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Abstract—In modern dc shipboard microgrid (SMG) systems,
the propulsion motors and hotel loads are always supplied
through tightly regulated point of load converters, which behave
as constant power loads (CPLs). The negative incremental
impedance due to CPL’s characteristics destabilizes the dc bus
voltage of dc SMGs. Due to uncertain operating conditions of
maritime ships on the sea, the dc bus voltage robust control is
a crucial matter. Therefore, this paper presents a cutting-edge
systematic review on advanced nonlinear control strategies to
stabilize and control the CPLs in dc SMGs, such as sliding
mode control, synergetic control, backstepping control, model
predictive control, and passivity-based control. The latest stabi-
lization techniques and the future trends towards an adaptive
nonlinear control have been presented throughout this review.
Several feedforward control-based observation and estimation
techniques have been highlighted. The stability analysis and
stability challenges of dc SMGs are also discussed.

Index Terms—DC shipboard microgrids, constant power load,
adaptive nonlinear control, power electronic converters, system
stabilization, nonlinear disturbance observer.

I. INTRODUCTION

RECENTLY, dc microgrids (MGs) attracted great interest
of many academic and industrial researchers, since it

can efficiently integrate local groups of distributed generation
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(DG) units and energy storage systems (ESSs) directly to the
dc loads with less conversion stages [1]–[3]. DC MGs based
on local DG systems (renewable generation), combined with
the capability to work dependently or independently of the
main grid, makes the dc MGs technically a feasible option to
address the concerns of substantiality, reliability, and energy
efficiency [4]. Furthermore, the accelerated improvement in the
performance of ESSs during the last decade makes dc MGs an
economically viable option, which also helps to address the
concerns of energy saving and balance [5], [6]. In addition
to the application of dc MGs on land, it has also been suc-
cessfully implemented in off-grid applications, such as electric
vehicles, aircraft, and maritime ships [7], [8]. [9]–[11]. Thus,
the dc shipboard microgrids (SMGs) emerged as a modern
electrification network for maritime ships. Fig. 1 shows a typ-
ical structure of the dc SMGs for maritime ships, which is
composed of the propulsion motors and hotel loads supplied
by DG units; diesel generators, fuel cells, photovoltaic (PV)
modules, and a pack of batteries. This structure can work in
different operating modes with advanced energy management
and control systems [9]. It can also be connected or discon-
nected from the shore power system. Since the 1990s, the
controlled power electronic converters have created a break-
through in the field of shipboard electric networks enabling
electrification of the propulsion motors through drivers based
on variable-voltage-variable-frequency control. To reduce fuel
consumption, emission, and to increase the efficiency of mar-
itime ships, the concept of all-electric ship (AES) has been
presented as a modern electrification approach to supply the
propulsion system electrically instead of the conventional
mechanical one [12], [13]. In this regard, dc SMGs offer
remarkable features as compared with ac MGs, which can
efficiently reduce the fuel consumption, weight and space
needed [8], [14]. The diesel generators in dc SMGs can
work with optimum speed, whereas the speed in ac MGs
can only be fixed at the frequency of the system. Therefore,
dc SMGs allow the generators to work with a unity power
factor with a faster and simpler parallel connection [14]. In
view of the advantages of dc MGs, many practical dc mar-
itime ships projects have been implemented around the world.
Thanks to the Italian Navy project named Naval Package, the
generation system for medium voltage dc (MVdc) integrated
power systems (IPSs) has been implemented in [15]. ABB
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Fig. 1. Typical structure of dc SMGs.

has developed an onboard dc grid for ships, including power
rectification, power protection, and safety [16], [17]. The dc
vessel named BlueDrive PlusC was developed by Siemens to
provide a comprehensive solution in cost reduction, where
the diesel generators can run at an optimum speed to meet
the load changes [18]. To further reduce cost, Siemens and
Ostensjo Rederi in Norway have launched the Edda Ferd dc
ship, which combines a set of batteries to work in one IPS with
the available diesel generators [19]. In Norway, the Viking
Lady vessel has also been developed by adding fuel cell gen-
eration to the available set of generators and batteries. The
happiness hybrid-electric ferry is also developed in Taiwan
based on a hybrid power source containing diesel generators
with a set pack of batteries that are connected to dc and ac
MGs [20].

However, due to uncertain operating conditions of maritime
ships on the sea, dc bus voltage stabilization, regulation, and
fast recovery during disturbances are the most important issues
in the dc SMGs operation. Several disturbance dynamics could
degrade the regulation of the dc bus voltages, such as oscilla-
tion dynamics due to the CPL [21], [22], pulsed load [22], [23],
voltage mismatches between power converters [24]–[27], fault
occurrences [28], and load rejection (sudden disconnection of
entire propulsion loads). Due to off-grid working conditions
of ships on the sea, the CPL is significantly impacting stability
in dc SMGs compared to the dc MGs on the land. An effec-
tive three control levels for dc MGs were presented in [29],
including primary control for dc bus voltage regulation, sec-
ondary control with voltage restoration, and tertiary control for
energy management. This paper focuses on the CPL instability
problem of dc SMGs at the primary control level, including the
CPL’s characteristics, definition, and problem solutions using
advanced nonlinear control techniques.

