θ) f (yni, zni),

n = 0,1, . . . , N − 1 and θ ∈ [0,1] (54)

where bi(·), i = 1, . . . , s, are polynomial functions such that:

bi(0) = 0 and bi(1) = bi . (55)

The continuous extension is said to have order q if

max
t∈[0,T ]
θ∈[0,1]

‖η(t + θτ ) − y(t + θτ )‖ = O (τ q+1)

as τ → 0, where η is given by (54) with (tn, yn) = (t, y(t)).
One can prove (see [2]) that if the continuous extension has order q and the semi-implicit method has order p, then the 

continuous extension has convergence order min{p, q + 1}, i.e. we have

max
t∈[0,T ] ‖η(t) − y(t)‖ = O (τ

min{p,q+1}
max )

as τmax → 0.
It is possible to prove that there exists a continuous extension of order [(p + 1)/2] (see [2]).

When the DAE (1) is integrated by a Rosenbrock method (as described in Subsection A.2.2), the numerical event location 
requires a continuous extension (η, μ) of the numerical solution in (50), as we will see in Subsection 2.3. It is defined as 
follows:

η(tn + θτ ) = yn +
s∑

i=1

bi(θ)lni

μ(tn + θτ ) = zn +
s∑

i=1

bi(θ)kni

n = 0,1,2, . . . and θ ∈ [0,1], (56)
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where bi(·), i = 1, . . . , s, are polynomial functions satisfying (55).
The continuous extension is said to have differential algebraic order q if

max
t∈[0,T ]
θ∈[0,1]

‖η(t + θτ ) − y(t + θτ )‖ = O (τ q+1)

and

max
t∈[0,T ]
θ∈[0,1]

‖μ(t + θτ ) − z(t + θτ )‖ = O (τ q),

as τ → 0, where (η, μ) is given by (56) with (tn, yn, zn) = (t, y(t), z (t)).
Similarly to continuous extensions of semi-implicit methods, one can prove (see [22]) that if the continuous extension 

has differential algebraic order q, the Rosenbrock method has differential algebraic order p and |R(∞)| < 1, where R is the 
stability function of the Rosenbrock method, then the continuous extension has convergence order min{p, q + 1}, i.e. we 
have

max
t∈[0,T ] ‖η(t) − y(t)‖ = O (τ

min{p,q+1}
max )

and

max
t∈[0,T ] ‖μ(t) − z(t)‖ = O (τ

min{p,q+1}
max )

as τmax → 0.
It is possible to prove that there exists a continuous extension of differential algebraic order [(p + 1)/2] (see [22]).
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