The problem of CPL was originally defined by
Middlebrook, 1976 in [30], when the tightly regulated
point of load (POL) converter is supplied through an
undamped input LC filter. The ideal infinite output impedance
of the LC filter at the resonance frequency makes the system
unstable. In order to regulate the propulsion motor’s speed
in dc SMGs, the motor driver absorbs constant power from
the dc bus voltage. Likewise, to supply the hotel loads, the
dc-dc buck power converter draws constant power to regulate
the output voltage. The POL converters (either for speed
or voltage regulation purposes) are the substantial causes
of the CPL dynamic, which creates a negative incremental
impedance (NII) [31]. Owing to this impedance, the system
becomes unstable, poorly damped and has loss-less energy
dissipation across the CPL’s input terminals [21], [22]. The
constant oscillation caused by the CPL is known as the
limit-cycle dynamic, which is the origin of the dc bus voltage
instability [21]. This dynamic not only degrades the stability
of dc SMG, but also increases the stress across the switching
components of power source converters. To stabilize the
CPL in dc MGs, intensive research has been undertaken in
the literature including linear or nonlinear control strategies.
Numerous linear control strategies have been studied using
either passive or active damping control techniques [21].
The passive damping is achieved by adding a real passive
component to the converter’s circuit such as real resistors or
capacitors [32]–[34]. Whereas, the active damping is obtained
by passivating the converter’s circuit virtually through the
control action [35]–[37]. For both linear control approaches,
the main converter’s circuit as well as the control feedback
system must be linearized in a small vicinity near to a certain
equilibrium point. Therefore, the linearization-based small-
signal model can only provide an accurate control performance
in a small neighborhood to this point. Given the nonlinear
nature of the power electronic converters, a typical robust
control dynamic away from this point cannot be obtained.
Therefore, the majority of linear control techniques cannot
maintain the global stability of the system at wide dynamic
ranges.

A great effort was employed to cancel out the nonlin-
earity caused by the CPLs using; linearization via state
feedback [38] or loop-cancellation control [39]. Although
nonlinear feedback is added to capture the overall nonlin-
ear dynamics owing to the CPLs, the baseline controller
is still linear. For all these reasons, linear control strate-
gies are considered as over conservative control methods
which, may not be suitable in many industrial and power
electronic applications [40], [41]. Therefore, the current
research is attracted towards nonlinear control techniques.
The main feature offered by nonlinear control techniques
is that they can provide large-signal stability with glob-
ally asymptotically stable equilibrium points. Besides, all
power electronic converters are nonlinear in nature, therefore,
they are more efficiently controlled using nonlinear control
strategies.

The main contribution of this article can be summarized as
follows:
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Fig. 2. Typical CPL characteristics due to the (a) speed regulation and (b)
voltage regulation.

1) This paper reviews the latest nonlinear control tech-
niques to stabilize the CPL in dc SMGs. The cutting-
edge state-of-the-art literature for the most advanced
nonlinear control strategies is presented and discussed.
The instability problem of dc SMGs due to CPL limit-
cycle dynamic has been introduced and defined. The
recent stabilization techniques of dc SMGs with CPL
have been reviewed.

2) It was noted that the majority of the nonlinear control
strategies tend to use an adaptive control (using feed-
forward compensation control) to improve the control
robustness against system disturbances, such as CPL
changes. Therefore, this paper also fills the gap in the
applications of feedforward control-based observation
and estimation techniques. This review paves the road
for further investigation on adaptive nonlinear control
strategies and their application in dc SMGs.

3) Large-signal stability analysis and stability challenges of
dc SMG have been presented. The future trends towards
adaptive nonlinear control techniques have been cov-
ered and discussed. The upcoming work of this current
version is also highlighted.

The paper is organized as follows. The CPL problem and
its characteristics are defined in Section II. An overview
of advanced nonlinear control technologies is presented in
Section III. The main challenges and future trends for dc SMG
CPL stability and control are presented in Section IV. The
main conclusions of this work are summarized in Section V.

II. DC SHIPBOARD MICROGRID CPL INSTABILITY

DEFINITION AND CHARACTERISTICS

In dc SMGs, there are two types of CPLs, including the dc-
ac inverter, which drives the propulsion motors of ships, and
the dc-dc power converter that regulates the output voltage
for the hotel and auxiliary loads (see Fig. 2). Both converters

consume constant power from the dc bus. Fig. 2(a) depicts the
dc-ac inverter, which drives the propulsion motor with tightly
regulated speed. As the speed (ω) remains regulated at a fixed
value, the torque (T) would remain constant too. Therefore, the
power consumed (P = Tω) is almost constant [31]. Similar to
this one-to-one speed-torque characteristic of the propulsion
loads, the power consumed by the hotel and auxiliary loads
is also constant. As shown in Fig. 2(b), the dc-dc converter
regulates the output voltage (Vo) at a constant value, the out-
put current (Io) is constant. Therefore, the power (P = VoIo)
delivered to the load is also constant [31]. By neglecting the
power converter’s losses, the input power of CPL is equal
to the output power. Fig. 3 shows the negative incremental
impedance (NII) dynamic of CPL due to its input voltage-
current curve characteristics. To maintain constant power at
the CPL’s input terminals, the feedback control system always
enforces the input current (I) to increase (decrease) as the volt-
age (V) across the CPL decreases (increases). Although the
instantaneous impedance of CPL is positive (V/I > 0), the
incremental impedance is always negative (dV/dI < 0) [31],
[33]. The incremental impedance can be determined as:

Rinc = ∂v

∂i
= ∂

∂i

(
P

i

)
= − P

I2
= −V

I
(1)

This negative impedance always makes the system poorly
damped, unstable, and has loss-less energy dissipation across
the CPL’s input terminals [21]. Besides, the NII dynamic is
nonlinear in nature, and it is not stable when supplied by
an open-loop control source power converter. Following an
open-loop dynamic equation of dc-dc buck power converter
supplying CPL. where L,C and E represent the circuit induc-
tance, capacitance, and input voltage, respectively. μ, iL and
v are the duty-ratio, inductor current, and dc bus voltage,
respectively. {

Li̇L = Eμ− v,
Cv̇ = iL − (P/v)

(2)

The output-to-input voltage transfer function G(s) is given
by [31], [42], [43]:

G(s) = v̂(s)

Ê(s)
= μe

LCs2 − L
(

P
V2

)
s + 1

(3)

where μe = V/E is the duty-ratio for the steady-state point
(V, IL). The poles of (3) have positive real parts, which
means that the system is unstable owing to the effect of the
CPL [31], [42], [43]. Therefore, without a robust feedback
control system, the dc bus voltage oscillates, creating a limit-
cycle dynamic. This dynamic also increases the stress across
the switches of the source power converters.

III. NONLINEAR CONTROL STRATEGIES AND

STABILIZATION TECHNIQUES FOR CONSTANT POWER

LOADS IN DC MICROGRIDS

Because all physical systems are nonlinear in nature, non-
linear control is more suitable [44]. Nonlinear control theory is
one of the areas of control that deals with systems that are non-
linear, time-variant, or both. Nonlinear control strategies are a
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Fig. 3. An approximation voltage-current characteristics curve of the CPLs.

Fig. 4. Structure of the nonlinear disturbance observer.

class of closed-loop feedback control systems that can ensure
a global solution for nonlinear systems with large-signal sta-
bility. Moreover, it also concurs with the nonlinear nature of
the power electronic converters [45]–[47]. The majority of the
nonlinear control strategies use Lyapunov’s theorem as a gen-
eral platform to analyze the system’s stability. Since the power
converters and the CPLs are nonlinear systems, it is more effi-
cient to be controlled using nonlinear control schemes. Several
advanced nonlinear control schemes have been presented in the
previous literature to stabilize the CPL in dc SMGs, such as
sliding mode control, synergetic control, backstepping control,
model predictive control, and passivity-based control.

On the other hand, there have been great efforts to develop
fast and robust control strategies for the nonlinear plants
subjected to unknown disturbances/uncertainties. An adaptive
nonlinear control (based observation and estimation) has been
proved to be one of the most promising control systems,
which can be applied to control power electronic convert-
ers subjected to large system disturbances [40]. In general,
there are two stages to design adaptive nonlinear control
schemes; (i) design baseline nonlinear controller to guarantee
voltage regulation at steady-state operation, and (ii) adding
an external control circuit to attenuate steady-state errors
due to system disturbances [48]. In power electronic applica-
tions, two control techniques are usually used to eliminate the
steady-state error caused by the system disturbances, includ-
ing feedback or feedforward control. It is well-known that
the linear proportional-integral-derivative (PID) control system
always attenuates system disturbances through feedback con-
trol, which has slow performance, noise degradation due to
derivative part, and stability margin reduction due to the inte-
gral control [40]. In contrast, the feedforward control-based

Fig. 5. Sliding phases toward the equilibrium point.

observation and estimation technique ensures faster and robust
dynamic response during system disturbances with less num-
ber of sensors [41], [47]. Although the PID control system
is a successful mechanism that dates back to the 1920s, the
author in [40], provided a sufficient justification to switch from
the PID controller to the disturbance rejection control system
based on extended state observer. Therefore, the majority of
current research is focused towards adaptive control-based
feedforward observation and compensation, such as nonlinear
disturbance observer (NDO), sliding mode observer (SMO),
immersion and invariance (I&I) observer, extended Kalman fil-
ter (EKF), artificial intelligence (AI)-based observer, etc. This
paper will review all these observation techniques.

Recently, the NDO attracted substantial interest since it
can work independently of the baseline nonlinear controllers,
with less information dynamics [41], [48], [49]. Based on
the observation mechanism, the NDO can estimate all dis-
turbances/uncertainty of the system. The NDO can estimate
the disturbances that are not easy to be sensed in some practi-
cal applications, thus reducing the number of required sensors.
The general equation of the basic NDO is [41]:{

ẏ = −�(z)g2(z)y − �(z)
[
f (z)+ g2(z)p(z)+ g1(z)μ

]
d̂ = y + p(z),

(4)

where d̂, y ∈ R
l, �(z), and p(z) are the estimated disturbances,

observer’s internal state vector, observer’s nonlinear gain func-
tion, and the nonlinear function to be designed, respectively.
f (z), g1(z), h(z), and g2(z) are smooth functions in terms of
z. This observer can be connected to the nonlinear plant as
depicted in Fig. 4, [41]. To reject system disturbances, the
estimated disturbances d̂ would be injected to the baseline
nonlinear controller.

A. Sliding Mode Control (SMC)

SMC is one of the nonlinear control strategies categorized
under the variable-structure system [46], [47], [50]. The main
feature offered by the SMC is that it can operate at high-speed
switching frequency control, which can drive the trajectory of
the system state into a specified surface in the state space,
named switching surface or sliding manifold. Thus, SMC has
a fast recovery performance as well as robust control against
system disturbances, such as CPL variations. In general, there
are two important phases for SMC design, including (i) reach-
ing phase, which enables the system trajectory S to be attracted
towards the sliding manifold ζ = 0, as shown in Fig. 5a, and
(ii) sliding phase, which keeps the trajectory slides toward the
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steady-state equilibrium point O = 0, as shown in Fig. 5b [46],
[47]. Following is the dynamic equation of the common power
electronic converters, such as buck, boost, and buck-boost
converters [46], [47]:

ż = Az + uBz (5)

where z ∈ R
n is the vector state, A,B ∈ R

n×n are the connec-
tion matrix, and u is the control law. The basic sliding surface
can be written as:

S = z − z∗ (6)

where z∗ is the desired reference vector. The discrete control
law has been determined in the following form:

u = 1

2
(1 − sign(S)) (7)

Owing to the fast switching performance, the nonlinear SMC
has attracted great attention to enhancing the stability of dc bus
voltage supplying CPLs in shipboard’s electric networks [51]–
[54]. Besides, there are great efforts to increase the robustness
of the SMC using feedforward observers. To improve the
control robustness of SMC strategy, an observers based on
estimation techniques are introduced to work in parallel with
SMC, as shown in Fig. 6, [51], [53]–[61]. iLN are the N
inductor currents, μ are the duty cycles and k are the control
laws. The system states z are transformed into states repre-
senting the total energy stored x using the canonical form
transformation, which is the input for the observers [58]. The
proposed observers were designed as NDO in [57], [58]. It
is also presented as an observer based on AI control algo-
rithms in [53]–[56]. The AI algorithms are proposed using
an interval type-2 fuzzy logic controller in [53], [54], and
deep learning controller in [55], [56]. To reject the system
disturbances, uncertainty and to enhance the stability of the
dc-link voltage, the observer is also combined with working
in parallel with a composite discretized quasi-sliding mode
control scheme in [59] and SMC strategy (working as outer-
loop) in [60]. It is worth mentioning that the observer-based
estimation technique has gained great attention in all applica-
tions of nonlinear control strategies, including the SMC. The
estimated disturbances d̂ are injected into the SMC through
feedforward compensation channels to ensure robust control
dynamics. The feature offered by the feedforward control has
an extremely fast response against system disturbances, such
as CPL variations.

Rather than using observers, the SMC performance is
also improved by introducing other techniques. In [62], the
switching function-based SMC synthesizes CPL with a series
inductor in the input port. The switching function is designed
to represent the error difference between the input power and
the desired power reference. In [31], a simple sliding surface
has been proposed to control the dc-dc buck power converter
feeding a CPL. The attraction region toward the equilib-
rium point is bounded by large-signal stability. However, the
proposed sliding surface lacks to ensure voltage regulation dur-
ing load changes. Authors in [63], [64], have proposed a robust
nonlinear sliding surface to control different topologies of dc-
dc power converters (buck, boost, and bidirectional) feeding a

Fig. 6. Structure of sliding mode control strategy with the observer.

Fig. 7. Continuous and discontinuous SMC strategies.

CPL. In this work, the SMC was implemented based on two
different control schemes; continuous or discontinuous con-
trol schemes (see Fig. 7). These controllers provide a robust
voltage control against both input voltage and load variations.

Indeed, the common problem that faces the majority of
SMC strategies is that ideal control performance can only
be obtained at extremely high switching frequencies; which
causes the well-known chattering problem. High switch-
ing frequencies lead to high switching losses in the power
devices. It also increases the possibility of electromagnetic
interference with neighboring devices. Recently, high-power
high-frequency silicon carbide transistors can help SMC to
achieve robust control performance. Therefore, the SMC is
expected to be applied widely in the applications of dc SMGs
in the future.

B. Synergetic Control (SC)

The synergetic control method is a nonlinear algorithm that
can be designed based on the concept of the nonlinear dynamic
dissipative system [65]. The synergetic control strategy and
the SMC share a similar control scheme by designing a linear
manifold that attracts the system states towards the desired
equilibrium point. The following differential equation defines
the nonlinear plant to be controlled:

ż = f (z, μ, t) (8)

where z is the state variable vector, μ is the control input
for the plant, and t is time. The following steps have to be
followed to design a synergetic control strategy:
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1) Define a macro-variable ψ to be a function of z with
considering all control system specifications and char-
acteristics.

ψ = ψ(z) (9)

The closed-loop control system forces the plant to work
at switching surface ψ = 0. The derivative with respect
to z is given by

ψ̇ = dψ

dz
ż (10)

2) Determine the desired dynamic equation of macro-
variable as.

T ψ̇ + ψ = 0, T > 0 (11)

T is the control parameter to ensure the convergence
towards the desired manifold ψ = 0.

3) Synthesize the input control law μ, by invoking (8)
and (10) in (12), obtaining

T dψ

dz
f (z, μ, t)+ ψ = 0 (12)

Numerous synergetic control strategies have been presented
in the past literature to control the CPL in dc MG systems.
In [66], the synergetic control strategy is used to stabilize
parallel-connected dc-dc buck power converters feeding a
CPL; the control performance of this strategy gives robust
dynamics and faster response as compared with a linear control
strategy. This work not only ensures voltage regulation but also
provides equal current sharing among the parallel buck power
converters. However, this article did not provide a detailed
analysis for CPLs. In [67], [68], the same authors proposed
synergetic control strategies to control the output voltage of
the n number of paralleled dc-dc buck power converters sup-
plying CPL in dc SMG. The condition of an equal current
sharing is satisfied by introducing invariant manifolds into the
state-space of the system, which significantly suppresses the
error of the output voltages. The synergetic control strategy
is also implemented in [69], [70] to stabilize the dc bus volt-
age supplying CPL in the MVdc distribution system. In both
works, a detailed performance comparison has been presented
to demonstrate the superiority of the synergetic control as
compared with the linear feedback control.

A synergetic control strategy is a promising control method,
which can generate fixed switching-frequency without chatter-
ing problem. However, it is sensitive to parameter uncertainty
and load disturbances. The synergetic control is not yet com-
bined with the NDO or other observers, which may open a
new research direction to improve control robustness of syn-
ergetic strategy in terms of fast dynamic response against
system disturbances. Since synergetic control requires a fairly
low bandwidth for the control design, it is more suitable for
digital control applications, such as digital signal processors.
However, it requires more complex calculations.

C. Backstepping Control (BSC)

BSC is a nonlinear control approach that works according
to a recursive Lyapunov-based scheme [71], [72]. The con-
cept behind the BSC scheme is to design a controller that

Fig. 8. Structure of BSC strategy with CKF.

Fig. 9. Structure of BSC strategy with NDO.

works recursively by considering some of the state variables
as virtual control and designing intermediate control laws for
them. Following this criterion, the final control signal of the
feedback system will be reached by systematically follow-
ing a step-by-step backstepping algorithm [71]. In [73]–[75],
the BSC performance of the dc-dc boost converter (classi-
cal or interleaved) feeding a CPL is improved by adding
the NDO. Based on the standard backstepping design, the
dynamic model of the dc-dc boost power converter with the
CPL is converted into Brunovsky’s canonical form. At the
same time, the NDO is added to eliminate the regulation error
during disturbances. This control strategy ensures global sta-
bility under large variations of the CPL and provides a fast
dynamic response compared with the linear control. However,
these papers did not present the control performance before
and after adding the NDO. By transforming the model into
Brunovsky’s canonical form, an adaptive backstepping sliding
mode control strategy is also presented in [76] to improve the
control robustness of dc bus voltage supplying the CPL in the
dc MG. In [77], an adaptive BSC strategy is proposed to stabi-
lize the uncertain CPLs in dc MG. The CPLs are represented
by electrical aircraft that comprise a vast amount of tightly reg-
ulated POL converters. A third-degree cubature Kalman filter
(CKF) algorithm is developed to improve the control robust-
ness of the backstepping controller by estimating not only the
states of the dc MG, but also the total power of the load PL

(see Fig. 8). The estimated signals of load power are then sent
to a backstepping controller to stabilize the dc MG, as well
as to track the desired value of the dc bus voltage.

Based on the estimation technique (i.e., NDO), the BSC
strategy has also been developed to control high voltage gain
converters, such as floating dual boost converters (FDBCs)
in [78], and multilevel boost converters (MBCs) in [79].
It is worthy to note that the NDO has been added to the
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majority of the above-mentioned BSC strategies [73]–[75],
[78], [79]. Fig. 9 depicts the general structure of the BSC
combined with the NDO. The NDO estimates the system dis-
turbances d̂ = [ d̂1 d̂2 ]

T
based on the input system’s states

x = [ x1 x2 ]T , using the following coordinate transforma-
tion, [73]–[75], [78], [79]:{

x1 = 1
2 Cv2

c + 1
2 Li2L,

x2 = ẋ1
(13)

where x1 is the state of the total energy (potential plus kinetic),
and x2 describes the transient dynamics of x1. Additional coor-
dinates (z1, z2) have been added to enforce the state variables
(x1, x2) to track the desired reference values (x1d, x2d), which
can be written as: {

z1 = x1 − x1d,

z2 = x2 − x2d
(14)

Finally, the intermediated control law v of the BSC can be
determined as follows:

v = −k2z2 − d̂2 + ẍ1 (15)

where k2 is the control gain, and d̂2 is the estimated system
disturbances provided by the NDO. We can conclude that the
control dynamics of the BSC strategy is significantly improved
by adding the NDO, which can open the window for using
more advanced estimation techniques to enhance the stability
of dc SMGs.

D. Model Predictive Control (MPC)

MPC is one of the nonlinear control strategies recently
applied in power electronics converters [80]. This control strat-
egy uses a discrete-time model to predict the changes in the
system states (dependent variables) caused by variations in
the independent variables, such as line and loads variation.
The prediction process takes place at every single sample
time to minimize a certain cost function. By comparing the
system output with a reference value, this function works as
an actuator to provide future information for the next sample
time of each variable. Recently, the application of MPC in dc
SMGs has also attracted much attention [81]–[85]. Generally,
to stabilize the CPLs, the MPC can be categorized into two
groups [86]; continuous control set (CCS) and finite control set
(FCS). The CCS-PMC works based on the principles of con-
tinuous signals [87], [88], whereas the FCS-MPC considers the
discrete nature of the nonlinear system [89]–[93]. To improve
the control robustness of the MPC, both; extended [94] and
pseudo-extended Kalman filters (EKFs) [95] are proposed to
estimate the time-varying power of uncertain CPLs in dc
SMG. The estimated power is then injected into the PMC
circuits, which is considered an economical solution com-
pared with using real sensors to measure the online CPL’s
power. Recently, observer-based control has also been applied
to work in parallel with the MPC strategies to stabilize the
CPLs [96]–[98]. This observer is designed either as NDO
in [96], fuzzy-observer in [97], or higher-order sliding mode
observer in [98]. Fig. 10 depicts the common structure of
the MPC for dc-dc power converters supplying CPLs. The

Fig. 10. Common structure of MPC strategies.

predictive model presents J different switching states. The
control objective is obtained when the variables X converge
with the desired values X∗. The common stages to implement
the MPC strategies are shown as follows [80]:

1) Measure and (or) estimate (based observation) the con-
trolled state variables X.

2) Based on the previous optimal switching state, predict
the behavior of the state variable for the next sampling
step XP.

3) Evaluate and calculate the error |X∗ − XP| to generate
the switching state that minimizes the cost function Sopt

to be the state for the next sampling interval.
Other new techniques also were presented to improve the

control robustness of the MPC. By treating a multiparametric
nonlinear programming problem, an offline optimal control
law is designed in [99] to drive an explicit MPC for a dc-
dc boost converter supplying CPL. In [100], parallel power
converters are implemented to supply the CPL. The MPC is
used to enhance the stability for equal current sharing and
voltage regulation by replacing the conventional primary level
of dc MGs (inner-loop and droop control) with a single optimal
predictive model controller.

The main feature offered by MPC is that it can solve
an online optimization problem for multi-input multi-output
(MIMO) systems while handling all constraints of the system.
However, it requires a powerful, fast processor with large
memory. This increases the computational complexity and
cost.

E. Passivity-Based Control (PBC)

PBC is one of the high-gain nonlinear control strategies
that focus on the principle of energy conservation (i.e., energy
supplied is equal to the sum of energy dissipated plus energy
stored). The passivity property is presented as an alternative
concept to describe and control nonlinear systems from an
energy processing perspective. For physical systems that con-
tain input (u ∈ R

m) and output (y ∈ R
n), the system is said

to be passive if the energy stored Ḣ(z) is always less than
the energy supplied uTy with the difference being the energy
dissipated ZTRi(z)Z , which is represented by the following
energy balance equation [101]:∫ t

0
uT(t)y(t)dt

︸ ︷︷ ︸
energy supplied

=
∫ t

0
ZTRi(z)Zdt

︸ ︷︷ ︸
energy dissipated

+H(z(t))− H(z(0))︸ ︷︷ ︸
energy stored

(16)
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The PBC strategy has been successfully applied in many
power electronics and industrial applications. PBC strategy has
been presented to stabilize the CPL in dc SMG and to con-
trol the dc bus voltage [102]. The passivity property almost
concurs with the physical nature of power electronics archi-
tecture, which are composed of storing elements (inductances
and capacitances) and dissipative loads. To damp the energy
oscillation caused by the CPL, the PBC strategy reshapes the
energy balance equation (16) by injecting the new desired stor-
age energy and dissipation functions. This can be achieved
virtually through the control action. Therefore, to implement
the feedback PBC strategy, two stages have to be followed,
including energy shaping stage by modifying the coordinates
of the stored energy (potential or kinetic) with handling the
new deviations, and the damping injection stage by injecting
virtual damping resistance matrix. In general, the PBC strategy
can be divided into two main groups including; (i) classi-
cal PBC, and (ii) interconnection and damping assignment
(IDA-PBC), [103]. The classical PBC strategy was originally
proposed by Ortega et al. [101], which is similar to standard
Lyapunov methods successfully applied to control the physical
systems described by Euler-Lagrange motion equations. The
dynamic equations of the dc-dc power converter based on the
classical PBC was determined as [101]:

HŻ + [G + R(z)]Z = E (17)

H is a positive definite matrix of the storage system (induc-
tance and capacitance), Z is the vector of the state variables,
G is a skew-symmetric matrix, R(z) is the diagonal positive
semi-definite matrix for heat dissipation, and E is the input
vector matrix. The energy damping stage can be obtained by
changing the coordinate of (17) using Z = Z̃ + Zd:

H ˙̃Z + [G + R(z)]Z̃ = E − (
HŻd + [G + R(zd)]Zd

)
(18)

where Z̃ is the new deviation from the reference point Zd.
The damping injection stage can be determined by adding a
virtual resistance matrix RdZ̃ to both sides of (18):

H ˙̃Z + [G + Ri(z)]Z̃
= E − (

HŻd + [G + R(zd)]Zd − RdZ̃
)

(19)

where Ri(z) = R(z) + Rd. In the classical PBC strategy,
the feedback control system is usually designed by consid-
ering the system has well-defined input and output, and it
tends to make the storage function nonincreasing. However,
the classical PBC is considered as a particular case of the
control by interconnections, which is the main property of the
nascent IDA-PBC strategy [104]. In this sense, the IDA-PBC is
effective for all physical systems that have an interconnection
nature with other storage and dissipative elements where the
input and output of the system are not easy to be assigned.
Therefore, the port-controlled Hamiltonian (PCH) method
is presented to characterize all assignable energy functions
compatible with this structure, which is determined in the
following form [103].

Ż = [G − R(z)]∂Hd

∂z
(z)+ g(z, u) (20)

Fig. 11. Structure of PBC strategy with NDO.

where

Hd(z) = 1

2
Lz1

2 + 1

2
Cz2

2. (21)

This provides the IDA-PBC with robust dynamic and glob-
ally asymptotically solution. Both PBC strategies are presented
and developed in several works to stabilize the CPL in dc
MGs, including the classical PBC in [105]–[112], and IDA-
PBC in [113]–[123]. However, each strategy has its own
drawback. The main drawback of the classical PBC strat-
egy is that it cannot eliminate the steady-state error caused
by the wide variety of disturbances (such as input voltage
or CPL variations) [108]–[111]. To eliminate this error, sim-
ple integral-controller-based feedback attenuation is added to
classical PBC in [105], [106]. However, it has slow recovery
performance during disturbances with high maximum over-
shoot. Therefore, the NDO is presented in [108]–[111] to work
in parallel with the PBC strategy as feedforward compensa-
tion control. The NDO is added to observe and estimate the
system disturbances (d̂) online and inject it to the PBC through
feedforward channels, as shown in Fig. 11. In this work,
it is proved that the NDO-based feedforward control pro-
vides faster dynamic response during system disturbances with
global trajectory tracking as compared to the integral-based
feedback control [108]–[111]. Likewise, to improve the control
performance of the IDA-PBC strategy, several observer tech-
niques were also presented, such as immersion and invariance
(I&I) in [115], [117]. I&I observer is added to estimate the
power load online, which is difficult to be measured in some
practical applications. An adaptive interconnection matrix is
also developed in [118]–[121], by establishing internal links
in the PCH model, which enables the generation of the desired
control law for the cascaded power electronic system con-
taining input filter and CPL. With the aid of an additional
integrator, the IDA-PBC strategy has also been extended to
control high-power multiphase interleaved boost power con-
verters, suitable for transportation applications [116], [122].
Another drawback of the IDA-PBC is that the PCH used in
the previous methods is not shifted passive. Therefore, the
property of shifted passive has been enforced in [123] by
adding state feedback, called shifted passivity via feedback.
The results show accurate voltage control for the buck-boost
converter supplying a CPL. However, the control robustness
against CPL variation has not been examined. The insta-
bility issue of unknown nonlinear ZIP loads [i.e., constant
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TABLE I
COMPARISONS OF BASELINE NONLINEAR CONTROL STRATEGIES WITH THEIR ADAPTIVE TECHNIQUES

Fig. 12. Interconnected passive systems through (a) parallel and (b) feedback
connection.

impedance (Z), current (I), and load (P)] was also addressed
in [124], [125]. Based on the skew-symmetric interconnection
properties between the individual local passive subsystems,
stability of the entire dc SMG can be ensured using the PBC
strategy.

It can be concluded that the adaptive PBC strategy could
pave the road to better understand the dynamics of the dc SMG
from the standpoint of energy processing (storage and dissi-
pation elements) rather than signal processing. PBC offers the
feature of local passivity for subsystems connected together
through parallel connection or using passive feedback control
(see Fig. 12) [126]. The transient energy can be dissipated
locally in each subsystem owing to this feature, which facil-
itates the stability for the entire dc SMGs. In this sense, the
overall energy balance of the dc SMG is always positive.
Therefore, the PBC strategy is qualified to be pioneering in
the applications of dc SMGs in the near future.

IV. CHALLENGES AND FUTURE PERSPECTIVE FOR DC
SMG CPL STABILITY CONTROLS

It is obviously that dc SMG has been evolved rapidly as
effective alternative network compared with ac SMG, which

reduces the cost, size and makes the diesel generators working
at optimum operating point with unity power factor. However,
the control and stability of the dc bus in dc SMG is a crucial
issue due to the presence of CPLs. Besides, the CPLs varia-
tions due to the uncertain operation condition of ships on the
sea, such as torque and load changes of propulsion motors,
increases the dc bus voltage control challenges. The afore-
mentioned well-established nonlinear control methods, can be
considered the backbone for more future control innovations
and applications to regulate the dc bus voltage and ensure
system stability for dc SMGs.

A. Stability Challenges of DC SMG With CPLs

Table I summarizes the comparison between advanced non-
linear control strategies and their adaptive techniques (type of
observers) to stabilize CPLs. The comparison shows the advan-
tages and drawbacks of each baseline nonlinear controller.
Besides the estimation techniques used to improve their con-
trol performance. We can conclude that the stability analysis of
dc SMGs requires more development for two levels of control,
including local control level for each single power con-
verter and system-level control for parallel-connected power
converters.

1) Stability Challenges of Local Nonlinear Control:
Several well-known frequency domain stability methods were
successfully tested in the dc MGs linear control systems,
such as Bode plot, Routh-hurwitz, root locus, Nyquist sta-
bility criteria, etc. [127]. On the other hand, a few techniques
have been used for stability analysis of local nonlinear con-
trol systems, such as describing function, phase plane, Popov,
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TABLE II
DIFFERENT COMPARISONS BETWEEN THE NONLINEAR CONTROL STRATEGIES

and Lyapunov stability criteria, which require more complex
equations and advanced analysis [44]. The problem of the non-
linear systems in the frequency domain is that there are always
highly complex output frequencies, appearing as superharmon-
ics, sub-harmonics, inter-modulation, chaos, limit-cycle, and
bifurcation, which can produce output frequencies quite dif-
ferent from the input frequencies [44], [128]. This usually
makes it rather difficult to analyze and design output frequency
response of nonlinear systems than linear systems [128].
Table II shows that the majority of nonlinear control tech-
niques used the Lyapunov stability criterion to analyze feed-
back closed-loop local control systems. It also shows the
classification of works that have been implemented using
simulation or hardware experiments. Besides, the hardware-in-
loop simulation platforms were also classified. The advantage
of nonlinear control systems is that they can handle many
nonlinear dynamics, which can not be addressed using linear
control, such as finite escape time, multiple isolated equilib-
ria, limit cycles, chaos, etc. [44]. However, nonlinear control
systems are complex and require complicated computational
and programming modeling. Besides, the industry of nonlinear
control systems has not yet become mature in the applications
of dc MGs as compared to the linear PID controller. The cost
of nonlinear control implementation is also high.

2) Stability Challenges of System-Level Control: Last
decade, the system-level stability analysis of dc MGs have
been presented using many effective linear criteria [129],
including Middlebrook [30], gain margin and phase mar-
gin [130], opposing argument [131], energy source analysis
consortium [132], three-step impedance [133], and passivity-
based stability criterion [129], [134]. On the other hand,
system-level nonlinear control stability of dc MGs, still lim-
ited to a few methods based on Lyapunov stability theorem,
such as low-frequency bifurcation-based analysis [135], [136],
Popov’s absolute stability criterion [137], and mixed poten-
tial theory [138]–[142]. Thus, system-level stability analy-
sis of dc SMGs based on nonlinear control needs more
development. Other problems may also impact dc SMGs’
system-level stability, such as bifurcation and chaos behavior

due to system parameters changes [143]–[145]. Ships with
high power weapons (pulse load) and motor drive probably
experience high voltage fluctuation, which may lead to bifurca-
tions and chaos dynamics. Therefore, the region of parameter
space must be accurately justified to ensure the system is work-
ing within the allowed boundary of selected parameters [143].
Adaptive robust control techniques are also required to avoid
bifurcation occurrence.

B. Stability Analysis of DC SMG With CPLs

Large-signal stability analysis of MGs, including all nonlin-
earities of the system and CPLs is a crucial matter. In [146],
Lyapunov-based large-signal stability criteria have been inten-
sively reviewed for MGs stabilization. Large-signal stability
tools for dc power systems are also reviewed in [147]. The
prime concerns of SMGs instability are the system dis-
turbances due to intermittent nature of renewable energy
resources, and MGs load pattern changes. Besides the uncer-
tainty due to parameters variations. Therefore, Lyapunov
large-signal stability criterion have been widely presented as
the most effective methods for SMGs stability analysis to
address all concerns, including CPLs [146]. Several stability
criteria have been developed based Lyapunov’s method for dc
MGs [147]:

1) Mixed Potential Theory (MPT): MPT-based Lyapunov’s
method has been employed for many work as stability tool for
dc MGs with CPLs [138]–[142], [148]. Which can be applied
to analyze dc MG’s stability from the level of single CPL to
mutlti-CPLs. The MPT was originally proposed by Brayton
and Moser [149], which has been recently applied in power
electronics stability using region of attraction estimation [148].
The MPT is an energy-related function, which can contain the
current and voltage potentials.

C(v)
∂v

∂t
= −∂P(v, i)

∂v
, L(i)

∂i

∂t
= ∂P(v, i)

∂i
(22)

In [142], [148], MPT has been employed to analyze large-
signal stability of parallel connected dc-dc power converters
supplying CPL in dc MGs. Based on Lyapunov’s equations,
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Fig. 13. Regulatory mechanisms, (a) mechanical spring and (b) dc electric
spring.

the mixed potential function P(v, i) have be constructed to
analyze large-signal stability under certain conditions [142].

2) Bifurcation Theory: bifurcation occurs in power elec-
tronics, when a small smooth changing of the parameter values
lead to a sudden qualitative variation in its behavior, such as
high CPL changing and parameters uncertainty [150]–[152].
In [150], where MG supplying CPL, bifurcation boundaries
before the MG become unstable can be predicted using bifur-
cation stability region analysis. In [151], a jacobian matrix
has been developed to investigate the stability of limit cycles
for dc power system with CPLs and LC filters. A simplified
model was developed to understand the interaction dynamics
between the inverters in ac MGs with CPLs using bifurcation
theory [152]. The obtained results of simplified model with
output power variation has been verified with the a full model
of MG.

3) Popov Stability Criterion: Is a stability analysis tool to
obtained the absolute stability for a class of nonlinear equa-
tions that satisfying an open-sector condition. In [137], the
Popov’s absolute stability method has been utilized to ana-
lyze system stability for an ac MG in presence of CPL. It
was presented that the ac MGs becomes stable when the CPL
changing satisfying certain conditions of Popov’s criterion.

4) Recent Stability Analysis Techniques: In [153], a
semidefinite programming (SDP) have been developed as a
new stability tool to estimate the domain of attraction for
dc MGs composed of multiple CPLs. In [154], the bifurca-
tion analysis was used to study the fast-scale stability analysis
for dc-dc boost power converter with CPL. A piecewise lin-
ear switched model can provide fast-scale stability for linear
load and still providing the accuracy of the full model of
CPL. In [155], using solving convex optimization problems (to
check set of sufficient conditions), a robust stability framework
has been developed for dc MGs for a given range of CPLs.

C. DC SMGs Stability Using DC Electric Springs (DCES)

DCES is an effective emerging method to ensure dc bus
voltage stability of dc MGs against system disturbances,
such as CPL oscillations, renewable power source fluctuation,
system fault, voltage droop, etc. [156]–[159]. DCES behaves
as mechanical spring to absorb the shock of the system sub-
jected by external force. Similar dc regulatory mechanisms can
be obtained using electric springs with capacitor and noncrit-
ical load [156] (see Fig. 13). With the development of energy
storage system, such as lithium batteries, the DCES can be

Fig. 14. DCES with battery, (a) with noncritical load and (b) without
noncritical load.

Fig. 15. Hybrid-electric ferry system structure.

design combined with bidirectional dc-dc power converters, as
shown in Fig. 14 [156]–[158]. The battery can be connected to
the dc bus with and without noncritical load. The main func-
tion of DCES is to regulate the dc bus voltage within certain
limits and to balance the power fluctuations by load boosting
and shedding function [156].

D. Upcoming Work

The trade-off between the PBC strategy and other nonlinear
control strategies is the strong relationship between stability
and passivity, presented early by Youla et al. [160]. A pas-
sive system means a stable system. If all subsystems in dc
SMG become strictly passive (dissipative), the entire dc SMG
would be stable (as shown in Fig. 12) [126]. Therefore, the
stability target of dc SMGs can be easily localized to each
single power converter. Thus, the upcoming work of this cur-
rent version focuses on dc SMG stabilization using the PBC
strategy. The happiness hybrid-electric ferry (HEF) working
in Taiwan has been taken as a study-case for practical appli-
cation of dc SMGs [20]. Fig. 15 depicts system structure of
the HEF, which contains propulsion motors (i.e., CPLs) sup-
plied by hybrid power sources (diesel generators and set of
batteries) through a common dc bus. Owing to the operation
of HEF on the sea of Kaohsiung City, Taiwan, dc bus volt-
age stability and control is a crucial matter. The next work
aims to ensure dc bus voltage control against CPL oscillation
and its variations using PBC. Part of the next work have been
published in [102].
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V. CONCLUSION

This paper has provided a state-of-the-art literature review
of adaptive nonlinear control strategies to stabilize the constant
power loads (CPLs) in dc shipboard microgrids (SMGs). The
tightly regulated point of load converters, such as the propul-
sion motors and hotel load, behave as CPLs. The negative
incremental impedance due to CPL characteristics is the main
cause of the dc bus voltage instability problem in dc SMGs.
Besides, the CPL variations due to motor speed or torque
changes on the sea increase the challenges of dc SMG stabil-
ity and control. Therefore, a robust control design is a crucial
matter. The CPL instability dynamics cannot be controlled
effectively using simple PID linear control systems. Thus, this
paper focuses on nonlinear control systems as well as adap-
tive techniques. Throughout this review, the most advanced
adaptive nonlinear control technologies to enhance the stabil-
ity for the dc SMGs have been presented, including sliding
mode control, synergetic control, backstepping control, model
predictive control, and passivity-based control. These tech-
niques ensure large-signal stability, global tracking control
to the reference voltage, and robust control dynamic against
system disturbances, such as CPL variations. To this end, this
manuscript has also provided an overview of the most popular
observer-based estimation techniques to improve the control
robustness of baseline nonlinear controllers, such as nonlin-
ear disturbance observer, sliding mode observer, immersion
and invariance observer, extended Kalman filter, and artificial
intelligence-based observer.

This article also addresses the challenges of dc SMGs sta-
bility analysis based on nonlinear control techniques. Further
development is required for dc SMGs stability analysis, includ-
ing local and system-level control. Upcoming work of this
current article contains the hybrid-electric ferry (HEF) as
a case study for dc SMGs applications on maritime ships.
An adaptive passivity-based control (PBC) strategy has been
presented to stabilize the CPL. Simulation and experimental
results of a practical dc shipboard microgrid are presented
and used to ensure and demonstrate the performance of the
proposed method.
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F. Blaabjerg, and T. Dragičević, “Tracking control for a DC microgrid
feeding uncertain loads in more electric aircraft: Adaptive backstepping
approach,” IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5644–5652,
Jul. 2018.

[78] P. Lin, W. Jiang, J. Wang, D. Shi, C. Zhang, and P. Wang, “Toward
large signal stabilization of floating dual boost converter powered DC
microgrids feeding constant power loads,” IEEE J. Emerg. Sel. Topics
Power Electron., vol. 9, no. 1, pp. 580–589, Feb. 2021.

[79] X. Li, X. Zhang, W. Jiang, J. Wang, P. Wang, and X. Wu, “A novel
assorted nonlinear stabilizer for DC–DC multilevel boost converter with
constant power load in DC microgrid,” IEEE Trans. Power Electron.,
vol. 35, no. 10, pp. 11181–11192, Oct. 2020.

[80] S. Vazquez et al., “Model predictive control: A review of its applica-
tions in power electronics,” IEEE Ind. Electron. Mag., vol. 8, no. 1,
pp. 16–31, Mar. 2014.

[81] H. Park et al., “Real-time model predictive control for shipboard power
management using the IPA-SQP approach,” IEEE Trans. Control Syst.
Technol., vol. 23, no. 6, pp. 2129–2143, Nov. 2015.

[82] J. Hou, J. Sun, and H. F. Hofmann, “Mitigating power fluctuations in
electric ship propulsion with hybrid energy storage system: Design and
analysis,” IEEE J. Ocean. Eng., vol. 43, no. 1, pp. 93–107, Jan. 2018.

[83] M. M. Mardani, M. H. Khooban, A. Masoudian, and T. Dragičević,
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